3,037
Views
60
CrossRef citations to date
0
Altmetric
Review

Flotation of Fine Particles: A Review

, &

References

  • Abd El‐Rahiem, F. H. 2014. Recent trends in flotation of fine particles. Journal of Mining World Express 3:63–80. doi:10.14355/mwe.2014.03.009.
  • Abrahamson, J. 1975. Collision rates of small particles in vigorously turbulent fluid. Chemical Engineering Science 30:1371–79. doi:10.1016/0009-2509(75)85067-6.
  • Abramov, A. A. 1998. Physico-chemical modeling of flotation systems. Mineral Processing and Extractive Metallurgy Review 19 (1):405–59. doi:10.1080/08827509608962456.
  • Ahmed, N., and G. J. Jameson. 1985. The effect of bubble size on the rate of flotation of fine particles. International Journal of Mineral Processing 14 (3):195–215. doi:10.1016/0301-7516(85)90003-1.
  • Akdemir, D. 1997. Shear flocculation of fine hematite particles and correlation between flocculation, flotation and contact angle. Powder Technology 94:1–4. doi:10.1016/S0032-5910(97)03216-6.
  • Aktas, Z., J. J. Cilliers, and A. W. Banford. 2008. Dynamic froth stability: Particle size, airflow rate and conditioning time effects. International Journal of Mineral Processing 87:65–71. doi:10.1016/j.minpro.2008.02.001.
  • Ansari, M. I. 1997. Fine particle processing - A difficult problem for mineral engineers. Jamshidpour: PROF-97.
  • Aruna, V. A. J., and S. M. Shende. 2006. Floc-flotation of chalcopyrite from a low grade Cu-Zn ore. Chennai: International Seminar on Mineral Processing Technology.
  • Attia, Y. A., and J. A. Kitchener. 1975. Development of complexing polymers for the selective flocculation of copper minerals. Proceedings of the XIth International Mineral Processing Congress, 1233–48. Cagliari: University di Cagliari.
  • Bakker, C. W., C. J. Meyer, and D. A. Deglon. 2009. Numerical modelling of non-Newtonian slurry in a mechanical flotation cell. Minerals Engineering 22 (11):944–50. doi:10.1016/j.mineng.2009.03.016.
  • Barbian, N., E. Ventura-Medina, and J. J. Cilliers. 2005. Mineral attachment and bubble bursting in flotation froth. Centenary of Flotation Symposium, Brisbane: The Australasian Institute of Mining and Metallurgy.
  • Basarova, P., J. Zawala, and M. Zednikova. 2019. Interactions between a small bubble and a greater solid particle during the flotation process. Mineral Processing and Extractive Metallurgy Review 40 (6):410–26. doi:10.1080/08827508.2019.1666123.
  • Batterham, R., and J. P. Moodie. 2005. Centenary of flotation symposium. Brisbane: AusIMM.
  • Battersby, M., R. M. Battersby, S. Flatman, R. Imhof, H. Sprenger, and T. Bragado. 2011. Recovery of ultra-fines using Imhoflot pneumatic flotation- Two pilot plant case studies recovering nickel and zinc from tailings streams. MEI Flotation 11 Conference, Cape Town.
  • Benzaazoua, M., B. Bussière, M. Kongolo, J. McLaughlin, and P. Marion. 2000. Environmental desulphurization of four Canadian mine tailings using froth flotation. International Journal of Mineral Processing 60 (1):57–74. doi:10.1016/S0301-7516(00)00006-5.
  • Bhaskar Raju, G., and P. R. Khangaonkar. 1982. Electro-flotation of chalcopyrite fines. International Journal of Mineral Processing 9:133–43. doi:10.1016/0301-7516(82)90022-9.
  • Calgaroto, S., A. Azevedo, and J. Rubio. 2015. Flotation of quartz particles assisted by nanobubbles. International Journal of Mineral Processing 137:64–70. doi:10.1016/j.minpro.2015.02.010.
