591
Views
13
CrossRef citations to date
0
Altmetric
Review

Coal Flotation in Saline Water: Effects of Electrolytes on Interfaces and Industrial Practice

, &

References

  • Ahmed, N., and Jameson, G. J., 1985, “The effect of bubble size on the rate of flotation of fine particles.” International Journal of Mineral Processing, 14(3). pp. 195–215. doi:10.1016/0301-7516(85)90003-1
  • Ahmed, N., and Jameson, G. J., 1989, “Flotation Kinetics.” Mineral Processing & Extractive Metallurgy Review, 5(1–4). pp. 77–99. doi:10.1080/08827508908952645
  • Akdemir, Ü., and Sönmez, İ., 2003, “Investigation of coal and ash recovery and entrainment in flotation.” Fuel Processing Technology, 82(1). pp. 1–9. doi:10.1016/S0378-3820(02)00248-5
  • Aktaş, Z., 2000, “Effect of non-ionic reagent adsorption on zeta potential of fine coal particles.” Turkish Journal of Chemistry, 24(2). pp. 117–129.
  • Angarska, J. K., Dimitrova, B. S., Danov, K. D., Kralchevsky, P. A., Ananthapadmanabhan, K. P., and Lips, A., 2004, “Detection of the hydrophobic surface force in foam films by measurements of the critical thickness of the film rupture.” Langmuir, 20(5). pp. 1799–1806. doi:10.1021/la0357514
  • Arnold, B. J., and Aplan, F. F., 1986a, “The effect of clay slimes on coal flotation. Part I: The nature of the clay.” International Journal of Mineral Processing, 17(3–4). pp. 225–242. doi:10.1016/0301-7516(86)90058-X
  • Arnold, B. J., and Aplan, F. F., 1986b, “The effect of clay slimes on coal flotation. Part II: The role of water quality.” International Journal of Mineral Processing, 17(3–4). pp. 243–260. doi:10.1016/0301-7516(86)90059-1
  • Australian Bureau of Statistics. 2019, 4610.0 - Water account, Australia, 2016–2017. https://www.abs.gov.au/AUSSTATS/[email protected]/Lookup/4610.0Main+Features22016-17?OpenDocument.
  • Baker, A. F., and Miller, K. J., 1968, “Zeta potential control: its application in coal preparation.” Mining Congress Journal, 54(1). pp. 43–44.
  • Bakker, C. W., Meyer, C. J., and Degion, D. A., 2010, “The development of a cavern model for mechanicl flotation cells.” Minerals Engineering, 23(11–13). pp. 968–972. doi:10.1016/j.mineng.2010.03.016
  • Beattie, J. K., 2007, The intrinsic charge at the hydrophobe/water interface, In Colloid Stability: the Role of Surface Forces -part II, Volume Vol. 2, (T. F. Tadros, Ed.), 1st. Weinheim: Verlag GmbH, pp. 153–164.
  • Bikerman, J. J., 1973, Foams. New York: Springer-Verlag, pp. 337.
  • Bolat, E., Sağlam, S., and Pişkin, S., 1998, “Chemical demineralization of a Turkish high ash bituminous coal.” Fuel Processing Technology, 57(2). pp. 93–99. doi:10.1016/S0378-3820(98)00075-7
  • Bonner, C. M., and Aplan, F. F., 1993, “The influence of reagent dosage on the floatability of pyrite during coal flotation.” Separation Science and Technology, 28(1–3). pp. 747–764. doi:10.1080/01496399308019518
  • Bournival, G., Ata, S., and Jameson, G. J., 2017a, “Bubble and froth stabilizing agents in froth flotation.” Mineral Processing and Extractive Metallurgy Review, 38(6). pp. 366–387. doi:10.1080/08827508.2017.1323747
  • Bournival, G., Du, Z., Ata, S., and Jameson, G. J., 2014, “Foaming and gas dispersion properties of non-ionic surfactants in the presence of an inorganic electrolyte.” Chemical Engineering Science, 116. pp. 536–546. doi:10.1016/j.ces.2014.05.011
  • Bournival, G., Muin, S. R., Lambert, N., and Ata, S., 2017b, “Characterisation of frother properties in coal preparation process water.” Minerals Engineering, 110. pp. 47–56. doi:10.1016/j.mineng.2017.04.006
  • Bournival, G., Yoshida, M., Cox, N., Lambert, N., and Ata, S., 2019a, “Analysis of a coal preparation plant. Part 1. Changes in water and coal quality, coal seam, and plant performance.” Fuel Processing Technology, 190. pp. 67–80. doi:10.1016/j.fuproc.2019.03.022
  • Bournival, G., Yoshida, M., Cox, N., Lambert, N., and Ata, S., 2019b, “Analysis of a coal preparation plant. Part 2. Effect of water quality on flotation performance.” Fuel Processing Technology, 190. pp. 81–92. doi:10.1016/j.fuproc.2019.03.023
  • Bournival, G., Zhang, F., and Ata, S., 2018, Effect of flotation water chemistry on coal chemistry, fluidity, and coke quality (stage 1). ACARP Report (Project C25011), pp. 31.
  • Brown, D. J., 1962, Coal flotation, In Froth Flotation 50th Anniversary Volume, (D. W. (Fuerstenau, Ed.), 1st. New York: American Institute of Mining, Metallurgical, and Petroleum Engineers, pp. 518–538.
  • Burkin, A. R., and Bramley, J. V., 1961, “Flotation with insoluble reagents. I. Collision and spreading behaviour in the coal-oil-water system.” Journal of Applied Chemistry, 11(8). pp. 300–309. doi:10.1002/jctb.5010110805
  • Burkin, A. R., and Bramley, J. V., 1963, “Flotation with insoluble reagents. II. Effects of surface-active reagents on the spreading of oil at coal-water interfaces.” Journal of Applied Chemistry, 13(10). pp. 417–422. doi:10.1002/jctb.5010131001
  • Burwell Jr., R. L., 1954, “The cleavage of ethers.” Chemical Reviews, 54(4). pp. 615–685.
