475
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Influence of Sodium Salts on Reduction Roasting of High-Phosphorus Oolitic Iron Ore

, , , , &

References

  • Anameric, B., and S. K. Kawatra. 2007. Properties and features of direct reduced iron. Mineral Processing and Extractive Metallurgy Review 28 (1):59–116. doi:10.1080/08827500600835576.
  • Bao, Q. P., L. Guo, and Z. C. Guo. 2020. A novel direct reduction-flash smelting separation process of treating high phosphorous iron ore fines. Powder Technology 377:149–62. doi:10.1016/j.powtec.2020.08.066.
  • Cao, Y. Y., D. P. Duan, E. Zhou, and T. C. Sun. 2020. The function of blast furnace dust as reductant on simultaneous reduction of high-phosphorus oolitic hematite. Ironmaking & Steelmaking 47 (5):520–30. doi:10.1080/03019233.2018.1544781.
  • Cha, J. W., D. Y. Kim, and S. M. Jung. 2015. Distribution behavior of phosphorus and metallization of iron oxide in carbothermic reduction of high-phosphorus iron ore. Metallurgical and Materials Transactions B 46 (5):2165–79. doi:10.1007/s11663-015-0399-6.
  • Cheng, C., Q. G. Xue, G. Wang, Y. Y. Zhang, and J. S. Wang. 2016a. Phosphorus migration during direct reduction of coal composite high-phosphorus iron ore pellets. Metallurgical and Materials Transactions B 47 (1):154–63. doi:10.1007/s11663-015-0479-7.
  • Cheng, C. Y., V. N. Misra, J. Clough, and R. Muni. 1999b. Dephosphorisation of Western Australian iron ore by hydrometallurgical process. Minerals Engineering 12 (9):1083–92. doi:10.1016/S0892-6875(99)00093-X.
  • Chun, T., H. Long, Z. Di, P. Wang, and Q. Meng. 2017b. Influence of microwave heating on the microstructures of iron ore pellets with coal during reduction. Ironmaking & Steelmaking 44 (7):486–91. doi:10.1080/03019233.2016.1215960.
  • Chun, T. J., D. Q. Zhu, and J. Pan. 2015a. Simultaneously roasting and magnetic separation to treat low grade siderite and hematite ores. Mineral Processing and Extractive Metallurgy Review 36 (4):223–26. doi:10.1080/08827508.2014.928620.
  • Delvasto, P., A. Valverde, A. Ballester, J. A. Muñoz, F. González, M. L. Blázquez, J. M. Igual, and C. García-Balboa. 2008. Diversity and activity of phosphate bioleaching bacteria from a high-phosphorus iron ore. Hydrometallurgy 92 (3–4):124–29. doi:10.1016/j.hydromet.2008.02.007.
  • Guo, Z. Q., D. Q. Zhu, J. Pan, W. J. Yao, W. Q. Xu, and J. N. Chen. 2017. Effect of Na2CO3 addition on carbothermic reduction of sopper smelting slag to prepare crude Fe-Cu alloy. JOM 69 (4):1688–95. doi:10.1007/s11837-017-2410-y.
  • Huang, W. S., L. Yan, S. C. Wu, and T. C. Sun. 2020b. Study on the process mineralogy of a high phosphorus ooliticiron ore in abroad. Metal Mine 49 (9):137–41.
  • Huang, Y. F., G. H. Han, J. Tao., Y. B. Zhang, and G. H. Li. 2013a. Oxidation and sintering characteristics of magnetite iron ore pellets balled with a novel complex binder. Mineral Processing and Extractive Metallurgy Review 34 (1):42–56. doi:10.1080/08827508.2011.623747.
  • Ionkov, K., S. Gaydardzhiev, A. C. Araujo, D. Bastin, and M. Lacoste. 2013. Amenability for processing of oolitic iron ore concentrate for phosphorus removal. Minerals Engineering 46-47:119–27. doi:10.1016/j.mineng.2013.03.028.
  • Iwasaki, I., and M. S. Prasad. 1989. Processing techniques for difficult-to-treat ores by combining chemical metallurgy and mineral processing. Mineral Processing and Extractive Metallurgy Review 4 (3–4):241–76. doi:10.1080/08827508908952639.
  • Jena, S. K., P. K. Misra, and B. Das. 2016. Studies on extraction of potassium from feldspar by roast-leach method using phosphogypsum and sodium chloride. Mineral Processing and Extractive Metallurgy Review 37 (5):323–32. doi:10.1080/08827508.2016.1218869.