  • Chander, S. 1978. Recent developments in floatability of very fine particles-review. Transactions of the Indian Institute of Metals 31:21.
  • Chen, X., and Y. Peng. 2018. Managing clay minerals in froth flotation – A critical review. Mineral Processing and Extractive Metallurgy Review 39 (5):289–307. doi:10.1080/08827508.2018.1433175.
  • Cilliers, J. J., and D. J. Bradshaw. 1996. The flotation of fine pyrite using colloidal gas aphrons. Minerals Engineering 9 (2):235–41. doi:10.1016/0892-6875(96)00006-4.
  • Clarke, P., D. Fornasiero, J. Ralston, and R. Smart. 1995. A study of the removal of oxidation products from sulfide mineral surfaces. Minerals Engineering 8:1347–57. doi:10.1016/0892-6875(95)00101-U.
  • Crawford, R., and J. Ralston. 1988. The influence of particle size and contact angle in mineral flotation. International Journal of Mineral Processing 23:1–24. doi:10.1016/0301-7516(88)90002-6.
  • Cullinan, V., S. R. Grano, C. Greet, N. W. Johnson, and L. Ralston. 1999. Investigation fine galena recovery problems in the lead circuit of Mount Isa mines lead/zinc concentrator part 1: Grinding media effects. Minerals Engineering 12:147–163.
  • Dai, Z., D. Fornasiero, and J. Ralston. 1998b. Influence of dissolved gas on bubble-particle heterocoagulation. Journal of the Chemical Society Faraday Transactions 94:1983–87. doi:10.1039/a801144c.
  • Dai, Z., D. Fornasiero, and J. Ralston. 1999. Particle-bubble attachment in mineral flotation. Journal of Colloid and Interface Science 217 (1):70–76. doi:10.1006/jcis.1999.6319.
  • Dai, Z., D. Fornasiero, and J. Ralston. 2000. Particle-bubble collision models- A review. Advances in Colloid and Interface Science 85 (2–3):231–56. doi:10.1016/S0001-8686(99)00030-5.
  • Dai, Z., S. S. Dukhin, D. Fornasiero, and J. Ralston. 1998a. The inertial hydrodynamic interaction of particles and rising bubbles with mobile surfaces. Journal of Colloid and Interface Science 97 (2):275–92. doi:10.1006/jcis.1997.5280.
  • Deryagin, B. V., and S. S. Dukhin. 1961. Theory of flotation of small and medium-size particles. Bulletin - Institution of Mining and Metallurgy 651:221–46.
  • Dobby G. S. and J. A. Finch, 1987. Particle size dependence in flotation derived from a fundamental model of the capture process. Int. J. Min. Proc., 21:241–260.
  • Drzymala, J., and P. B. Kowalczuk. 2018. Classification of flotation frothers. Minerals 8:53. doi:10.3390/min8020053.
  • Duan, J., D. Fornasiero, and J. Ralston. 2003. Calculation of the flotation rate constant of chalcopyrite particles in an ore. International Journal of Mineral Processing 72:227–37. doi:10.1016/S0301-7516(03)00101-7.
  • Dziensiewicz, J., and E. J. Pryor. 1950. An investigation into the action of air in froth flotation. Transactions of IMM 59:455–91.
  • Fan, M., and D. Tao. 2008. A study on picobubble enhanced coarse phosphate froth flotation. Separation Science and Technology 43 (1):1–10. doi:10.1080/01496390701747853.
  • Farrokhpay, S. 2012a. The importance of rheology in mineral flotation: A review. Minerals Engineering 36–38:272–78. doi:10.1016/j.mineng.2012.05.009.
  • Farrokhpay, S. 2012b. Rheology of titania pigment slurry. Applied Rheology 22:55285.
  • Farrokhpay, S., B. Ndlovu, and D. Bradshaw. 2016. Behavior of swelling clays versus non-swelling clays in flotation. Minerals Engineering 96–97:59–66. doi:10.1016/j.mineng.2016.04.011.
