4,563
Views
46
CrossRef citations to date
0
Altmetric
Review

A Review on Environmental, Economic and Hydrometallurgical Processes of Recycling Spent Lithium-ion Batteries

, , &

References

  • Ashtari, P., and P. Pourghahramani. 2016. Hydrometallurgical recycling of cobalt from zinc plants residue. Journal of Material Cycles and Waste Management 20 (1):155–66. doi:10.1007/s10163-016-0558-0.
  • Badawy, S. M., A. A. Nayl, R. A. El Khashab, and M. A. El-Khateeb. 2014. Cobalt separation from waste mobile phone batteries using selective precipitation and chelating resin. Journal of Material Cycles and Waste Management 16 (4):739–46. doi:10.1007/s10163-013-0213-y.
  • Bahaloo-Horeh, N., and S. M. Mousavi. 2017. Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger. Waste Management 60:666–79. doi:10.1016/j.wasman.2016.10.034.
  • Bankole, O. E., C. Gong, and L. Lei. 2013. Battery recycling technologies: Recycling waste lithium ion batteries with the impact on the environment in-view. Journal of Environment and Ecology 4 (1):14. doi:10.5296/jee.v4i1.3257.
  • Barik, S. P., G. Prabaharan, and L. Kumar. 2017. Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study. Journal of Cleaner Production 147:37–43. doi:10.1016/j.jclepro.2017.01.095.
  • Bertuol, D. A., C. Toniasso, B. M. Jiménez, L. Meili, G. L. Dotto, E. H. Tanabe, and M. L. Aguiar. 2015. Application of spouted bed elutriation in the recycling of lithium ion batteries. Journal of Power Sources 275:627–32. doi:10.1016/j.jpowsour.2014.11.036.
  • Bi, H., H. Zhu, L. Zu, Y. Gao, S. Gao, and Z. Wu. 2019. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries. Waste Management and Research 37 (12):1217–28. doi:10.1177/0734242X19871610.
  • Bi, H., H. Zhu, L. Zu, S. He, Y. Gao, and S. Gao. 2019a. Pneumatic separation and recycling of anode and cathode materials from spent lithium iron phosphate batteries. Waste Management and Research 37 (4):374–85. doi:10.1177/0734242X18823939.
  • Bi, H., H. Zhu, L. Zu, S. He, Y. Gao, and J. Peng. 2019b. Combined mechanical process recycling technology for recovering copper and aluminium components of spent lithium-iron phosphate batteries. Waste Management and Research 37 (8):767–80. doi:10.1177/0734242X19855432.
  • Bigum, M., A. Damgaard, C. Scheutz, and T. H. Christensen. 2017. Environmental impacts and resource losses of incinerating misplaced household special wastes (WEEE, batteries, ink cartridges and cables). Resources, Conservation and Recycling 122:251–60. doi:10.1016/j.resconrec.2017.02.013.
  • Chagnes, A., and B. Pospiech. 2013. A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. Journal of Chemical Technology and Biotechnology 88 (7):1191–99. doi:10.1002/jctb.4053.
  • Chen, L., X. Tang, Y. Zhang, L. Li, Z. Zeng, and Y. Zhang. 2011. Process for the recovery of cobalt oxalate from spent lithium-ion batteries. Hydrometallurgy 108 (1–2):80–86. doi:10.1016/j.hydromet.2011.02.010.
  • Chen, X., Y. Chen, T. Zhou, D. Liu, H. Hu, and S. Fan. 2015a. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries. Waste Management 38 (1):349–56. doi:10.1016/j.wasman.2014.12.023.
  • Chen, X., B. Fan, L. Xu, T. Zhou, and J. Kong. 2016. An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries. Journal of Cleaner Production 112:3562–70. doi:10.1016/j.jclepro.2015.10.132.
  • Chen, X., C. Guo, H. Ma, J. Li, T. Zhou, L. Cao, and D. Kang. 2018. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries. Waste Management 75:459–68. doi:10.1016/j.wasman.2018.01.021.
  • Chen, X., C. Luo, J. Zhang, J. Kong, and T. Zhou. 2015b. Sustainable recovery of metals from spent lithium-ion batteries: A green process. ACS Sustainable Chemistry and Engineering 3 (12):3104–13. doi:10.1021/acssuschemeng.5b01000.
  • Chen, X., H. Ma, C. Luo, and T. Zhou. 2017. Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid. Journal of Hazardous Materials 326:77–86. doi:10.1016/j.jhazmat.2016.12.021.
  • Chen, X., B. Xu, T. Zhou, D. Liu, H. Hu, and S. Fan. 2015c. Separation and recovery of metal values from leaching liquor of mixed-type of spent lithium-ion batteries. Separation and Purification Technology 144:197–205. doi:10.1016/j.seppur.2015.02.006.
