257
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Study on Flotability and Surface Oxidation of Sulfide Minerals from the Tailing of an Iron-Copper Mine Using Electron Probe Microanalyzer

ORCID Icon, &

References

  • Abramov, A. A. 1965. Effect of pH on the condition of pyrite surface. Tsvetnye Metally 6:33–36.
  • Blowes, D. W., C. J. Ptacek, S. G. Benner, K. R. Waybrant, and J. G. Bain. 1998. Porous reactive walls for the prevention of acid mine drainage: A review. Mineral Processing and Extractive Metallurgy Review 19 (1):25–37. doi:10.1080/08827509608962426.
  • Bruckard, W. J., G. J. Sparrow, and J. T. Woodcock. 2011. A review of the effects of the grinding environment on the flotation of copper sulphides. International Journal of Mineral Processing 100 (1–2):1–13. doi:10.1016/j.minpro.2011.04.001.
  • Buckley, A. N., I. C. Hamilton, and R. Woods. 1984. Investigation of the surface oxidation of bornite by linear potential sweep voltammetry and X-ray photoelectron spectroscopy. Journal of Applied Electrochemistry 14:63–74. doi:10.1007/BF00611259.
  • Buckley, A. N., and R. Woods. 1985. X-ray photoelectron spectroscopy of oxidized pyrrhotite surfaces: I. Exposure to air. Appl. Surface Sci 22/23:280–87.
  • Chettibi, M., and A. A. Abramov. 2016. Development of sphalerite activation regularity by copper sulphate. Journal of Mining Science 52 (5):1003–10. doi:10.1134/S1062739116041526.33–36.
  • Chettibi, M., A. A. Abramov, and A. Boutrid. 2014. Physicochemical modeling of galena flotation system. Journal of Mining Science 50 (6):1069–78. doi:10.1134/S106273911406009X.
  • Deng, T. 1992. Chemical oxidation of iron sulfide minerals for metals recovery. Mineral Processing and Extractive Metallurgy Review 10 (1):325–45. doi:10.1080/08827509208914094.
  • Deng, T. 1993. Aqueous pressure oxidation of minerals - A salient development in hydrometallurgy. Mineral Processing and Extractive Metallurgy Review 12 (2–4):185–222. doi:10.1080/08827509508935258.
  • Francisco, R. C. P., D. J. S. A. María, P. T. Teresa, M. L. Antonia, and S. C. Marco. 2012. Treatment of sulfide minerals by oxidative leaching with ozone. Mineral Processing and Extractive Metallurgy Review 33 (4):269–79. doi:10.1080/08827508.2011.584093..
  • Goldstein, J., D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig Jr., C. E. Lyman, C. Fiori, and E. Lifshin. 1992. Scanning electron microscopy and X-ray microanalysis (A text for biologists, materials scientists, and geologists), 273–339. 2nd ed. New York: Plenum Press.
  • Hayes, R. A., D. M. Price, J. Ralston, and R. W. Smith. 1987. Collectorless flotation of sulfide minerals. Mineral Processing and Extractive Metallurgy Review 2:203–34. doi:10.1080/08827508708952606.
  • Ikumapayi, F., and R. K. Hanumantha. 2015. Recycling process water in complex sulfide ore flotation: Effect of calcium and sulfate on sulfide minerals recovery. Mineral Processing and Extractive Metallurgy Review 36 (1):45–64. doi:10.1080/08827508.2013.868346.
  • Lewandowski, K. A., and S. K. Kawatra. 2009. Polyacrylamide as an agglomeration additive for copper heap leaching. International Journal of Mineral Processing 91:88–93. doi:10.1016/j.minpro.2009.01.004.
  • Lü, C., Y. Wang, P. Qian, Y. Liu, G. Fu, J. Ding, S. Ye, and Y. Chen. 2018. Separation of chalcopyrite and pyrite from a copper tailing by ammonium humate. Chinese Journal of Chemical Engineering 26 (9):1814–21. doi:10.1016/j.cjche.2018.02.014.
  • Lv, C. C., J. Ding, P. Qian, Q. C. Li, S. F. Ye, and Y. F. Chen. 2015. Comprehensive recovery of metals from cyanidation tailing. Minerals Engineering 70:141–47. doi:10.1016/j.mineng.2014.09.007.
  • Majid, E., G. Mahdi, and I. Mehdi. 2014. A review of zinc oxide mineral beneficiation using flotation method. Advances in Colloid and Interface Science 206:68–78. doi:10.1016/j.cis.2013.02.003.
  • McCarron, J. J., G. W. Walker, and A. N. Buckley. 1990. An X-ray photoelectron spectroscopic investigation of chalcopyrite and pyrite surfaces after conditioning in sodium sulfide solutions. International Journal of Mineral Processing 30:1–16. doi:10.1016/0301-7516(90)90064-6.
  • Owusu, C., J. Addai-Mensah, D. Fornasiero, and M. Zanin. 2013. Estimating the electrochemical reactivity of pyrite ores-their impact on pulp chemistry and chalcopyrite flotation behavior. Advanced Powder Technology 24 (4):801–09. doi:10.1016/j.apt.2013.05.006.
  • Palagi, C. G., and S. S. Stillar. 1976. The Anaconda C. E. Weed Concentrator, Ch. 35. In Flotation (A. M. Gaudin Memorial Volume), ed. M. C. Fuerstenau, 1029–42. New York, NY: SME-AIME.
