263
Views
18
CrossRef citations to date
0
Altmetric
Reviews

Contemporary Understanding and Developments in the Flotation Theory of Non-Ferrous Ores

&

References

  • Abramov, A. A. 2008. Flotation methods of concentration. 3rd ed. Moscow: MSMU [in Russian].
  • Ackerman, P. K., G. H. Harris, R. R. Klimpel, and F. F. Aplan. 1987. Evaluation of flotation collectors for copper sulfides and pyrite: III. Effect of xanthate chain length and branching. International Journal of Mineral Processing 21:141–56. doi:10.1016/0301-7516(87)90011-1.
  • Ahmed, S. M. 1978. Electrochemical studies of sulphides, I. The electrocatalytic activity of galena, pyrite and cobalt sulphide for oxygen reduction in relation to xanthate adsorption and flotation. International Journal of Mineral Processing 5:163–74. doi:10.1016/0301-7516(78)90013-3.
  • Baldwin, D. A., M. R. Manton, J. M. Pratt, and M. J. Storey. 1979. Studies on the flotation of sulphides. I. the effect of Cu (II) ions on the flotation of zinc sulphide. International Journal of Mineral Processing 6:173–201. doi:10.1016/0301-7516(79)90035-8.
  • Bessiere, J., K. Chlili, J. M. Thiebaut, and G. Roussy. 1990. Dielectric study of the activation and deactivation of sphalerite by metallic ions. International Journal of Mineral Processing 28:1–13. doi:10.1016/0301-7516(90)90024-S.
  • Bogdanov, O. S., A. K. Podnek, V. Y. Heinman, and N. A. Janis. 1959. Flotation theory and technology. In Proceedings of the institute Mekhanobr, ed. Mekhanobr, 392–528. Leningrad:Mekhanobr. [in Russian].
  • Chandra, A. P., and A. R. Gerson. 2009. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite. Advances in Colloid and Interfaces Science 145:97–110. doi:10.1016/j.cis.2008.09.001.
  • Chanturia, V. A., and R. S. Shafeev. 1977. Chemistry of surface phenomena during flotation. Moscow: Nedra.[in Russian].
  • Chanturia, V. A., and V. E. Vigdergauz. 2008. Electrochemistry of sulfide. Theory and practice of flotation. Moscow: Ruda and metally.
  • Corin, K. C., and C. T. O’connor. 2014. A proposal to use excess Gibbs energy rather than HLB number as an indicator of the hydrophilic–liphophilic behavior of surfactants. Minerals Engineering 58:17–21. doi:10.1016/j.mineng.2014.01.001.
  • Finkelstein, N. P., and S. A. Allison. 1976. The chemistry of activation, deactivation and depression in the flotation of zinc sulfide. In a review. In Flotation. A.M. Gaudin memorial volume, ed. M. C. Fuerstenau, 414–57. New York: AIME.
  • Finkelstein, N. P., and G. W. Poling. 1977. The role of dithiolates in flotation of sulfide minerals. Minerals Science and Engineering 9:177–97.
  • Fuerstenau, M. C., K. L. Clifford, and M. C. Kuhn. 1974. The role of zinc –xanthate precipitation in sphalerite flotation. International Journal of Mineral Processing 1:307–18. doi:10.1016/0301-7516(74)90002-7.
  • Gurevich, Y. Y., and Y. V. Pleskov. 1983. Photoelectrochemistry of semiconductors. Moscow: Nauka, [in Russian].
  • Heyes, G. W., and W. J. Trahar. 1977. The natural floatability of chalcopyrite. International Journal of Mineral Processing 4:317–44. doi:10.1016/0301-7516(77)90012-6.
  • Heyes, G. W., and W. J. Trahar. 1979. Oxidation – reduction effects in the flotation of chalcocite and cuprite. International Journal of Mineral Processing 6:229–52. doi:10.1016/0301-7516(79)90039-5.
  • Ivanova, V. A. 1982. Adsorption hydrophobic structures on the surface of apatite in its selective flotation recovery from the ore. In Physical and chemical foundations of mineral processing, [in Russian], (Nauka, Ed.), Moscow: Nauka, pp. 93–98.
  • Kielkowska, M. M., J. Lekki, and J. Drzymala. 1982. Flotation of germanium n and p with potassium ethyl xanthate. International Journal of Mineral Processing 9:145–56. doi:10.1016/0301-7516(82)90023-0.