  • Chinyama Luzendu, G. 2016. Recovery of lithium from spent lithium ion batteries. Department of Civil, Environmental & Natural Resource Engineering, Luleå University of Technology.
  • Chou, S. L., Y. Pan, J. Z. Wang, H. K. Liu, and S. X. Dou. 2014. Small things make a big difference: Binder effects on the performance of Li and Na batteries. Physical Chemistry Chemical Physics 16 (38):20347–59. doi:10.1039/c4cp02475c.
  • Choubey, P. K., K. S. Chung, M. S. Kim, J. C. Lee, and R. R. Srivastava. 2017. Advance review on the exploitation of the prominent energy-storage element Lithium. Part II: From sea water and spent lithium ion batteries (LIBs). Minerals Engineering 110:104–21. doi:10.1016/j.mineng.2017.04.008.
  • Choubey, P. K., M. S. Kim, R. R. Srivastava, J. C. Lee, and J. Y. Lee. 2016. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources. Minerals Engineering 89:119–37. doi:10.1016/j.mineng.2016.01.010.
  • Contestabile, M., S. Panero, and B. Scrosati. 2001. A laboratory-scale lithium-ion battery recycling process. Journal of Power Sources 92 (1):65–69. doi:10.1016/S0378-7753(00)00523-1.
  • Dang, H., N. Li, Z. Chang, B. Wang, Y. Zhan, X. Wu, W. Liu, S. Ali, H. Li, and J. Guo. 2020. Lithium leaching via calcium chloride roasting from simulated pyrometallurgical slag of spent lithium ion battery. Separation and Purification Technology 233 (May 2019):116025. doi:10.1016/j.seppur.2019.116025.
  • Dewulf, J., G. Van der Vorst, K. Denturck, H. Van Langenhove, W. Ghyoot, J. Tytgat, and K. Vandeputte. 2010. Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings. Resources, Conservation and Recycling 54 (4):229–34. doi:10.1016/j.resconrec.2009.08.004.
  • Diekmann, J., C. Hanisch, L. Froböse, G. Schälicke, T. Loellhoeffel, A.-S. Fölster, and A. Kwade. 2017. Ecological recycling of lithium-ion batteries from electric vehicles with focus on mechanical processes. Journal of the Electrochemical Society 164 (1):A6184–A6191. doi:10.1097/00043426-200404000-00001.
  • Dorella, G., and M. B. Mansur. 2007. A study of the separation of cobalt from spent Li-ion battery residues. Journal of Power Sources 170 (1):210–15. doi:10.1016/j.jpowsour.2007.04.025.
  • Dunn, J. B., L. Gaines, J. Sullivan, and M. Q. Wang. 2012. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries. Environmental Science and Technology 46 (22):12704–10. doi:10.1021/es302420z.
  • Dutta, D., A. Kumari, R. Panda, S. Jha, D. Gupta, S. Goel, and M. K. Jha. 2018. Close loop separation process for the recovery of Co, Cu, Mn, Fe and Li from spent lithium-ion batteries. Separation and Purification Technology 200:327–34. doi:10.1016/j.seppur.2018.02.022.
  • Ferreira, D. A., L. M. Z. Prados, D. Majuste, and M. B. Mansur. 2009. Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries. Journal of Power Sources 187 (1):238–46. doi:10.1016/j.jpowsour.2008.10.077.
  • Foster, M., P. Isely, C. R. Standridge, and M. M. Hasan. 2014. Feasibility assessment of remanufacturing, repurposing, and recycling of end of vehicle application lithium-ion batteries. Journal of Industrial Engineering and Management 7 (3):698–715. doi:10.3926/jiem.939.
  • Fouad, O. A., F. I. Farghaly, and M. Bahgat. 2007. A novel approach for synthesis of nanocrystalline γ-LiAlO2 from spent lithium-ion batteries. Journal of Analytical and Applied Pyrolysis 78 (1):65–69. doi:10.1016/j.jaap.2006.04.002.
  • Freitas, M. B. J. G., V. G. Celante, and M. K. Pietre. 2010. Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits. Journal of Power Sources 195 (10):3309–15. doi:10.1016/j.jpowsour.2009.11.131.
  • Freitas, M. B. J. G., E. M. Garcia, and V. G. Celante. 2009. Electrochemical and structural characterization of cobalt recycled from cathodes of spent Li-ion batteries. Journal of Applied Electrochemistry 39 (5):601–07. doi:10.1007/s10800-008-9698-9.
  • Gaines, L. 2014. The future of automotive lithium-ion battery recycling: Charting a sustainable course. Sustainable Materials and Technologies 1:2–7. doi:10.1016/j.susmat.2014.10.001.