  • Castro, S., Toledo, P., and Laskowski, J. S., 2012, Foaming properties of flotation frothers at high electrolyte concentrations, In International Symposium on Water in Mineral Processing, (J. Drelich, Ed.), Seattle: SME, pp. 51–59.
  • Castro, S., Miranda, C., Toledo, P., and Laskowski, J. S., 2013, “Effect of frothers on bubble coalescence and foaming in electrolyte solutions and seawater.” International Journal of Mineral Processing, 124. pp. 8–14. doi:10.1016/j.minpro.2013.07.002
  • Celik, M. S., and Somasundaran, P., 1980, “Effect of pretreatment on flotation and electrokinetic properties of coal.” Colloids and Surfaces, 1(1). pp. 121–124. doi:10.1016/0166-6622(80)80041-2
  • Celik, M. S., and Somasundaran, P., 1986, “The effect of multivalent ions on the flotation of coal.” Separation Science and Technology, 21(4). pp. 393–402. doi:10.1080/01496398608057170
  • Chaturvedi, T., Schembre, J. M., and Kovscek, A. R., 2009, “Spontaneous imbibition and wettability characteristics of Powder River Basin coal.” International Journal of Coal Geology, 77(1–2). pp. 34–42. doi:10.1016/j.coal.2008.08.002
  • Cho, Y. S., and Laskowski, J. S., 2002, “Effect of flotation frothers on bubble size and foam stability.” International Journal of Mineral Processing, 64(2–3). pp. 69–80. doi:10.1016/S0301-7516(01)00064-3
  • Christenson, H. K., Claesson, P. M., and Parker, J. L., 1992, “Hydrophobic attraction: A reexamination of electrolyte effects.” Journal of Physical Chemistry, 96(16). pp. 6725–6728. doi:10.1021/j100195a036
  • Christenson, H. K., and Yaminsky, V. V., 1995, “Solute effects on bubble coalescence.” Journal of Physical Chemistry, 99(125). pp. 10420.
  • Collins, G. L., and Jameson, G. J., 1977, “Double-layer effects in the flotation of fine particles.” Chemical Engineering Science, 32(3). pp. 239–246. doi:10.1016/0009-2509(77)80201-7
  • Craig, V. S. J., Ninham, B., . W., and Pashley, R. M., 1993, “The effect of electrolytes on bubble coalescence in water.” Journal of Physical Chemistry, 97(39). pp. 10192–10197. doi:10.1021/j100141a047
  • Craig, V. S. J., 2011, “Do hydration forces play a role in thin film drainage and rupture observed in electrolyte solutions.” Current Opinion in Colloid and Interface Science, 16(6). pp. 597–600.
  • Cruz, N., Peng, Y., Wightman, E., and Xu, N., 2015, “The interaction of clay minerals with gypsum and its effects on copper-gold flotation.” Minerals Engineering, 77. pp. 121–130. doi:10.1016/j.mineng.2015.03.010
  • Davis, J. A., and Leckie, J. O., 1978, “Surface ionization and complexation at the oxide/water interface. II. Surface properties of amorphous iron oxydroxide and adsorption of metal ions.” Journal of Colloid and Interface Science, 67(1). pp. 90–107. doi:10.1016/0021-9797(78)90217-5
  • Del Castillo, L. A., Ohnishi, S., and Horn, R. G., 2011, “Inhibition of bubble coalescence: Effects of salts concentration and speed of approach.” Journal of Colloid and Interface Science, 356(1). pp. 316–324. doi:10.1016/j.jcis.2010.12.057
  • Deschenes, L. A., Zilaro, P., Muller, L. J., Fourkas, J. T., and Mohanty, U., 1997, “Quantitative measure of hydrophobicity: Experiment and theory.” Journal of Physical Chemistry B, 101(30). pp. 5777–5779.
  • Deschenes, L. A., Barrett, J., Muller, L. J., Fourkas, J. T., and Mohanty, U., 1998, “Inhibition of bubble coalescence in aqueous solutions. 1. Electrolytes.” Journal of Physical Chemistry B, 102(26). pp. 5115–5119.
  • Dey, S., 2012, “Enhancement in hydrophobicity of low rank coal by surfactants – A critical overview.” Fuel Processing Technology, 94(1). pp. 151–158. doi:10.1016/j.fuproc.2011.10.021
  • Dey, S., Pani, S., and Singh, R., 2014, “Study of interactions of frother blends and its effect on coal flotation.” Powder Technology, 260. pp. 78–83. doi:10.1016/j.powtec.2014.03.068
  • Ding, K., and Laskowski, J. S., 2006, “Coal reverse flotation. Part I: Separation of a mixture of subbituminous coal and gangue minerals.” Minerals Engineering, 19(1). pp. 72–78. doi:10.1016/j.mineng.2005.07.011
  • Dixon, W. T., and Norman, R. O. C., 1962, “Free radicals formed during the oxidation and reduction of peroxides.” Nature, 196. pp. 891–892.
  • Doymuş, K., 2007, “The effect of ionic electrolytes and pH on the zeta potential of fine coal particles.” Turkish Journal of Chemistry, 31(6). pp. 589–597.
  • Drzymala, J., and Lyklema, J., 2012, “Surface tension of aqueous electrolyte solutions. Thermodynamics.” The Journal of Physical Chemistry A, 116(25). pp. 6465–6472. doi:10.1021/jp211034y
  • Dunne, R., 2012, Water water everywhere and not a drop to drink, nor do I know its whereabout, In Water in Mineral Processing, (J. Drelich, Ed.), Seattle: SME, pp. 1–15.
  • Elmahdy, A. M., and Finch, J. A., 2013, “Effect of frother blends on hydrodynamic properties.” International Journal of Mineral Processing, 123. pp. 60–63. doi:10.1016/j.minpro.2013.04.019
  • Enerdata. 2019, Global energy statistical yearbook 2018: Production. Accessed 2019, https://yearbook.enerdata.net/coal-lignite/coal-production-data.html.