  • Kondratyev, S. A. 2018. The physical form of sorption and its role in flotation. Novosibirsk: Nauka. [in Russian].
  • Kurkov, A., and G. Sarychev. 2012. Mechanism of action of floatation reagents in a non-sulfide floatation system based on the concepts of supramolecularchemistry in Processing of XXVI Int. Mineral Congress (Pradip, Ed.), India: New Delhi, pp. 122.
  • Lippinen, J. O., C. I. Basilio, and R. H. Yoon. 1989. In-situ FTIR study of ethyl xanthate adsorption on sulfide minerals under conditions of controlled potential. International Journal of Mineral Processing 26:259–74. doi:10.1016/0301-7516(89)90032-X.
  • Malysa, K., W. Barzyk, and A. Pomianowski. 1981. Influence of frothers on floatability. Flotation of single minerals (quartz and synthetic chalcocitу). International Journal of Mineral Processing 8:329–43. doi:10.1016/0301-7516(81)90020-X.
  • Matveeva, T. N., A. O. Gapchich, and N. K. Gromova. 2018. Novel collectors and green modifiers for flotation of noble metals from refractory ores. In International mineral processing congress, congress proceedings (2018), (Ore and Metals, Eds.), Moscow: Ore and Metals, pp. 1956–1955.
  • Maust, E. E., and P. E. Richardson. 1976. Electrophysical consideration of the activation of sphalerite for flotation: report of investigation 8108. Washington, United States: Bureau of mines.
  • McFadzean, B., and C. T. O’connor. 2014. A thermochemical study of thiol collector surface reactions on galena. Minerals Engineering 65:54–60. doi:10.1016/j.mineng.2014.04.010.
  • Mikhlin, Y. L., S. A. Vorobyov, A. S. Romanchenko, A. A. Karacharov, S. V. Karasev, V. I. Kuzmin, D. V. Kuzmin, N. V. Gudkova, A. M. Zhizhayev, and S. V. Saikova. 2016. Ultrafine particles in the processing of non-ferrous and rare metal ores of Krasnoyarsk Territory. Krasnoyarsk: ICCT, SB RAS [in Russian].
  • Mikhlin, Y. L., A. S. Romanchenko, S. A. Vorobyev, A. A. Karacharov, M. N. Likhatski, Y. V. Tomashevich, and S. V. Saikova. 2018. Insights into nanoscale phenomena on the sulfide mineral surfaces related to flotation and leaching. In International mineral processing congress, Congress proceedings (2018), (Ore and Metals, Eds.), Moscow: Ore and Metals, 1542–51.
  • Muller, E., and J. B. Hyne. 1968. Methods of preparation of sulfanes. Canadian Journal of Chemistry 46:2341–46. doi:10.1139/v68-384.
  • Nekrasov, B. V. 1973. Foundations of general chemistry. Moscow: Khimiya [in Russian].
  • Nowak, P. 1993. Xanthate adsorption at PbS surfaces: molecular model and thermodynamic description. Colloids and Surfaces A: Physicochemical and Engineering Aspects 76:65–72. doi:10.1016/0927-7757(93)80062-J.
  • O’connor, C. T., C. Botha, M. J. Walls, and R. C. Dunne. 1988. The role of copper sulphate in flotation. Minerals Engineering 1:203–12. doi:10.1016/0892-6875(88)90042-8.
  • Plaksin, I. N., and S. V. Bessonov. 1957. Role of gases in flotation reactions. In Proc. of the II Intern. Congress on surface activity, (J. H. Schulman, Ed.), L: Butterworth, pp. 361–67.
  • Plaksin, I. N., and R. S. Shafeev. 1958. On the effects of the electrochemical potential on the distribution of xanthate across the surface of sulfides. Reports of the USSR Academy of Sciences 118:546–48. [in Russian].
  • Plaksin, I. N., and R. S. Shafeev. 1959. On the quantitative assessment of the attachment of xanthate depending on the surface properties of sulfide minerals. Reports of the USSR Academy of Sciences 128:777–80. [in Russian].