  • Gallego, N. C., C. I. Contescu, H. M. Meyer, J. Y. Howe, R. A. Meisner, E. A. Payzant, M. J. Lance, S. Y. Yoon, M. Denlinger, and D. L. Wood. 2014. Advanced surface and microstructural characterization of natural graphite anodes for lithium ion batteries. Carbon 72:393–401. doi:10.1016/j.carbon.2014.02.031.
  • Gao, R., C. Sun, L. Xu, T. Zhou, L. Zhuang, and H. Xie. 2020. Recycling LiNi0.5Co0.2Mn0.3O2 material from spent lithium-ion batteries by oxalate co-precipitation. Vacuum 173:109181. doi:10.1016/j.vacuum.2020.109181.
  • Gao, W., C. Liu, H. Cao, X. Zheng, X. Lin, H. Wang, Z. Zhang, and Z. Sun. 2018a. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries. Waste Management 75:477–85. doi:10.1016/j.wasman.2018.02.023.
  • Gao, W., J. Song, H. Cao, X. Lin, X. Zhang, X. Zheng, Z. Zhang, and Z. Sun. 2018b. Selective recovery of valuable metals from spent lithium-ion batteries – Process development and kinetics evaluation. Journal of Cleaner Production 178:833–45. doi:10.1016/j.jclepro.2018.01.040.
  • Gao, W., X. Zhang, X. Zheng, X. Lin, H. Cao, Y. Zhang, and Z. Sun. 2017. Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: A closed-loop process. Environmental Science and Technology 51 (3):1662–69. doi:10.1021/acs.est.6b03320.
  • Georgi-Maschler, T., B. Friedrich, R. Weyhe, H. Heegn, and M. Rutz. 2012. Development of a recycling process for Li-ion batteries. Journal of Power Sources 207:173–82. doi:10.1016/j.jpowsour.2012.01.152.
  • Golmohammadzadeh, R., F. Faraji, and F. Rashchi. 2018. Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review. Resources, Conservation and Recycling 136:418–35. doi:10.1016/j.resconrec.2018.04.024.
  • Golmohammadzadeh, R., F. Rashchi, and E. Vahidi. 2017. Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects. Waste Management 64:244–54. doi:10.1016/j.wasman.2017.03.037.
  • Gonçalves, S. A., E. M. Garcia, H. A. Taroco, R. G. Teixeira, K. J. Guedes, H. F. Gorgulho, and P. B. Martelli. 2015. Development of non-enzymatic glucose sensor using recycled cobalt from cell phone Li-ion batteries. Waste Management 46:497–502. doi:10.1016/j.wasman.2015.08.026.
  • Gratz, E., Q. Sa, D. Apelian, and Y. Wang. 2014. A closed loop process for recycling spent lithium ion batteries. Journal of Power Sources 262:255–62. doi:10.1016/j.jpowsour.2014.03.126.
  • Guo, Y., F. Li, H. Zhu, G. Li, J. Huang, and W. He. 2016. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl). Waste Management 51:227–33. doi:10.1016/j.wasman.2015.11.036.
  • Hanisch, C., T. Loellhoeffel, J. Diekmann, K. J. Markley, W. Haselrieder, and A. Kwade. 2015. Recycling of lithium-ion batteries: A novel method to separate coating and foil of electrodes. Journal of Cleaner Production 108:1–11. doi:10.1016/j.jclepro.2015.08.026.
  • He, L. P., S. Y. Sun, Y. Y. Mu, X. F. Song, and J. G. Yu. 2017a. Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using l -tartaric acid as a leachant. ACS Sustainable Chemistry and Engineering 5 (1):714–21. doi:10.1021/acssuschemeng.6b02056.
  • He, L. P., S. Y. Sun, X. F. Song, and J. G. Yu. 2015. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning. Waste Management 46:523–28. doi:10.1016/j.wasman.2015.08.035.
  • He, L. P., S. Y. Sun, X. F. Song, and J. G. Yu. 2017b. Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries. Waste Management 64:171–81. doi:10.1016/j.wasman.2017.02.011.
  • Heydarian, A., S. M. Mousavi, F. Vakilchap, and M. Baniasadi. 2018. Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries. Journal of Power Sources 378:19–30. doi:10.1016/j.jpowsour.2017.12.009.
  • Hu, J., J. Zhang, H. Li, Y. Chen, and C. Wang. 2017. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. Journal of Power Sources 351:192–99. doi:10.1016/j.jpowsour.2017.03.093.
  • Huang, B., Z. Pan, X. Su, and L. An. 2018. Recycling of lithium-ion batteries: Recent advances and perspectives. Journal of Power Sources 399:274–86. doi:10.1016/j.jpowsour.2018.07.116.