  • Erol, M., Colduroglu, C., and Aktas, Z., 2003, “The effect of reagents and reagent mixtures on froth flotation of coal fines.” International Journal of Mineral Processing, 71(1–4). pp. 131–145. doi:10.1016/S0301-7516(03)00034-6
  • Farrokhpay, S., 2012, “The importance of rheology in mineral flotation: A review.” Minerals Engineering, 36–38. pp. 272–278. doi:10.1016/j.mineng.2012.05.009
  • Filippov, L. O., Javor, Z., Piriou, P., and Filippova, L. V., 2018, “Salt effect on gas dispersion in flotation column – Buble size as a function of turbulent intensity.” Minerals Engineering, 127. pp. 6–14. doi:10.1016/j.mineng.2018.07.017
  • Firouzi, M., Howes, T., and Nguyen, A. V., 2015, “A quantitative review of the transition salt concentration for inhibiting bubble coalescence.” Advances in Colloid and Interface Science, 222. pp. 305–318. doi:10.1016/j.cis.2014.07.005
  • Firouzi, M., and Nguyen, A. V., 2014a, “Novel methodology for predicting the critical salt concentration of bubble coalescence inhibition.” The Journal of Physical Chemistry C, 118(2). pp. 1021–1026.
  • Firouzi, M., and Nguyen, A. V., 2014b, “On the effect of van der Waals attraction on the critical salt concentration for inhibiting bubble coalescence.” The Journal of Physical Chemistry C, 58. pp. 108–112.
  • Firouzi, M., and Nguyen, A. V., 2014c, “Effect of monovalent anions and cations on drainage and lifetime of foam films at different interface approach speeds.” Advanced Powder Technology, 25(4). pp. 1212–1219. doi:10.1016/j.apt.2014.06.004
  • Firouzi, M., and Nguyen, A. V., 2017, “The Gibbs-Marangoni stress and nonDLVO forces are equally important for modeling bubble coalescence in salt solutions.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 515. pp. 62–68. doi:10.1016/j.colsurfa.2016.12.004
  • Foulk, C. W., 1929, “A theory of liquid film formation.” Industrial and Engineering Chemistry, 21(9). pp. 815–817. doi:10.1021/ie50237a003
  • Foulk, C. W., and Barkley, J. E., 1943, “Film formation by pure liquids.” Industrial and Engineering Chemistry, 35(9). pp. 1013–1016. doi:10.1021/ie50405a016
  • Foulk, C. W., and Miller, J. N., 1931, “Experimental evidence in support of the balanced-layer theory of liquid film formation.” Industrial and Engineering Chemistry, 23(11). pp. 1283–1288. doi:10.1021/ie50263a023
  • Fuerstenau, D. W., Rosenbaum, J. M., and Laskowski, J. S., 1983, “Effect of surface functional groups on the flotation of coal.” Colloids and Surfaces, 8(2). pp. 153–174. doi:10.1016/0166-6622(83)80082-1
  • Fuerstenau, D. W., Williams, M. C., Narayanan, K. S., Diao, J. L., and Urbina, R. H., 1988, “Assessing the wettability and degree of oxidation of coal by film flotation.” Energy & Fuels, 2(3). pp. 237–241. doi:10.1021/ef00009a001
  • Gethner, J. S., 1987, “The mechanism of the low-temperature oxidation of coal by O2: Observation and separation of simultaneous reactions using In Situ FT-IR difference spectroscopy“. Applied Spectroscopy, 41(1). pp. 50–63.
  • Gupta, A. K., Banerjee, P. K., Mishra, A., Satish, P., and Pradip, 2007, “Effect of alcohol and polyglycol ether frothers on foam stability, bubble size and coal flotation.” International Journal of Mineral Processing, 82(3). pp. 126–137. doi:10.1016/j.minpro.2006.09.002
  • Gürses, A., Doymuş, K., and Bayrakçeken, S., 1997, “Evaluation of response of brown coal to selective oil agglomeration by zeta potential measurements of the agglomerates.” Fuel, 76(14–15). pp. 1439–1444. doi:10.1016/S0016-2361(97)00121-X
  • Gutierrez-Rodriguez, J. A., Purcell Jr., R. J., and Aplan, F. F., 1984, “Estimating the hydrophobicity of coal“. Colloids and Surfaces, 12. pp. 1–25.
  • Hamieh, T., and Siffert, B., 1991, “Determination of point of zero charge and acid-base superficial coal groups in water.” Colloids and Surfaces, 61. pp. 83–96. doi:10.1016/0166-6622(91)80301-4
  • Hampton, M. A., and Nguyen, A. V., 2009, “Accumulation of dissolved gases at hydrophobic surfaces in water and sodium chloride solutions: implications for coal flotation.” Minerals Engineering, 22(9–10). pp. 786–792. doi:10.1016/j.mineng.2009.02.006
  • Harris, G. H., Diao, J., and Fuerstenau, D. W., 1995, “Coal flotation with nonionic surfactants.” Coal Preparation, 16(3–4). pp. 135–147. doi:10.1080/07349349508905248
  • Harvey, P. A., Nguyen, A. V., and Evans, G. M., 2002, “Influence of electrical double-layer interaction on coal flotation.” Journal of Colloid and Interface Science, 250(2). pp. 337–343. doi:10.1006/jcis.2002.8367
  • Heller, H., and Keren, R., 2001, “Rheology of Na-rich montmorillonite suspension as affected by electrolyte concentration and shear rate.” Clays and Clay Minerals, 49(4). pp. 286–291. doi:10.1346/CCMN.2001.0490402
  • Henry, C. L., Dalton, C. N., Scruton, L., and Craig, V. S. J., 2007, “Ion-specific coalescence of bubbles in mixed electrolyte solutions.” Journal of Physical Chemistry C, 111(2). pp. 1015–1023.
  • Henry, C. L., Parkinson, L., Ralston, J. R., and Craig, V. S. J., 2008, “A mobile gas-water interface in electrolyte solutions“. Journal of Physical Chemistry C, 112(39). pp. 15094–15097.