  • Farrokhpay, S., and D. Fornasiero. 2017. Flotation of coarse composite particles: Effect of mineral liberation and phase distribution. Advanced Powder Technology 28:1849–54. doi:10.1016/j.apt.2017.03.012.
  • Farrokhpay, S., I. Filippova, L. Filippov, A. Picarra, N. Rulyov, and D. Fornasiero. 2020. Flotation of fine particles in the presence of combined microbubbles and conventional bubbles. Minerals Engineering 155:106439. doi:10.1016/j.mineng.2020.106439.
  • Farrokhpay, S., and L. Filippov. 2016. Challenges in processing nickel laterite ores by flotation. International Journal of Mineral Processing 151:59–67. doi:10.1016/j.minpro.2016.04.007.
  • Farrokhpay, S., and L. Filippov. 2017. Aggregation of nickel laterite ore particles using polyacrylamide homo and copolymers with different charge densities. Powder Technology 318:206–13. doi:10.1016/j.powtec.2017.05.021.
  • Filippov, L. O., V. D. Samygin, I. Filippova, A. Matinin, V. Severov, and T. Lekhatinov. 2014. Comparison of the efficiency of new multi zone and conventional flotation cell at lab and pilot scales. XXVII International Mineral Processing Congress (IMPC), Santiago.
  • Finch, J. A., and G. S. Dobby. 1990. Column flotation. Sydney: Pergamon Press.
  • Fornasiero, D., and L. Filippov. 2017. Innovations in the flotation of fine and coarse particles. Journal of Physics: Conference Series 879:012002.
  • Fuerstenau, D. W., C. Li, and J. S. Hanson. 1988. Shear flocculation and carrier flotation of fine hematite. International Symposium on the Production and Processing of Fine Particles, Montreal, Canada.
  • Fukui, Y., and S. Yuu. 1980. Collection of submicron particles in electro-flotation. Chemical Engineering Science 35 (5):1097–105. doi:10.1016/0009-2509(80)85098-6.
  • Gaudin, A. M., R. Schuhmann Jr., and A. W. Schlechten. 1942. Flotation kinetics II. The effect of size on the behavior of galena particles. Journal of Physical Chemistry 46:902–10.
  • Gharai, A. M., and R. Venugopal. 2016. Modeling of flotation process – An overview of different approaches. Mineral Processing and Extractive Metallurgy Review 37 (2):120–33.
  • Glembotsky, V. A., A. A. Mamakov, A. M. Romanov, and V. E. Nenno. 1975. Selective separation of fine mineral slimes using method of electric flotation. 11th International Mineral Processing Congress, Cagliari.
  • Gomez, C. O., M. Maldonado, R. Araya, and J. A. Finch. 2010. Frother and viscosity effects on bubble shape and velocity. 8th UBC-McGill-UA International Symposium on the Fundamentals of Mineral Processing: Rheology and Processing of Fine Particles, Vancouver: The Canadian Institute of Mining, Metallurgy and Petroleum.
  • Gontijo, C. D. F., D. Fornasiero, and J. Ralston. 2007. The limits of fine and coarse particle flotation. Canadian Journal of Chemical Engineering 85 (5):739–47. doi:10.1002/cjce.5450850519.
  • Gregory, J., and C. R. O’Melia. 1989. Fundamentals of flocculation. Critical Reviews in Environmental Science and Technology 19 (3):185–230.
  • Harbort, G., E. V. Manlapig, S. K. De Bono, and A. J. Monaghan. 2003b. Air and fluid dynamics within a Jameson cell downcomer and its implications for bubble-particle contact in flotation. XXII International Mineral Processing Congress (IMPC), Cape Town.
  • Harbort, G., S. De Bono, D. Carr, and V. Lawson. 2003a. Jameson cell fundamentals-a revised perspective. Minerals Engineering 16:1091–101. doi:10.1016/j.mineng.2003.06.008.
  • Hussey, H., H. Thanasekaran, and J. Kohmuench. 2017. The application of high intensity flotation technology at Mt Keith Nickel concentrator. Proceedings of the metallurgical plant design and operating strategies- world’s best practice (MetPlant 2017), Calrlton: AusIMM.