  • Huang, Y., G. Han, J. Liu, W. Chai, W. Wang, S. Yang, and S. Su. 2016. A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process. Journal of Power Sources 325:555–64. doi:10.1016/j.jpowsour.2016.06.072.
  • Huang, Z., J. Zhu, R. Qiu, J. Ruan, and R. Qiu. 2019. A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries. Journal of Cleaner Production 229:1148–57. doi:10.1016/j.jclepro.2019.05.049.
  • Jha, M. K., A. Kumari, A. K. Jha, V. Kumar, J. Hait, and B. D. Pandey. 2013b. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone. Waste Management 33 (9):1890–97. doi:10.1016/j.wasman.2013.05.008.
  • Joo, S. H., D. J. Shin, C. H. Oh, J. P. Wang, G. Senanayake, and S. M. Shin. 2016. Selective extraction and separation of nickel from cobalt, manganese and lithium in pre-treated leach liquors of ternary cathode material of spent lithium-ion batteries using synergism caused by Versatic 10 acid and LIX 84-I. Hydrometallurgy 159:65–74. doi:10.1016/j.hydromet.2015.10.012.
  • Joo, S. H., S. M. Shin, D. Shin, C. Oh, and J. P. Wang. 2015. Extractive separation studies of manganese from spent lithium battery leachate using mixture of PC88A and Versatic 10 acid in kerosene. Hydrometallurgy 156:136–41. doi:10.1016/j.hydromet.2015.06.002.
  • Joulié, M., E. Billy, R. Laucournet, and D. Meyer. 2017. Current collectors as reducing agent to dissolve active materials of positive electrodes from Li-ion battery wastes. Hydrometallurgy 169:426–32. doi:10.1016/j.hydromet.2017.02.010.
  • Joulié, M., R. Laucournet, and E. Billy. 2014. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries. Journal of Power Sources 247:551–55. doi:10.1016/j.jpowsour.2013.08.128.
  • Kang, J., G. Senanayake, J. Sohn, and S. M. Shin. 2010. Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272. Hydrometallurgy 100 (3–4):168–71. doi:10.1016/j.hydromet.2009.10.010.
  • Kim, H., J. Hong, K. Y. Park, H. Kim, S. W. Kim, and K. Kang. 2014. Aqueous rechargeable Li and Na ion batteries. Chemical Reviews 114 (23):11788–827. doi:10.1021/cr500232y.
  • Lain, M. J. 2001. Recycling of lithium ion cells and batteries. Journal of Power Sources 9798:736–38. doi:10.1016/S0378-7753(01)00600-0.
  • Le, M. N., and M. S. Lee. 2020. A review on hydrometallurgical processes for the recovery of valuable metals from spent catalysts and life cycle analysis perspective. Mineral Processing and Extractive Metallurgy Review:1–20. doi:10.1080/08827508.2020.1726914.
  • Lee, C. K., and K. Rhee. 2002. Preparation of LiCoO 2 from spent lithium-ion batteries. Journal of Power Sources 109:17–21. doi:10.1016/S0378-7753(02)00037-X.
  • Li, J., P. Shi, Z. Wang, Y. Chen, and C. C. Chang. 2009. A combined recovery process of metals in spent lithium-ion batteries. Chemosphere 77 (8):1132–36. doi:10.1016/j.chemosphere.2009.08.040.
  • Li, J., G. Wang, and Z. Xu. 2016. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries. Journal of Hazardous Materials 302:97–104. doi:10.1016/j.jhazmat.2015.09.050.
  • Li, L., Y. Bian, X. Zhang, Y. Guan, E. Fan, F. Wu, and R. Chen. 2018a. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching. Waste Management 71:362–71. doi:10.1016/j.wasman.2017.10.028.
  • Li, L., Y. Bian, X. Zhang, Q. Xue, E. Fan, F. Wu, and R. Chen. 2018b. Economical recycling process for spent lithium-ion batteries and macro- and micro-scale mechanistic study. Journal of Power Sources 377:70–79. doi:10.1016/j.jpowsour.2017.12.006.
  • Li, L., R. Chen, F. Sun, F. Wu, and J. Liu. 2011. Preparation of LiCoO2films from spent lithium-ion batteries by a combined recycling process. Hydrometallurgy 108 (3–4):220–25. doi:10.1016/j.hydromet.2011.04.013.
  • Li, L., J. B. Dunn, X. X. Zhang, L. Gaines, R. J. Chen, F. Wu, and K. Amine. 2013. Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment. Journal of Power Sources 233:180–89. doi:10.1016/j.jpowsour.2012.12.089.
  • Li, L., E. Fan, Y. Guan, X. Zhang, Q. Xue, L. Wei, F. Wu, and R. Chen. 2017. Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system. ACS Sustainable Chemistry and Engineering 5 (6):5224–33. doi:10.1021/acssuschemeng.7b00571.