  • Henry, C. L., and Craig, V. S. J., 2010, “The link between ion specific bubble coalescence and Hofmeister Effect is the partitioning of ions within the interface.” Langmuir, 26(9). pp. 6478–6483. doi:10.1021/la9039495
  • Hiemenz, P. C., 1986, Principles of Colloid and Surface Chemistry. 2nd., New York: M. Dekker, pp. 815.
  • Hofmeier, U., Yaminsky, V. V., and Christenson, H. K., 1995, “Observations of solute effects on bubble formation“. Journal of Colloid and Interface Science, 174(1). pp. 199–210.
  • Honaker, R. Q., Mohanty, M. K., and Crelling, J. C., 1996, “Coal maceral separation using column flotation.” Minerals Engineering, 9(4). pp. 449–464. doi:10.1016/0892-6875(96)00030-1
  • Horn, R. G., Del Castillo, L. A., and Ohnishi, S., 2011, “Coalescence map for bubbles in surfactant-free aqueous electrolyte solutions.” Advances in Colloid and Interface Science, 168(1–2). pp. 85–92. doi:10.1016/j.cis.2011.05.006
  • Jada, A., and Salou, M., 2002, “Effects of the asphaltene and resin contents of the bitumens on the water-bitumen interface properties.” Journal of Petroleum Science and Engineering, 33(1–3). pp. 185–193. doi:10.1016/S0920-4105(01)00185-1
  • Jessop, R., and Stretton, J., 1969, “Electrokinetic measurements on coal and a criterion for its hydrophobicity.” Fuel, 48(3). pp. 317–320.
  • Jia, R., Harris, G. H., and Ferstenau, D. W., 2000, “An improved class of universal collectors for the flotation of oxidized and/or low-rank coal.” International Journal of Mineral Processing, 58(1–4). pp. 99–118. doi:10.1016/S0301-7516(99)00024-1
  • Jia, R., Harris, G. H., and Fuerstenau, D. W., 2002, “Chemical reagents for enhanced coal flotation.” Coal Preparation, 22(3). pp. 123–149. doi:10.1080/07349340213847
  • Jungwirth, P., and Tobias, D. J., 2006, “Specific ion effects at the air/water interface.” Chemical Reviews, 106(4). pp. 1259–1281. doi:10.1021/cr0403741
  • Karakashev, S. I., and Manev, E. D., 2001, “Frothing behavior of nonionic surfactant solutions in the presence of organic and inorganic electrolytes.” Journal of Colloid and Interface Science, 235(1). pp. 194–196. doi:10.1006/jcis.2000.7288
  • Karakashev, S. I., and Manev, E. D., 2003, “Correlation in the properties of aqueous single films and foam containing a nonionic surfactant and organic/inorganic electrolytes.” Journal of Colloid and Interface Science, 259(1). pp. 171–179.
  • Karakashev, S. I., and Nguyen, A. V., 2009, “Do liquid films rupture due to the so-called hydrophobic force of migration of dissolved gases“. Langmuir, 25(6). pp. 3363–3368.
  • Karraker, K. A., and Radke, C. J., 2002, “Disjoining pressures, zeta potentials and surface tensions of aqueous non-ionic surfactant/electrolyte solutions: Theory and comparison to experiment.” Advances in Colloid and Interface Science, 96(1–3). pp. 231–264.
  • Katsir, Y., and Marmur, A., 2014a, “Rate of bubble coalescence following dynamic approach: Collectivity-induced specificity of ionic effect.” Langmuir, 30(46). pp. 13823–13830. doi:10.1021/la503373d
  • Katsir, Y., and Marmur, A., 2014b, “Rate of bubble coalescence following quasi-static approach: Screening and neutralization of the electric double layer.” Scientific Report (Nature), 4. pp. 1–7.
  • Kelebek, S., Demir, U., Sahbaz, O., Ucar, A., Cinar, M., Karaguzel, C., and Oteyaka, B., 2008, “The effects of dodecylamine, kerosene and pH on batch flotation of Turkey’s Tuncbilek coal.” International Journal of Mineral Processing, 88. pp. 65–71. doi:10.1016/j.minpro.2008.06.004
  • Kelessidis, V. C., Tsamantaki, C., and Dalamarinis, P., 2007, “Effect of pH and electrolyte on the rheology of aqueous Wyoming bentonite dispersions.” Applied Clay Science, 38(1–2). pp. 86–96. doi:10.1016/j.clay.2007.01.011
  • Kirkpatrick, R. D., and Lockett, M. J., 1974, “The influence of approach velocity on bubble coalescence.” Chemical Engineering Science, 29(12). pp. 2363–2373. doi:10.1016/0009-2509(74)80013-8
  • Klassen, V. I., Mokrousov, V. A., Leja, J., and Poling, G. W., 1963, An Introduction to the Theory of Flotation. 2nd., London: Butterworths, pp. 493.
  • Klima, M. S., Arnold, B. J., and Bethell, P. J., 2012, Challenges in Fine Coal Processing, Dewatering, and Disposal (electronic Version), Englewood, CO: Society for Mining, Metallurgy, and Exploration, Inc. (SME), pp. 389.
  • Klimpel, R. R., and Isherwood, S., 1991, “Some industrial implications of changing frother chemical structure.” International Journal of Mineral Processing, 33(1–4). pp. 369–381. doi:10.1016/0301-7516(91)90064-P
  • Kracht, W., and Rebolledo, H., 2013, “Study of the local critical coalescence concentration (l-CCC) of alcohols and salts at bubble formation in two-phase systems.” Minerals Engineering, 50–51. pp. 77–82. doi:10.1016/j.mineng.2013.06.009
  • Kurniawan, A. U., Ozdemir, O., Nguyen, A. V., Ofori, P., and Firth, B., 2011, “Flotation of coal particles in MgCl2, NaCl, and NaClO3 solutions in the absence and presence of Dowfroth 250.” International Journal of Mineral Processing, 98(3–4). pp. 137–144. doi:10.1016/j.minpro.2010.11.003
  • Laskowski, J., and Kitchener, J. A., 1969, “The hydrophilic-hydrophobic transition on silica.” Journal of Colloid and Interface Science, 29(4). pp. 670–679. doi:10.1016/0021-9797(69)90219-7
  • Laskowski, J. S., 1965, “Coal flotation in solution with a raised concentration of inorganic salts.” Colliery Guardian, 211. pp. 361–365.