  • Jameson, G. J. 2010. New directions in flotation machine design. Minerals Engineering 23 (11–13):835–41. doi:10.1016/j.mineng.2010.04.001.
  • Jameson, G. J., S. Nam, and M. M. Young. 1977. Physical factors affecting recovery rates in flotation. Mineral Science Engineering 9 (3):103–18.
  • Johansson, G., and R. J. Pugh. 1992. The influence of particle size and hydrophobicity on the stability of mineralized froths. International Journal of Mineral Processing 34:1–21. doi:10.1016/0301-7516(92)90012-L.
  • Klassen, V. I., and V. A. Mokrousov. 1963. An introduction to the theory of flotation. English translation by Leja, J. and Poling, G. W.. London: Butterworths.
  • Kohmuench, J. N., M. J. Mankosa, H. Thanasekaran, and A. Hobert. 2018. Improving coarse particle flotation using the HydroFloat™ (raising the trunk of the elephant curve). Minerals Engineering 121:137–45. doi:10.1016/j.mineng.2018.03.004.
  • Kyzas, G. Z., E. A. Deliyanni, and K. A. Matis. 2019. Research activities related to flotation process. Trends in Green Chemistry. Accessed October 7, 2019. http://green-chemistry.imedpub.com/research-activities-related-toflotation-process.php?aid=7335.
  • Laskowski, J. S. 2004. Testing flotation frothers. Physicochemical Problems Mineral Processing 38:13–22.
  • Li, C., S. Farrokhpay, F. Shi, and K. Runge. 2015. A novel approach to measure froth rheology in flotation. Minerals Engineering 71:89–96. doi:10.1016/j.mineng.2014.10.026.
  • Liang, L., Y. Peng, J. Tan, and G. Xie. 2015. A review of the modern characterisation techniques for flocs in mineral processing. Minerals Engineering 84:130–44. doi:10.1016/j.mineng.2015.10.011.
  • Liu, T. Y., and M. P. Schwarz. 2009. CFD-based modelling of bubble-particle collision efficiency with mobile bubble surface in a turbulent environment. International Journal of Mineral Processing 90:45–55. doi:10.1016/j.minpro.2008.10.004.
  • Lu, S., and Z. Dai. 1988. Separation of ultrafine mineral particles by hydrophobic aggregation methods. International Symposium on the Production and Processing of Fine Particles, Montreal, Canada.
  • Lynch, A. J., N. W. Johnson, E. V. Manlapig, and C. G. Thorne. 1981. Mineral and coal flotation circuits: Their simulation and control. Amsterdam: Elsevier.
  • Mankosa, M. J., J. N. Kohmuench, E. S. Yan, and G. Luttrell. 2008. Flotation separation device and method. USP 8,960,443. Eriez Manufacturing Co.
  • Mankosa, M. J., J. N. Kohmuenchb, L. Christodoulouc, and E. S. Yanc. 2018. Improving fine particle flotation using the StackCell™ (raising the tail of the elephant curve). Minerals Engineering 121:83–89. doi:10.1016/j.mineng.2018.03.012.
  • Manouchehri, H. R., and S. Farrokhpay. 2016. Flotation of fine particles- is it the question of power input and bubble size within the cell? IMPC, Quebec, Canada: Canadian Institute of Mining, Metallurgy and Petroleum.
  • Matis, K. A., and A. I. Zouboulis. 1995. Electrolytic flotation: An unconventional technique. Flotation science and engineering, K. A. Matis, 385–413. New York: Dekker.
  • Matis, K. A., and G. P. Gallios. 1986. Dissolved-air and electrolytic flotation. Mineral Processing at a Crossroads. Dordrecht, Germany: Springer.
  • Matis, K. A., G. P. Gallios, and K. A. Kydros. 1993. Separation of fines by flotation techniques. Separations Technology 3 (2):76–90. doi:10.1016/0956-9618(93)80007-E.