  • Plackowski, C., M. A. Hampton, W. J. Bruckard, and A. V. Nguyen. 2014. An XPS investigation of surface species formed by electrochemically induced surface oxidation of enargite in the oxidative potential range. Minerals Engineering 55:60–74. doi:10.1016/j.mineng.2013.08.010.
  • Pritzker, M. D., and R. H. Yoon. 1987. Thermodynamic calculations on sulfide flotation systems, II. Comparisons with electrochemical experiments on the galena-ethyl xanthate system. International Journal of Mineral Processing 20:267–90. doi:10.1016/0301-7516(87)90071-8.
  • Qiu, T., X. Huang, and X. Yang. 2016. Recovery of copper from cyanidation tailing by flotation. JOM 68 (2):548–55. doi:10.1007/s11837-015-1726-8.
  • Rani, K. T. J., S. Jacqueline, H. Naoki, I. Mayumi, and T. Masami. 2012. Suppression of pyrite oxidation by carrier microencapsulation using silicon and catechol. Mineral Processing and Extractive Metallurgy Review 33 (2):89–98. doi:10.1080/08827508.2011.562946.
  • Rogers, J. 1962. Principles of sulfide mineral flotation, Ch. 6. In Froth Flotation 50th Anniversary Volume, ed. D. W. Fuerstenau, 139–69. New York, NY: SME-AIME.
  • Ruiz, M. C., O. Jerez, and R. Padilla. 2016. Kinetics of the cupric catalyzed oxidation of FeII by oxygen at high temperature and high pressure. Mineral Processing and Extractive Metallurgy Review 37 (3):160–67. doi:10.1080/08827508.2016.1168412..
  • Sahar, A., H. Ahmad, V. H. Behzad, and H. Mohammad. 2018. Effect of pyrite content of feed and configuration of locked particles on rougher flotation of copper in low and high pyritic ore types. International Journal of Mining Science and Technology 28 (2):167–76. doi:10.1016/j.ijmst.2017.12.002.
  • Tang, Z. D., P. Gao, Y. J. Li, Y. X. Han, W. B. Li, B. Stephen, and Y. H. Zhang. 2019a. Recovery of iron from hazardous tailings using fluidized roasting coupling technology. Powder Technology. doi:10.1016/j.powtec.2019.11.074.
  • Tang, Z. D., P. Gao, Y. S. Sun, Y. X. Han, E. L. Li, J. Chen, and Y. H. Zhang. 2019b. Studies on the fluidization performance of a novel fluidized bed reactor for iron ore suspension roasting. Powder Technology. doi:10.1016/j.powtec.2019.09.092.
  • Tolley, W., D. Kotlyar, and R. Van Wagoner. 1996. Fundamental electrochemical studies of sulfide mineral flotation. Minerals Engineering 9 (6):603–37. doi:10.1016/0892-6875(96)00051-9.
  • Von Oertzen, G. U., S. L. Harmer, and W. M. Skinner. 2006. XPS and ab initio calculation of surface states of sulfide minerals: Pyrite, chalcopyrite and molybdenite. Molecular Simulation 32 (15):1207–12. doi:10.1080/08927020601081616.
  • Walker, G. W., J. V. Stout, and P. E. Richardson. 1984. Electrochemical flotation of sulfides: Reactions of chalcocite in aqueous solution. International Journal of Mineral Processing 12:55–72. doi:10.1016/0301-7516(84)90022-X.
  • Walker, G. W., C. P. Waiters, and P. E. Richardson. 1986. Hydrophobic effects of sulfur and xanthate on metal and mineral surface, Intern. Journal of Mineral Processing 18:119–37. doi:10.1016/0301-7516(86)90011-6.
  • Wang, X., and Y. Xie. 1990. The effect of grinding media and environment on the surface properties and flotation behaviour of sulfide minerals. Mineral Processing and Extractive Metallurgy Review 7 (1):49–79. doi:10.1080/08827509008952666.
  • Yang, X., X. Huang, and T. Qiu. 2016. Activation-flotation kinetics of depressed marmatite and chalcopyrite in cyanidation tailings using sodium hypochlorite as activator. Minerals & Metallurgical Processing 33 (3):131–36. doi:10.19150/mmp.6749.
  • Yin, Z., W. Sun, Y. Hu, C. Zhang, Q. Guan, and K. Wu. 2018. Evaluation of the possibility of copper recovery from tailings by flotation through bench-scale, commissioning, and industrial tests. Journal of Cleaner Production 171:1039–48. doi:10.1016/j.jclepro.2017.10.020.
  • Yushina, T. I., and A. A. Abramov. 2000. Azine compounds application in separation of polymetallic sulfide concentrates. Developments in Mineral Processing 13:C8b-63-C8b-70. doi:10.1016/S0167-4528(00)80076-9.
  • Zhang, X. L., X. T. Gu, Y. X. Han, N. Parra-Álvarez, V. Claremboux, and S. K. Kawatra. 2019. Flotation of iron ores: A review. Mineral Processing and Extractive Metallurgy Review 1–29. doi:10.1080/08827508.2019.1689494.
  • Zhang, X. L., Y. X. Han, P. Gao, and Y. J. Li. 2020. Effects of grinding media on grinding products and flotation performance of chalcopyrite. Minerals Engineering 145:106070. doi:10.1016/j.mineng.2019.106070..
  • Zhang, Y. 2016. Mirror symmetry rule for the interaction between flotation reagents and mineral interfaces. Nonferrous Metals (Mineral Processing Section) 4:90–96. In Chinese.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.