  • Li, L., J. Ge, R. Chen, F. Wu, S. Chen, and X. Zhang. 2010a. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Management 30 (12):2615–21. doi:10.1016/j.wasman.2010.08.008.
  • Li, L., J. Ge, F. Wu, R. Chen, S. Chen, and B. Wu. 2010b. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. Journal of Hazardous Materials 176 (1–3):288–93. doi:10.1016/j.jhazmat.2009.11.026.
  • Li, L., J. Lu, Y. Ren, X. X. Zhang, R. J. Chen, F. Wu, and K. Amine. 2012. Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. Journal of Power Sources 218:21–27. doi:10.1016/j.jpowsour.2012.06.068.
  • Li, L., W. Qu, X. Zhang, J. Lu, R. Chen, F. Wu, and K. Amine. 2015. Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries. Journal of Power Sources 282:544–51. doi:10.1016/j.jpowsour.2015.02.073.
  • Li, L., L. Zhai, X. Zhang, J. Lu, R. Chen, F. Wu, and K. Amine. 2014. Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. Journal of Power Sources 262:380–85. doi:10.1016/j.jpowsour.2014.04.013.
  • Liu, C., J. Lin, H. Cao, Y. Zhang, and Z. Sun. 2019. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review. Journal of Cleaner Production 228 (1):801–13. doi:10.1016/j.jclepro.2019.04.304.
  • Lupi, C., M. Pasquali, and A. Dell’Era. 2005. Nickel and cobalt recycling from lithium-ion batteries by electrochemical processes. Waste Management 25 (2):215–20. doi:10.1016/j.wasman.2004.12.012.
  • Lv, W., Z. Wang, H. Cao, Y. Sun, Y. Zhang, and Z. Sun. 2017. A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustainable Chemistry and Engineering 6 (2):1504–21. doi:10.1021/acssuschemeng.7b03811.
  • McDowal, J. 2008. Understanding lithium-ion technology. Proceedings of Battcon, Marco Island, FL, USA, pp. 1–10.
  • Meng, F., J. McNeice, S. S. Zadeh, and A. Ghahreman. 2019a. Review of lithium production and recovery from minerals, brines, and lithium-ion batteries. Mineral Processing and Extractive Metallurgy Review:1–19. doi:10.1080/08827508.2019.1668387.
  • Meng, Q., Y. Zhang, and P. Dong. 2017. Use of glucose as reductant to recover Co from spent lithium ions batteries. Waste Management 64:214–18. doi:10.1016/j.wasman.2017.03.017.
  • Meng, X., H. Cao, J. Hao, P. Ning, G. Xu, and Z. Sun. 2018. Sustainable preparation of LiNi1/3Co1/3Mn1/3O2-V2O5 cathode materials by recycling waste materials of spent lithium-ion battery and vanadium-bearing slag. ACS Sustainable Chemistry and Engineering 6 (5):5797–805. doi:10.1021/acssuschemeng.7b03880.
  • Meng, X., J. Hao, H. Cao, X. Lin, P. Ning, X. Zheng, J. Chang, X. Zhang, B. Wang, and Z. Sun. 2019b. Recycling of LiNi1/3Co1/3Mn1/3O2 cathode materials from spent lithium-ion batteries using mechanochemical activation and solid-state sintering. Waste Management 84:54–63. doi:10.1016/j.wasman.2018.11.034.
  • Meshram, P., Abhilash, and B. D. Pandey. 2019. Advanced review on extraction of nickel from primary and secondary sources. Mineral Processing and Extractive Metallurgy Review 40 (3):157–93. doi:10.1080/08827508.2018.1514300.
  • Meshram, P., B. D. Pandey, and T. R. Mankhand. 2014. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy 150:192–208. doi:10.1016/j.hydromet.2014.10.012Review.
  • Meshram, P., B. D. Pandey, and T. R. Mankhand. 2015a. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects. Waste Management 45:306–13. doi:10.1016/j.wasman.2015.05.027.
  • Meshram, P., B. D. Pandey, and T. R. Mankhand. 2015b. Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching. Chemical Engineering Journal 281:418–27. doi:10.1016/j.cej.2015.06.071.
  • Myoung, J., Y. Jung, J. Lee, and Y. Tak. 2002. Cobalt oxide preparation from waste LiCoO2 by electrochemical–hydrothermal method. Journal of Power Sources 112 (2):639–42. doi:10.1016/S0378-7753(02)00459-7.
  • Nan, J., D. Han, M. Yang, M. Cui, and X. Hou. 2006. Recovery of metal values from a mixture of spent lithium-ion batteries and nickel-metal hydride batteries. Hydrometallurgy 84 (1–2):75–80. doi:10.1016/j.hydromet.2006.03.059.