  • Mbamba, C. K., S. T. L. Harrison, J. P. Franzidis, and J. L. Broadhurst. 2012. Mitigating acid rock drainage risks while recovering low-sulfur coal from ultrafine colliery wastes using froth flotation. Minerals Engineering 29:13–21. doi:10.1016/j.mineng.2012.02.001.
  • Miettinen, T., J. Ralston, and D. Fornasiero. 2010. The limits of fine particle flotation. Minerals Engineering 23 (5):420–37. doi:10.1016/j.mineng.2009.12.006.
  • Mirnezami, M., M. S. Hashemi, and J. A. Finch. 2004. Effect of sulphates on aggregation of alumina and pyrite. The 5th UBC-McGill International Symposium, Hamilton, Ontario.
  • Mishchuk, N., J. Ralston, and D. Fornasiero. 2006. Influence of very small bubbles on particle/bubble heterocoagulation. Journal of Colloid and Interface Science 301:168–77. doi:10.1016/j.jcis.2006.04.071.
  • Netten, K. V., D. J. Borrow, and K. P. Galvin. 2017. Fast agglomeration of ultrafine hydrophobic particles using a high-internal-phase emulsion binder comprising permeable hydrophobic films. Industrial & Engineering Chemistry Research 56:10658–66.
  • Orwe, D., S. R. Grano, and D. W. Lauder. 1998. Increasing fine copper recovery at the OK Tedi concentrator. Papua New Guinea, Minerals Engineering 11 (2):171–87. doi:10.1016/S0892-6875(97)00149-0.
  • Pease, J. D., D. Curry, and M. F. Young. 2006. Designing flotation circuits for high fines recovery. Minerals Engineering 19:831–40. doi:10.1016/j.mineng.2005.09.056.
  • Peng, Y., D. Cotnoir, M. Ourriban, and Q. Liu. 2005. Some solutions to the problems in fine particle flotation. Centenary of Flotation Symposium, Brisbane.
  • Pugh, R. J. 2005. Experimental techniques for studying the structure of foams and froths. Advances in Colloid and Interface Science 114–115:239–51. doi:10.1016/j.cis.2004.08.005.
  • Pyke, B., D. Fornasiero, and J. Ralston. 2003. Bubble particle heterocoagulation under turbulent conditions. Journal of Colloid and Interface Science 265:141–51. doi:10.1016/S0021-9797(03)00345-X.
  • Rahman, R. M., S. Ata, and G. L. Jameson. 2012. The effect of flotation variables on the recovery of different particle size fractions in the froth and the pulp. International Journal of Mineral Processing 106–109:70–77. doi:10.1016/j.minpro.2012.03.001.
  • Ralston, J., D. Fornasiero, S. Grano, J. Duan, and T. Akroyd. 2007. Reducing uncertainty in mineral flotation - flotation rate constant prediction for particles in an operating plant ore. International Journal of Mineral Processing 84:89–98. doi:10.1016/j.minpro.2006.08.010.
  • Romanov, A. M. 1998. Electroflotation in waste water treatment: Results and perspectives. Mineral processing and the environment, G. P. Gallios and K. A. Matis, 335–60. Dordrech: Kluwer.
  • Rubio, J., F. Capponi, E. Matiolo, and G. N. Nunes. 2003. Advances in flotation of mineral fines. XXII International Mineral Processing Congress (IMPC), 1014–22, Cape Town, South Africa.
  • Rulyov, N. 2003. Turbulent microflotation of fine disperse minerals (The general concept). Proceedings of strategic conference and workshop: Flotation & flocculation: From fundamentals to applications, Adelaide.
  • Rulyov, N., N. Тussupbaev, D. Turusbekov, L. Semushkina, and Z. Kaldybaeva. 2018. Effect of microbubbles as flotation carriers on fine sulphide ore beneficiation. Mineral Processing and Extractive Metallurgy, Transactions Institute Minerals Metall C 127:133–39.