  • Laskowski, J. S., and Miller, J. D., 1984, New reagents in coal flotation, In Reagents in the Minerals Industry, (M. J. Jones, Ed.), New York: Institution of Mining and Metallurgy, pp. 145–154.
  • Laskowski, J. S., Cho, Y. S., and Ding, K., 2003, “Effect of frothers on bubble size and foam stability in potash ore flotation systems.” The Canadian Journal of Chemical Engineering, 81(1). pp. 63–69. doi:10.1002/cjce.5450810107
  • Laskowski, J. S., and Iskra, J., 1970, “Role of capillary effects in bubble-particle collision in flotation.” Transactions of the Institution of Mining and Metallurgy, Section C, 79. pp. C6–C10.
  • Lessard, R. R., and Zieminski, S. A., 1971, “Bubble coalescence and gas transfer in aqueous electrolytic solutions.” Industrial and Engineering Chemistry Fundamentals, 10(2). pp. 260–269. doi:10.1021/i160038a012
  • Li, C., and Somasundaran, P., 1993, “Role of electrical double layer forces and hydrophobicity in coal flotation in NaCl solutions.” Energy & Fuels, 7(2). pp. 244–248. doi:10.1021/ef00038a014
  • Li, C., Zhen, K., Hao, Y., and Zhang, H., 2018, “Effect of dissolved gases in natural water on the flotation behavior of coal.” Fuel, 233. pp. 604–609. doi:10.1016/j.fuel.2018.06.104
  • Liu, D., Somasundaran, P., Vasudevan, T. V., and Harris, C. C., 1994, “Role of pH and dissolved mineral species in Pittsburgh No. 8 coal flotation system - I. Floatability of coal.” International Journal of Mineral Processing, 41(3–4). pp. 201–214. doi:10.1016/0301-7516(94)90028-0
  • Liu, J., Zhou, Z., Xu, Z., and Masliyah, J., 2002, “Bitumen-clay interactions in aqueous media studied by zeta potential distribution measurement.” Journal of Colloid and Interface Science, 252(2). pp. 409–418. doi:10.1006/jcis.2002.8471
  • Liu, W., Moran, C. J., and Vink, S., 2013, “A review of the effect of water quality on flotation.” Minerals Engineering, 53. pp. 91–100. doi:10.1016/j.mineng.2013.07.011
  • Liu, Z., Yuan, D., and Shen, Z., 1991, “Effect of coal mine waters of variable pH on springwater quality: A case study.” Environmental Geology and Water Sciences, 17(3). pp. 219–225. doi:10.1007/BF01701702
  • Manono, M., Corin, K., and Wiese, J., 2018, “Perspectives from literature on the influence of inorganic electrolytes present in plant water on flotation performance.” Physicochemical Problems of Mineral Processing, 54(4). pp. 1191–1214.
  • Manono, M. S., Corin, K. C., and Wiese, J. G., 2013, “The effect of ionic strength of plant water on foam stability: A 2-phase flotation study.” Minerals Engineering, 40. pp. 42–47. doi:10.1016/j.mineng.2012.09.009
  • Marčelja, S., 2004. “Short-range forces in surface and bubble interaction.” Current Opinion in Colloid and Interface Science 9(1–2). pp. 165–167. doi:10.1016/j.cocis.2004.05.024
  • Marčelja, S., 2006. “Selective coalescence of bubbles in simple electrolytes.” The Journal of Physical Chemistry B 110(26). pp. 13062–13067. doi:10.1021/jp0610158.
  • Marmur, A., 1979, “A kinetic theory approach to primary and secondary minimum coagulations and their combination.” Journal of Colloid and Interface Science, 72(1). pp. 41–48. doi:10.1016/0021-9797(79)90178-4
  • Marrucci, G., 1969, “A theory of coalescence“. Chemical Engineering Science, 24(6). pp. 975–985.
  • Marrucci, G., and Nicodemo, L., 1967, “Coalescence of gas bubbles in aqueous solutions of inorganic electrolytes.” Chemical Engineering Science, 22(9). pp. 1257–1265. doi:10.1016/0009-2509(67)80190-8
  • McLemore, V. T., 2008, Basics of Metal Mining Influenced Water. 1st., Littleton: Society for Mining, Metallurgy, and Exploration, Inc. (SME), pp. 100.
  • Michaux, B., Rudolph, M., and Reuter, M. A., 2018, “Challenges in predicting the role of water chemistry in flotation through simulation with an emphasis on the influence of electrolytes.” Minerals Engineering, 125. pp. 252–264. doi:10.1016/j.mineng.2018.06.010
  • Miller, B. G., 2011, Clean Coal Engineering Technology, New York: Butterworth-Heinemann (Elsevier), pp. 748.
  • Minerals Council of Australia. 2014, Water accounting framework for the minerals industry, Kingsford (ACT), p. 58.
  • Minerals Council of Australia. 2019, Water use by the extractive industry, Kingston (ACT), p. 31.
  • Mishra, S. K., Senapati, P. K., and Panda, D., 2002, “Rheological behavior of coal-water slurry.” Energy Sources, 24(2). pp. 159–167. doi:10.1080/00908310252774471
  • Müller, H. J., and Rheinländer, T., 1996, “Anomalous thickness variation of nonionic surfactant foam films with salt concentration.” Langmuir, 12(10). pp. 2334–2339. doi:10.1021/la950314d
  • Naik, P. K., Reddy, P. S. R., and Misra, V. N., 2004, “Optimization of coal flotation using statistical technique.” Fuel Processing Technology, 85(13). pp. 1473–1485. doi:10.1016/j.fuproc.2003.10.005
  • Naik, P. K., Reddy, P. S. R., and Mistra, V. N., 2005, “Interpretation of interaction effects and optimization of reagent dosages for fine coal flotation.” International Journal of Mineral Processing, 75(1–2). pp. 83–90. doi:10.1016/j.minpro.2004.05.001
  • Napier-Munn, T. J., 1995, “Detecting performance improvements in trials with time-varying mineral processes – Three case studies.” Minerals Engineering, 8(8). pp. 843–858. doi:10.1016/0892-6875(95)00047-T
  • Napier-Munn, T. J., 2015, Statistical Methods for Mineral Engineers: How to Design Experiments and Analyse Data, Indooroopilly (Qld): Julius Kruttschnitt Mineral Research Centre, pp. 628.