  • Nayaka, G. P., K. V. Pai, J. Manjanna, and S. J. Keny. 2016. Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries. Waste Management 51:234–38. doi:10.1016/j.wasman.2015.12.008.
  • Nayaka, G. P., J. Manjanna, K. V. Pai, R. Vadavi, S. J. Keny, and V. S. Tripathi. 2015. Recovery of valuable metal ions from the spent lithium-ion battery using aqueous mixture of mild organic acids as alternative to mineral acids. Hydrometallurgy 151:73–77. doi:10.1016/j.hydromet.2014.11.006.
  • Nayaka, G. P., K. V. Pai, G. Santhosh, and J. Manjanna. 2016a. Dissolution of cathode active material of spent Li-ion batteries using tartaric acid and ascorbic acid mixture to recover Co. Hydrometallurgy 161:54–57. doi:10.1016/j.hydromet.2016.01.026.
  • Nayaka, G. P., K. V. Pai, G. Santhosh, and J. Manjanna. 2016b. Recovery of cobalt as cobalt oxalate from spent lithium ion batteries by using glycine as leaching agent. Journal of Environmental Chemical Engineering 4 (2):2378–83. doi:10.1016/j.jece.2016.04.016.
  • Nguyen, V. T., J. C. Lee, J. Jeong, B. S. Kim, and B. D. Pandey. 2014. Selective recovery of cobalt, nickel and lithium from sulfate leachate of cathode scrap of Li-ion batteries using liquid-liquid extraction. Metals and Materials International 20 (2):357–65. doi:10.1007/s12540-014-1016-y.
  • Nguyen, V. T., J.-C. Lee, J. Jeong, B.-S. Kim, and B. D. Pandey. 2015. The separation and recovery of nickel and lithium from the sulfate leach liquor of spent lithium ion batteries using PC-88A. Korean Chemical Engineering Research 53 (2):137–44. doi:10.9713/kcer.2015.53.2.137.
  • Ordoñez, J., E. J. Gago, and A. Girard. 2016. Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renewable and Sustainable Energy Reviews 60:195–205. doi:10.1016/j.rser.2015.12.363.
  • Pinna, E. G., M. C. Ruiz, M. W. Ojeda, and M. H. Rodriguez. 2017. Cathodes of spent Li-ion batteries: Dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors. Hydrometallurgy 167:66–71. doi:10.1016/j.hydromet.2016.10.024.
  • Salakjani, N. K., P. Singh, and A. N. Nikoloski. 2019. Production of Lithium –A Literature Review. Part 2. Extraction from spodumene. Mineral Processing and Extractive Metallurgy Review:1–16. doi:10.1080/08827508.2019.1700984.
  • Santana, I. L., T. F. M. Moreira, M. F. F. Lelis, and M. B. J. G. Freitas. 2017. Photocatalytic properties of Co3O4/LiCoO2 recycled from spent lithium-ion batteries using citric acid as leaching agent. Materials Chemistry and Physics 190:38–44. doi:10.1016/j.matchemphys.2017.01.003.
  • Sattar, R., S. Ilyas, H. N. Bhatti, and A. Ghaffar. 2019. Resource recovery of critically-rare metals by hydrometallurgical recycling of spent lithium ion batteries. Separation and Purification Technology 209:725–33. doi:10.1016/j.seppur.2018.09.019.
  • Setiawan, H., H. T. B. M. Petrus, and I. Perdana. 2018. A kinetics study of acetic acid on cobalt leaching of spent LIBs: Shrinking core model. MATEC Web of Conferences 154:0–4. doi:10.1051/matecconf/201815401033.
  • Shin, S. M., N. H. Kim, J. S. Sohn, D. H. Yang, and Y. H. Kim. 2005. Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy 79 (3–4):172–81. doi:10.1016/j.hydromet.2005.06.004.
  • Sole, K. C., J. Parker, P. M. Cole, and M. B. Mooiman. 2019. Flowsheet options for cobalt recovery in african copper–cobalt hydrometallurgy circuits. Mineral Processing and Extractive Metallurgy Review 40 (3):194–206. doi:10.1080/08827508.2018.1514301.
  • Sonoc, A., J. Jeswiet, and V. K. Soo. 2015. Opportunities to improve recycling of automotive lithium ion batteries. Procedia CIRP 29:752–57. doi:10.1016/j.procir.2015.02.039.
  • Sun, C., L. Xu, X. Chen, T. Qiu, and T. Zhou. 2018. Sustainable recovery of valuable metals from spent lithium-ion batteries using DL-malic acid: Leaching and kinetics aspect. Waste Management and Research 36 (2):113–20. doi:10.1177/0734242X17744273.
  • Sun, L., and K. Qiu. 2012. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste Management 32 (8):1575–82. doi:10.1016/j.wasman.2012.03.027.