  • Rulyov, N. N. 2001. Turbulent microflotation: Theory and experiment. Colloids and Surfaces. A, Physicochemical and Engineering Aspects 192:73–91. doi:10.1016/S0927-7757(01)00718-X.
  • Rulyov, N. N. 2008. Turbulent micro-flotation of ultra-fine minerals. Mineral Processing and Extractive Metallurgy, Transactions Institute Minerals Metall C 117:32–37.
  • Rulyov, N. N., L. O. Filippov, and O. V. Kravchenko. 2020. Combined microflotation of glass beads. Colloids and Surfaces. A, Physicochemical and Engineering Aspects 124810. doi:10.1016/j.colsurfa.2020.124810.
  • Rulyov, N. N., N. K. Тussupbayev, and О. V. Kravtchenco. 2015. Combined microflotation of fine quartz. Mineral Processing and Extractive Metallurgy, Transactions Institute of Metals C 124:217–33.
  • Sadowski, Z., and I. Polowczyk. 2008. Agglomerate flotation of fine oxide particles. International Journal of Mineral Processing 74:85–90. doi:10.1016/j.minpro.2003.09.007.
  • Scheludko, A., B. V. Toshev, and D. T. Bojadjiev. 1976. Attachment of particles to a liquid surface (capillary theory of flotation). Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 72:2815–28. doi:10.1039/f19767202815.
  • Schubert, H. 1999. On the turbulence-controlled microprocesses in flotation machines. International Journal of Mineral Processing 56:257–76. doi:10.1016/S0301-7516(98)00048-9.
  • Schubert, H. 2008. On the optimization of hydrodynamics in fine particle flotation. Minerals Engineering 21:930–36. doi:10.1016/j.mineng.2008.02.012.
  • Schulze, H. J. 1993. Flotation as a heterocoagulation process: Possibilities of calculating the probability of flotation. In Surfactant science series (coagulation and flocculation), ed. B. Dobias, Vol. 47, 321–54. New York: Marcel Dekker.
  • Somasundaran, P. 1978. The physical chemistry of mineral- reagent interactions in sulfide flotation. U.S. Bureau of Mines, IC8818.
  • Somasundaran, P. 1980. Principles of flocculation, dispersion, and selective flocculation. Fine particles processing, M. J. Jones, Vol. 2, 947–76. Maryland: AIME.
  • Song, S., A. Lopez-Valdivieso, J. L. Reyes-Bahena, and C. Lara-Valenzuela. 2001. Floc flotation of galena and sphalerite fines. Minerals Engineering 14 (1):87–98. doi:10.1016/S0892-6875(00)00162-X.
  • Stevenson, P., and N. Lambert. 2012. Froth phase phenomena in flotation. foam engineering: Fundamentals and applications. 1st ed. P. Stevenson. Chichester, UK: John Wiley & Sons.
  • Sutherland, K. L. 1948. Physical chemistry of flotation XI. Kinetics of the flotation process. Journal of Physical and Colloid Chemistry 52:394–425. doi:10.1021/j150458a013.
  • Taddese, B., B. Albijanic, F. Mkuel, and R. Browner. 2018. Recovery of fine and ultrafine mineral particles by electroflotation: A review. Mineral Processing and Extractive Metallurgy Review 40:109–22.
  • Tadosa, E., K. Runge, and K. A. Duffy. 2013. Strategies for increasing coarse particle flotation in conventional flotation cells. Flotation’ 13. MEI Conference, Cape Town.
  • Tang, F., Z. Xiao, J. Tang, and L. Jiang. 1989. The effect of SiO2 particles upon stabilization of foam. Journal of Colloid and Interface Science 131 (2):498–502. doi:10.1016/0021-9797(89)90192-6.
  • Tao, D. 2004. Role of bubble size in flotation of coarse and fine particles - A review. Separation Science and Technology 39:741–60. doi:10.1081/SS-120028444.
  • Tao, D., G. Luttrell, and R. H. Yoon. 2000. A parametric study of froth stability and its effect on column flotation of fine particles. International Journal of Mineral Processing 59:25–43. doi:10.1016/S0301-7516(99)00033-2.