  • Nesset, J. E., Hernandez-Aguilar, J. R., Acuña, C. A., Gomez, C. O., and Finch, J. A., 2006, “Some gas dispersion characteristics of mechanical flotation machines.” Minerals Engineering, 19(6–8). pp. 807–815. doi:10.1016/j.mineng.2005.09.045
  • Northey, S. A., Mudd, G. M., Werner, T. T., Haque, N., and Yellishetty, M., 2019, “Sustainable water management and improved corporate reporting in mining.” Water Resources and Industry, 21. pp. 100104. doi:10.1016/j.wri.2018.100104
  • Oats, W. J., Ozdemir, O., and Nguyen, A. V., 2010, “Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation.” Minerals Engineering, 23(5). pp. 413–419. doi:10.1016/j.mineng.2009.12.002
  • Ofori, P., Firth, B., Jameson, G. J., and Nguyen, A. V., 2005, Impact of saline water on coal flotation, ACARP Project C13051A.
  • Osborne, D., 2013, The Coal Handbook: Towards Cleaner Production: Volume 2: Coal Utilisation. 1st., Cambridge: Woodhead Publishing Limited, pp. 576.
  • Ozdemir, O., 2013, “Specific ion effect of chloride salts on collectorless flotation of coal.” Physicochemical Problems of Mineral Processing, 49(2). pp. 511–524.
  • Ozdemir, O., Karakashev, S. I., Nguyen, A. V., and Miller, J. D., 2009, “Adsorption and surface tension analysis of concentrated alkali halide brine solutions.” Minerals Engineering, 22(3). pp. 263–271. doi:10.1016/j.mineng.2008.08.001
  • Parra-Barraza, H., Hermnández-Montiel, D., Lizardi, J., Hernández, J., Herrera Urbina, R., and Valdez, M. A., 2003, “The zeta potential and surface properties of asphaltenes obtained with different crude oil/n-heptane proportions.” Fuel, 82(8). pp. 869–874. doi:10.1016/S0016-2361(03)00002-4
  • Parreira, H. C., and Schulman, J. H., 1961, “Streaming potential measurements on paraffin wax.” Advances in Chemistry, 33. pp. 160–171.
  • Paulson, O., and Pugh, R. J., 1996, “Flotation of inherently hydrophobic particles in aqueous solutions of inorganic electrolytes.” Langmuir, 12(20). pp. 4808–4813. doi:10.1021/la960128n
  • Pawlik, M., Laskowski, J. S., and Melo, F., 2004, “Effect of coal surface wettability on aggregation of fine coal particles.” Coal Preparation, 24(5–6). pp. 233–248. doi:10.1080/07349340490884971
  • Peng, Y., Zhao, S., and Bradshaw, D. J., 2012, Role of saline water in the selective flotation of fine particles, In Water in Mineral Processing, (J. Drelich, Ed.), Seattle: Society for Mining, Metallurgy, and Exploration, Inc. (SME), pp. 61–71.
  • Perry, D. L., and Grint, A., 1983, “Application of XPS to coal characterization“. Fuel, 62(9). pp. 1024–1033.
  • Perry, R. W., and Aplan, F. F., 1988, “Adsorption of polysaccharides and related compounds onto coal and their effect on the flotation of coal and pyrite.” Separation Science and Technology, 23(12–13). pp. 2097–2112. doi:10.1080/01496398808075685
  • Piñeres, J., and Barraza, J., 2011, “Energy barrier of aggregates coal particle-bubble through the extended DLVO theory.” International Journal of Mineral Processing, 100(1–2). pp. 14–20. doi:10.1016/j.minpro.2011.04.007
  • Polat, M., Polat, H., and Chander, S., 2003, “Physical and chemical interaction in coal flotation.” International Journal of Mineral Processing, 72(1–4). pp. 199–213. doi:10.1016/S0301-7516(03)00099-1
  • Powell, J. D., 1988, “Origin and influence of coal mine drainage on streams of the United States.” Environmental Geology and Water Sciences, 11(2). pp. 141–152. doi:10.1007/BF02580450
  • Prince, M. J., and Blanch, H. W., 1990, “Transition electrolyte concentrations for bubble coalescence“. AIChE Journal, 36(9). pp. 1425–1429.
  • Pugh, R. J., and Manev, E. D., 1992, “Froth stability in aqueous solutions of nonionic surfactant and inorganic electrolyte.” Journal of Colloid and Interface Science, 152(2). pp. 582–584. doi:10.1016/0021-9797(92)90060-Y
  • Pugh, R. J., and Yoon, R.-H., 1994, “Hydrophobicity and rupture of thin aqueous films.” Journal of Colloid and Interface Science, 163(1). pp. 169–176. doi:10.1006/jcis.1994.1093
  • Qu, X., Wang, L., Karakashev, S. I., and Nguyen, A. V., 2009, “Anomalous thickness variation of the foam films stabilized by weak non-ionic surfactants.” Journal of Colloid and Interface Science, 337(2). pp. 538–547. doi:10.1016/j.jcis.2009.05.038
  • Quinn, J. J., Kracht, W., Gomez, C. O., Gagnon, C., and Finch, J. A., 2007, “Comparing the effect of salts and frother (MIBC) on gas dispersion and froth properties.” Minerals Engineering, 20(14). pp. 1296–1302. doi:10.1016/j.mineng.2007.07.007
  • Quinn, J. J., Sovechles, J. M., Finch, J. A., and Waters, K. E., 2014, “Critical coalescence concentration of inorganic salt solutions.” Minerals Engineering, 58. pp. 1–6. doi:10.1016/j.mineng.2013.12.021
  • Rand, B., and Melton, I. E., 1977, “Particle interactions in aqueous kaolinite suspensions: I. Effect of pH and electrolytes uppon the mode of particle interaction in homoionic sodium kaolinite suspensions.” Journal of Colloid and Interface Science, 60(2). pp. 308–320. doi:10.1016/0021-9797(77)90290-9
  • Rao, S. R., and Finch, J. A., 1989, “A review of water re-use in flotation.” Minerals Engineering, 2(1). pp. 65–85. doi:10.1016/0892-6875(89)90066-6
  • Riazi, M. R., and Gupta, R., 2016, Coal Production and Processing Technology. 1st., Boca Raton (FL): CRC Press (Taylor & Francis Group), pp. 535.