  • Suzuki, T., T. Nakamura, Y. Inoue, M. Niinae, and J. Shibata. 2012. A hydrometallurgical process for the separation of aluminum, cobalt, copper and lithium in acidic sulfate media. Separation and Purification Technology 98:396–401. doi:10.1016/j.seppur.2012.06.034.
  • Swain, B. 2017. Recovery and recycling of lithium: A review. Separation and Purification Technology 172:388–403. doi:10.1016/j.seppur.2016.08.031.
  • Torkaman, R., M. Asadollahzadeh, M. Torab-Mostaedi, and M. Ghanadi Maragheh. 2017. Recovery of cobalt from spent lithium ion batteries by using acidic and basic extractants in solvent extraction process. Separation and Purification Technology 186:318–25. doi:10.1016/j.seppur.2017.06.023.
  • Vieceli, N., C. A. Nogueira, C. Guimarães, M. F. C. Pereira, F. O. Durão, and F. Margarido. 2018. Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite. Waste Management 71:350–61. doi:10.1016/j.wasman.2017.09.032.
  • Virolainen, S., M. Fallah Fini, A. Laitinen, and T. Sainio. 2017. Solvent extraction fractionation of Li-ion battery leachate containing Li, Ni, and Co. Separation and Purification Technology 179:274–82. doi:10.1016/j.seppur.2017.02.010.
  • Wang, M. M., C. C. Zhang, and F. S. Zhang. 2016. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach. Waste Management 51:239–44. doi:10.1016/j.wasman.2016.03.006.
  • Wang, R. C., Y. C. Lin, and S. H. Wu. 2009. A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy 99 (3):194–201. doi:10.1016/j.hydromet.2009.08.005.
  • Wang, X., G. Gaustad, C. W. Babbitt, and K. Richa. 2014. Economies of scale for future lithium-ion battery recycling infrastructure. Resources, Conservation and Recycling 83:53–62. doi:10.1016/j.resconrec.2013.11.009.
  • Xu, J., H. R. Thomas, R. W. Francis, K. R. Lum, J. Wang, and B. Liang. 2008. A review of processes and technologies for the recycling of lithium-ion secondary batteries. Journal of Power Sources 177 (2):512–27. doi:10.1016/j.jpowsour.2007.11.074.
  • Yang, L., G. Xi, and Y. Xi. 2015. Recovery of Co, Mn, Ni, and Li from spent lithium ion batteries for the preparation of LiNixCoyMnzO2 cathode materials. Ceramics International 41 (9):11498–503. doi:10.1016/j.ceramint.2015.05.115.
  • Yang, Y., S. Lei, S. Song, W. Sun, and L. Wang. 2020. Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries. Waste Management 102:131–38. doi:10.1016/j.wasman.2019.09.044.
  • Yang, Y., S. Xu, and Y. He. 2017. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes. Waste Management 64:219–27. doi:10.1016/j.wasman.2017.03.018.
  • Yao, L., Y. Feng, and G. Xi. 2015. A new method for the synthesis of LiNi 1/3 Co 1/3 Mn 1/3 O 2 from waste lithium ion batteries. RSC Advances 5 (55):44107–14. doi:10.1039/C4RA16390G.
  • Yao, L., W. He, G. Li, and J. Huang. 2013. The integrated design and optimization of a WEEE collection network in Shanghai, China. Waste Management and Research 31 (9):910–19. doi:10.1177/0734242X13487583.
  • Yao, L., Y. Xi, G. Xi, and Y. Feng. 2016. Synthesis of cobalt ferrite with enhanced magnetostriction properties by the sol-gel-hydrothermal route using spent Li-ion battery. Journal of Alloys and Compounds 680:73–79. doi:10.1016/j.jallcom.2016.04.092.
  • Zandevakili, S., M. Ranjbar, and M. Ehteshamzadeh. 2014a. Recovery of lithium from Urmia Lake by a nanostructure MnO2ion sieve. Hydrometallurgy 149:148–52. doi:10.1016/j.hydromet.2014.08.004.
  • Zandevakili, S., M. Ranjbar, and M. Ehteshamzadeh. 2014b. Synthesis of a nanostructure ion sieve with improved lithium adsorption capacity. Micro & Nano Letters 9 (7):455–59. doi:10.1049/mnl.2014.0086.
  • Zandvakili, S., and M. Ranjbar. 2017. Preparation and characterisation of lithium ion exchange composite for the recovery of lithium from brine. Mineral Processing and Extractive Metallurgy: Transactions of the Institute of Mining and Metallurgy 127 (3):176–81. doi:10.1080/03719553.2017.1334983.
  • Zeng, X., J. Li, and B. Shen. 2015. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. Journal of Hazardous Materials 295:112–18. doi:10.1016/j.jhazmat.2015.02.064.