  • Plaksin, I. N., R. S. Shafeev, and V. A. Chanturia, 1969. The relationship between the energy structure of mineral crystals and their flotation properties in Proceedings of the 8th International Congress on the Concentration of Minerals, Eds. Mekhanobr, Leningrad, pp. 235–345. [in Russian].
  • Prestidge, C. A., W. M. Skinner, J. Ralston, and R. S. C. Smart. 1997. Copper II activation and cyanide deactivation of zinc sulphide ž/under mildly alkaline conditions. Applied Surface Science 108:333–44. doi:10.1016/S0169-4332(96)00681-2.
  • Pritzker, M. D., and R. H. Yoon. 1984. Thermodynamic calculations on sulfide flotation systems: I. Galena-ethyl xanthate system in the absence of metastable species. International Journal of Mineral Processing 12:95–125. doi:10.1016/0301-7516(84)90024-3.
  • Rosen, M. J. 1976. The relationship of structure to properties in surfactants. IV. Effectiveness in surface or interfacial tension reduction. Journal of Colloid and Interface Science 56:320–27. doi:10.1016/0021-9797(76)90257-5.
  • Rosen, M. J. 2004. Surfactants and interfacial phenomena, Reduction of surface and interfacial tension by surfactants. Hoboken: John Wiley & Sons, Inc.
  • Shchukarev, A. V., I. M. Kravets, A. N. Buckley, and R. Woods. 1994. Submonolayer adsorption of alkyl xanthates on galena. International Journal of Mineral Processing 41:99–114. doi:10.1016/0301-7516(94)90008-6.
  • Sheikh, N., and J. Leja. 1974. Precipitation and stability of copper ethyl xanthate in hot acid and alkaline solutions. Journal of Colloid and Interface Science 47:300–08. doi:10.1016/0021-9797(74)90261-6.
  • Shvedov, D. A. 1936. A hypothesis about the reasons for the high floatability of sulfide minerals and the low floatability of oxidized minerals. Journal of Mining and Mineral Processing 6:24–34. [in Russian].
  • Tolun, R., and J. A. Kitchener. 1964. Electrochemical study of the galena-xanthate-oxygen flotation system. Transactions of the Institution of Mining and Metallurgy 73:313–22.
  • Toperi, D., and R. Tolun. 1969. Electrochemical study and thermodynamic equilibria of the galena- oxygen-xanthate flotation system. Transactions of Institution Mining and Metallurgy (sect. C: Mineral Process. Extract. Metall.) 78:191–97.
  • Vieira, A. M., and A. E. C. Peres. 2007. The effect of amine type, pH, and size range in the flotation of quartz. Minerals Engineering 20:1008–13. doi:10.1016/j.mineng.2007.03.013.
  • Wiese1, J., K. Corin, Z. Song, and C. O’connor. 2018. The effect of hydrogen peroxide addition in the flotation of sulphide ores. In International mineral processing congress, congress proceedings (2018), (Ore and Metals, Eds.), Moscow: Ore and Metals, 1271–88.
  • Woods, R. 1971. The oxidation of ethyl xanthogenate on platinum, gold, copper and galena electrodes: Relation to the mechanism of mineral flotation. Journal of Physical Chemistry 75:354–62. doi:10.1021/j100673a011.
  • Woods, R. 1996. Chemisorption of thiols on metals and metals sulfides. In Modern aspects of electrochemistry, (American Chemical Society, Eds.), New York: Plenum Press, pp. 401–53.
  • Yaya, Z. Z., 2018, Improving the flotation selectivity of pyrite copper-zinc ores using sphalerite flotation modifiers based on compounds of iron (II), copper (II), and zinc/ PhD Thesis [in Russian].
  • Yoon, R. H. 1981. Collectorless flotation of chalcopyrite and sphalerite ores by using sodium sulfide. International Journal of Mineral Processing 8:31–48. doi:10.1016/0301-7516(81)90005-3.
  • Zachwieja, J. B., J. J. McCarron, G. W. Walker, and A. N. Buckley. 1989. Correlation between the surface composition and collectorless flotation of chalcopyrite. Journal of Colloid and Interface Science 132:462–68. doi:10.1016/0021-9797(89)90260-9.
  • Тaggart, A. F., G. R. M. Del Guidice, and O. A. Ziehl. 1934. The case for the chemical theory of flotation. American Institute of Mining, Metallurgical and Petroleum Engineers. Transactions 112:348–81.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.