  • Rhoads, C. A., Senftle, J. T., Coleman, M. M., Davis, A., and Painter, P. C., 1983, “Further studies of coal oxidation“. Fuel, 62(12). pp. 1387–1392.
  • Roberts, J. D., and Caserio, M. C., 1964, Basic principles of organic chemistry. New York: Benjamin, 1315 p.
  • Rolfe, B. N., Miller, R. F., and McQueen, J. S., 1960, Dispersion Characteristics of Montmorillonite, Kaolinite, and Illite Clays in Waters of Varying Quality, and Their Control with Phosphate Dispersants, Washington: U.S. Department of the Interior, pp. 231–273.
  • Scatena, L. F., Brown, M. G., and Richmond, G. L., 2001, “Water at hydrophobic surfaces: Weak hydrogen bonding and strong orientation effects.” Science, 292(5518). pp. 908–912. doi:10.1126/science.1059514
  • Segad, M., Jönsson, B., Åkesson, T., and Cabane, B., 2010, “Ca/Na montmorillonite: structure, forces and swelling properties.” Langmuir, 26(8). pp. 5782–5790. doi:10.1021/la9036293
  • Seke, M. D., Sandenbergh, R. F., and Vegter, N. M., 2000, “Effects of the textural and surface properties of activated carbon on the adsorption of gold di-cyanide.” Minerals Engineering, 13(3). pp. 527–540. doi:10.1016/S0892-6875(00)00033-9
  • Shabalala, N. Z. P., Harris, M. C., Leal Filho, L. S., and Deglon, D. A., 2011, “Efffect of slurry rheology on gas dispersion in a pilot-scale mechanical flotation cell.” Minerals Engineering, 24(13). pp. 1448–1453. doi:10.1016/j.mineng.2011.07.004
  • Singh, G., 1988, “Impact of coal mining on mine water quality.” International Journal of Mine Water, 7(3). pp. 49–59. doi:10.1007/BF02504598
  • Sivamohan, R., 1990, “The problem of recovering very fine particles in mineral processing – A review.” International Journal of Mineral Processing, 28(3–4). pp. 247–288. doi:10.1016/0301-7516(90)90046-2
  • Sovechles, J. M., and Waters, K. E., 2015, “Effect of ionic strength on bubble coalescence in inorganic salt and seawater solutions.” AIChE Journal, 61(8). pp. 2489–2496. doi:10.1002/aic.14851
  • Sujan, A., and Vyas, R. K., 2018, “Estimation of transition concentration of aqueous mixtures of single and binary electrolytes for bubble coalescence inhibition“. Chemical Papers, 72(10). pp. 2539–2559.
  • Takahashi, M., 2005, “ζ potential of microbubbles in aqueous solutions: Electrical properties of the gas-water interface.” Journal of Physical Chemistry B, 109(46). pp. 21858–21864. doi:10.1021/jp0445270
  • Tao, D., Luttrell, G. H., and Yoon, R.-H., 2000, “A parametric study of froth stability and its effect on column flotation of fine particles.” International Journal of Mineral Processing, 59(1). pp. 25–43. doi:10.1016/S0301-7516(99)00033-2
  • Ullmann, F., Gerhartz, W., Yoamamoto, Y. S., Campbell, F. T., Pfefferkorn, R., and Rounsaville, J. F., 1985, Ullmann's encyclopedia of industrial chemistry. Wiesbaden: Wiley-VCHp.
  • van Krevelen, D. W., 1961, Coal: Typology, Chemistry, Physics, Constitution. 1st., Amsterdam: Elsevierp.
  • van Olphen, H., 1977, An Introduction to Clay Colloid Chemistry: For Clay Technologists, Geologists, and Soil Scientists. 2nd., New York: Wiley-Interscience, pp. 318.
  • Vink, S., Moran, C. J., Golding, S. D., Baublys, K., and Nanjappa, V., 2009, “Understanding mine site water and salt dynamics to support integrated water quality and quantity management.” Transactions of the Institution of Mining and Metallurgy: Section A, 118(3–4). pp. 185–192.
  • Wachowska, H. M., Nandi, B. N., and Montgomery, D. S., 1974, “Oxidation studies on coking coal related to weathering. 4. Oxygen linkages influencing the dilatometric properties and the effect of cleavage of ether linkages.” Fuel, 53(3). pp. 212–219. doi:10.1016/0016-2361(74)90014-3
  • Wang, B., and Peng, Y., 2013, “The behaviour of mineral matter in fine coal flotation using saline water.” Fuel, 109. pp. 309–315. doi:10.1016/j.fuel.2013.01.030
  • Wang, B., and Peng, Y., 2014a, “The effect of saline water on mineral flotation – A critical review.” Minerals Engineering, 66–68. pp. 13–24. doi:10.1016/j.mineng.2014.04.017
  • Wang, B., and Peng, Y., 2014b, “The interaction of clay minerals and saline water in coarse coal flotation.” Fuel, 134. pp. 326–332. doi:10.1016/j.fuel.2014.05.085
  • Wang, B., Peng, Y., and Vink, S., 2013, “Diagnosis of the surface chemistry effects on fine coal flotation using saline water.” Energy & Fuels, 27(8). pp. 4869–4874. doi:10.1021/ef400909r
  • Wang, B., Peng, Y., and Vink, S., 2014, “Effect of saline water on the flotation of fine and coarse coal particles in the presence of clay minerals.” Minerals Engineering, 66–68. pp. 145–151. doi:10.1016/j.mineng.2014.03.016
  • Wang, L., and Yoon, R.-H., 2006, “Role of hydrophobic force in the thinning of foam films containing a nonionic surfactant.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 282–283. pp. 84–91. doi:10.1016/j.colsurfa.2005.10.070
  • Wei, T., Peng, Y., and Farrokhpay, S., 2014, “Froth stability of coal flotation in saline water.” Mineral Processing & Extractive Metallurgy (transactions of the Institutions of Mining and Metallurgy Section C), 123(4). pp. 234–240. doi:10.1179/1743285514Y.0000000077
  • Wei, T., Peng, Y., and Vink, S., 2016, “The joint action of saline water and flotation reagents in stabilizing froth in coal flotation.” International Journal of Mineral Processing, 148. pp. 15–22. doi:10.1016/j.minpro.2016.01.005
  • Weissenborn, P. K., and Pugh, R. J., 1995, “Surface tension and bubble coalescence phenomena of aqueous solutions of electrolytes.” Langmuir, 11(5). pp. 1422–1426. doi:10.1021/la00005a002
  • Weissenborn, P. K., and Pugh, R. J., 1996, “Surface tension of aqueous solutions of electrolytes: relationship with ion hydration, oxygen solubility, and bubble coalescence“. Journal of Colloid and Interface Science, 184(2). pp. 550–563.