  • Trahar, W. J., and L. J. Warren. 1976. The flotability of very fine particles- a review. International Journal of Mineral Processing 3:103–31. doi:10.1016/0301-7516(76)90029-6.
  • Vergouw, J. M., A. DiFeo, Z. Xu, and J. A. Finch. 1998. An agglomeration study of sulphide minerals using zeta-potential and settling velocity rate. Part I. pyrite and galena. Minerals Engineering 11 (2):159–69. doi:10.1016/S0892-6875(97)00148-9.
  • Walters, K. E., K. Hardler, and J. J. Cilliers. 2008. The flotation of fine particles using charged microbubbles. Minerals Engineering 21:918–23. doi:10.1016/j.mineng.2008.04.011.
  • Wang, W., and D. Fornasiero. 2010. Flotation of composite synthetic particles, in: Proceedings of the 25th International Mineral Processing Congress, 2503–11. Carlton Victoria: AusIMM.
  • Wei, T., Y. Peng, and S. Farrokhpay. 2014. Froth stability of coal flotation in saline water. Mineral Processing and Extractive Metallurgy, Transactions Institute Minerals Metall C 123 (4):234–40.
  • Xiong, Y., and F. Peng. 2015. Optimization of cavitation venturi tube design for pico and nano bubbles. International Journal of Mining Science and Technology 25 (3):347–54. doi:10.1016/j.ijmst.2015.05.002.
  • Yalcin, T., and A. Byers. 2006. Dissolved gas flotation in mineral processing. Mineral Processing and Extractive Metallurgy Review 27 (2):87–97. doi:10.1080/08827500500339331.
  • Yang, J., J. Duan, D. Fornasiero, and J. Ralston. 2003. Very small bubble formation at the solid-water interface. Journal of Physical Chemistry B 107 (25):6139–47. doi:10.1021/jp0224113.
  • Ye, Y., and J. D. Miller. 1988. Bubble/particle contact time in the analysis of coal flotation. Coal Preparation 5:147–66. doi:10.1080/07349348808945563.
  • Yoon, R. H., and G. H. Luttrell. 1989. The effect of bubble size on fine particle flotation. Mineral Processing and Extractive Metallurgy Review 5:101–22. doi:10.1080/08827508908952646.
  • Yoon, R.-H. 2000. The role of hydrodynamic and surface forces in bubble-particle interaction. International Journal of Mineral Processing 58:129–43. doi:10.1016/S0301-7516(99)00071-X.
  • Zanin, M., I. Ametov, S. Grano, L. Zhou, and W. Skinner. 2009. A study of mechanisms affecting molybdenite recovery in a bulk copper/molybdenum flotation circuit. International Journal of Mineral Processing 93:256–66. doi:10.1016/j.minpro.2009.10.001.
  • Zhang, X., Y. Hu, W. Sun, and L. Xu. 2017. The effect of polystyrene on the carrier flotation of fine smithsonite. Minerals 7:52. doi:10.3390/min7040052.
  • Zhong, H., W. Chen, and J. Chen. 1988. Co-flocculation with polymer and surfactant. International Symposium on the Production and Processing of Fine Particles, Montreal, Canada.
  • Zhou, Z. A., X. Zhenghe, and J. A. Finch. 1994. On the role of cavitation in particle collection during flotation - A critical review. Minerals Engineering 7 (9):1073–84. doi:10.1016/0892-6875(94)00053-0.
  • Zhou, Z. A., X. Zhenghe, J. A. Finch, H. Hu, and S. R. Rao. 1997. Role of hydrodynamic cavitation in fine particle flotation. International Journal of Mineral Processing 51 (1–4):139–49. doi:10.1016/S0301-7516(97)00026-4.
  • Тussupbayev, N. K., N. N. Rulyov, and О. V. Kravtchenco. 2016. Microbubble augmented flotation of ultrafine chalcopyrite from quartz mixtures. Mineral Processing and Extractive Metallurgy. Transactions Institute of Metals C 125:5–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.