  • Zeng, X., J. Li, and N. Singh. 2014. Recycling of spent lithium-ion battery: A critical review. Critical Reviews in Environmental Science and Technology 44 (10):1129–65. doi:10.1080/10643389.2013.763578.
  • Zhang, G., Y. He, Y. Feng, H. Wang, and X. Zhu. 2018. Pyrolysis-ultrasonic-assisted flotation technology for recovering graphite and LiCoO2 from spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering 6 (8):10896–904. doi:10.1021/acssuschemeng.8b02186.
  • Zhang, G., Y. He, H. Wang, Y. Feng, W. Xie, and X. Zhu. 2020a. Removal of organics by pyrolysis for enhancing liberation and flotation behavior of electrode materials derived from spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering 8 (5):2205–14. doi:10.1021/acssuschemeng.9b05896.
  • Zhang, T., Y. He, F. Wang, L. Ge, X. Zhu, and H. Li. 2014a. Chemical and process mineralogical characterizations of spent lithium-ion batteries: An approach by multi-analytical techniques. Waste Management 34 (6):1051–58. doi:10.1016/j.wasman.2014.01.002.
  • Zhang, T., Y. He, F. Wang, H. Li, C. Duan, and C. Wu. 2014b. Surface analysis of cobalt-enriched crushed products of spent lithium-ion batteries by X-ray photoelectron spectroscopy. Separation and Purification Technology 138:21–27. doi:10.1016/j.seppur.2014.09.033.
  • Zhang, W., C. Xu, W. He, G. Li, and J. Huang. 2017. A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them. Waste Management and Research 36 (2):99–112. doi:10.1177/0734242X17744655.
  • Zhang, X., H. Cao, Y. Xie, P. Ning, H. An, H. You, and F. Nawaz. 2015. A closed-loop process for recycling LiNi1/3Co1/3Mn1/3O2 from the cathode scraps of lithium-ion batteries: Process optimization and kinetics analysis. Separation and Purification Technology 150:186–95. doi:10.1016/j.seppur.2015.07.003.
  • Zhang, X., Y. Xie, H. Cao, F. Nawaz, and Y. Zhang. 2014c. A novel process for recycling and resynthesizing LiNi1/3Co1/3Mn1/3O2 from the cathode scraps intended for lithium-ion batteries. Waste Management 34 (9):1715–24. doi:10.1016/j.wasman.2014.05.023.
  • Zhang, X., S. Han, P. Xiao, C. Fan, and W. Zhang. 2016a. Thermal reduction of graphene oxide mixed with hard carbon and their high performance as lithium ion battery anode. Carbon 100:600–07. doi:10.1016/j.carbon.2016.01.033.
  • Zhang, X., Q. Xue, L. Li, E. Fan, F. Wu, and R. Chen. 2016b. Sustainable recycling and regeneration of cathode scraps from industrial production of lithium-ion batteries. ACS Sustainable Chemistry and Engineering 4 (12):7041–49. doi:10.1021/acssuschemeng.6b01948.
  • Zhang, Y., Y. Wang, H. Zhang, Y. Li, Z. Zhang, and W. Zhang. 2020b. Recycling spent lithium-ion battery as adsorbents to remove aqueous heavy metals: Adsorption kinetics, isotherms, and regeneration assessment. Resources, Conservation and Recycling 156 (October 2019):104688. doi:10.1016/j.resconrec.2020.104688.
  • Zhang, Y., W. Wang, Q. Fang, and S. Xu. 2020c. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching. Waste Management 102:847–55. doi:10.1016/j.wasman.2019.11.045.
  • Zhao, J. M., X. Y. Shen, F. L. Deng, F. C. Wang, Y. Wu, and H. Z. Liu. 2011. Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex272 and PC-88A. Separation and Purification Technology 78 (3):345–51. doi:10.1016/j.seppur.2010.12.024.
  • Zheng, R., L. Zhao, W. Wang, Y. Liu, Q. Ma, D. Mu, R. Li, and C. Dai. 2016a. Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method. RSC Advances 6 (49):43613–25. doi:10.1039/c6ra05477c.
  • Zheng, X., Z. Zhu, X. Lin, Y. Zhang, Y. He, H. Cao, and Z. Sun. 2018. A mini-review on metal recycling from spent lithium ion batteries. Engineering 4 (3):361–70. doi:10.1016/j.eng.2018.05.018.
  • Zheng, Y., H. L. Long, L. Zhou, Z. S. Wu, X. Zhou, L. You, and J. W. Liu. 2016b. Leaching procedure and kinetic studies of cobalt in cathode materials from spent lithium ion batteries using organic citric acid as leachant. International Journal of Environmental Research 10 (1):159–68. doi:10.22059/ijer.2016.56898.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.