  • Wen, W., and Sun, S., 1981, “An electrokinetic study on the oil flotation of oxidized coal.” Separation Science and Technology, 16(10). pp. 1491–1521. doi:10.1080/01496398108058313
  • Wen, W. W., and Sun, S. C., 1977, “An electrokinetic study of the amine flotation of oxidized coal.” Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 262. pp. 174–180.
  • Xing, Y., Gui, X., and Cao, Y., 2016, “Effect of calcium ion on coal flotation in the presence of kaolinite clay.” Energy & Fuels, 30(2). pp. 1517–1523.
  • Xu, C., Wang, D., Wang, H., Xin, H., Ma, L., Zhu, X., Zhang, Y., and Wang, Q., 2017, “Effects of chemical properties of coal dust on its wettability.” Powder Technology, 318. pp. 33–39. doi:10.1016/j.powtec.2017.05.028
  • Xu, D., Ametov, I., and Grano, S. R., 2012, “Quantifying rheological and fine particle attachment contributiions to coarse particle recovery in flotation.” Minerals Engineering, 39. pp. 89–98. doi:10.1016/j.mineng.2012.07.003
  • Xu, Z., Liu, J., Choung, J. W., and Zhou, Z., 2003, “Electrokinetic study of clay interactions with coal in flotation.” International Journal of Mineral Processing, 68(1–4). pp. 183–196. doi:10.1016/S0301-7516(02)00043-1
  • Xu, Z., and Yoon, R.-H., 1990, “A study of hydrophobic coagulation.” Journal of Colloid and Interface Science, 134(2). pp. 427–434. doi:10.1016/0021-9797(90)90153-F
  • Yaminsky, V. V., Ohnishi, S., Vogler, E. A., and Horn, R. G., 2010, “Stability of aqueous films between bubbles. Part 1. The effect of speed on bubble coalescence in purified water and simple electrolyte solutions.” Langmuir, 26(11). pp. 8061–8074. doi:10.1021/la904481d
  • Yang, G. C. C., Markuszewski, R., and Wheelock, T. D., 1988, “Oil agglomeration of coal in inorganic salt solutions.” Coal Preparation, 5(3–4). pp. 133–146. doi:10.1080/07349348808945562
  • Yang, R. T., 2003, Adsorbents: Fundamentals and Applications. 1st., New Jersey: John Wiley & Sons, Inc., pp. 424.
  • Yoon, R.-H., and Sabey, J. B., 1989, Coal flotation in inorganic salt solutions, In Interfacial Phenomena in Coal Technology, (G. D. Botsaris and Y. M. Glazman, Eds.), 1st. New York: Marcel Dekker, Inc., pp. 87–114.
  • Yoon, R.-H., and Luttrell, G. H., 1989, “The effect of bubble size on fine particle flotation.” Mineral Processing & Extractive Metallurgy Review, 5(1–4). pp. 101–122. doi:10.1080/08827508908952646
  • Yoon, R.-H., and Sabey, J. B., 1982, Coal Flotation in Inorganic Salt Solutions, United States: Virginia Center for Coal and Energy Research.
  • Yoon, R.-H., and Yordan, J. L., 1986, “Zeta-potential measurements on microbubbles generated using various surfactants.” Journal of Colloid and Interface Science, 113(2). pp. 430–438. doi:10.1016/0021-9797(86)90178-5
  • Zhang, M., and Peng, Y., 2015, “Effect of clay minerals on pulp rheology and the flotation of copper and gold minerals.” Minerals Engineering, 70. pp. 8–13. doi:10.1016/j.mineng.2014.08.014
  • Zhang, Z., Wang, C., and Yan, K., 2015, “Adsorption of collectors on model surface of Wiser bituminous coal: A molecular dynamics simulation study.” Minerals Engineering, 79. pp. 31–39. doi:10.1016/j.mineng.2015.05.009
  • Zhou, Z. A., Xu, Z., Finch, J. A., Masliyah, J. H., and Chow, R. S., 2009, “On the role of cavitation in particle collection in flotation – A critical review II.” Minerals Engineering, 22(5). pp. 419–433. doi:10.1016/j.mineng.2008.12.010
  • Zieminski, S. A., and Whittemore, R. C., 1971, “Behavior of gas bubbles in aqueous electrolyte solutions“. Chemical Engineering Science, 26(4). pp. 509–520.
  • Zimmerman, R. E., 1948, “Flotation of bituminous coal.” Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 177. pp. 338–356.
  • Zou, W., Cao, Y., Liu, J., Li, W., and Liu, C., 2013, “Wetting process and surface free energy components of two fine liberated middling bituminous coals and their flotation behaviors.” Powder Technology, 246. pp. 669–676. doi:10.1016/j.powtec.2013.06.028

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.