  • Ju, S. H., S. Pritam, J. H. Peng, N. N. Aleksandar, C. Liu, S. H. Guo, R. P. Das, and L. B. Zhang. 2018. Recent developments in the application of microwave energy in process metallurgy at KUST. Mineral Processing and Extractive Metallurgy Review 39 (3):181–90. doi:10.1080/08827508.2017.1401537.
  • Keith, Q. 2018. A review on the characterisation and processing of oolitic iron ores. Minerals Engineering 126:89–100. doi:10.1016/j.mineng.2018.06.018.
  • Li, G. H., M. J. Rao, C. Z. Ouyang, S. H. Zhang, Z. W. Peng, and T. Jiang. 2015a. Distribution characteristics of phosphorus in the metallic iron during solid-state reductive roasting of oolitic hematite ore. ISIJ International 55 (11):2304–09. doi:10.2355/isijinternational.ISIJINT-2015-212.
  • Li, G. H., S. H. Zhang, M. J. Rao, Y. B. Zhang, and T. Jiang. 2013b. Effects of sodium salts on reduction roasting and Fe-P separation of high-phosphorus oolitic hematite ore. International Journal of Mineral Processing 124:26–34. doi:10.1016/j.minpro.2013.07.006.
  • Li, G. H., T. Jiang, M. D. Liu, T. H. Zhou, X. H. Fan, and G. Z. Qiu. 2010d. Beneficiation of high-aluminium-content hematite ore by soda ash roasting. Mineral Processing and Extractive Metallurgy Review 31 (3):150–64. doi:10.1080/08827501003727030.
  • Li, Y. L., T. C. Sun, J. Kou, Q. Guo, and C. Y. Xu. 2014c. Study on phosphorus removal of high-phosphorus oolitic hematite by coal-based direct reduction and magnetic separation. Mineral Processing and Extractive Metallurgy Review 35 (1):66–73. doi:10.1080/08827508.2012.723648.
  • Liu, Y. Q., H. Zhang, Z. G. Li, A. M. Zhang, X. H. Zhang, and S. Qing. 2017. Impact of slag composition activity on the behavior of phosphorus in the smelting reduction process of high-phosphorus iron ores. International Journal of Hydrogen Energy 42 (38):24487–94. doi:10.1016/j.ijhydene.2017.06.119.
  • Lu, P., Y. T. Zan, J. J. Ren, T. Y. Zhao, K. X, and A. Goel. 2021. Structure and crystallization behavior of phosphorus-containing nepheline (NaAlSiO4) based sodium aluminosilicate glasses. Journal of Non-Crystalline Solids 560:120719. doi:10.1016/j.jnoncrysol.2021.120719.
  • Mcgregor, F., E. Ramanaidou, and M. Wells. 2011. Phanerozoic ooidal ironstone deposits-generation of potential exploration targets. Applied Earth Science 119 (1):60–64. doi:10.1179/037174510X12853354810660.
  • Nizamutdinova, A., T. Uesbeck, T. Grammes, S. B. Delia, and L. Van Wüllen. 2020. Structural role of phosphate in metaluminous sodium aluminosilicate glasses as studied by solid state NMR spectroscopy. The Journal of Physical Chemistry. B 124 (13):2691–701. doi:10.1021/acs.jpcb.9b11403.
  • Nunes, A. P. L., C. L. L. Pinto, G. E. S. Valadão, and P. R. M. Viana. 2012. Floatability studies of wavellite and preliminary results on phosphorus removal from a Brazilian iron ore by froth flotation. Minerals Engineering 39:206–12. doi:10.1016/j.mineng.2012.06.004.
  • Ofoegbu, S. U. 2019. Technological challenges of phosphorus removal in high-phosphorus ores: Sustainability implications and possibilities for greener ore processing. Sustainability 11 (23):6787–824. doi:10.3390/su11236787.
  • Omran, M., T. Fabritius, A. M. Elmahdy, N. A. Abdel-Khalek, and S. Gornostayev. 2015. Improvement of phosphorus removal from iron ore using combined microwave pretreatment and ultrasonic treatment. Separation and Purification Technology 156:724–37. doi:10.1016/j.seppur.2015.10.071.
  • Ozcan, O., and I. B. Celik. 2016. Beneficiation routes for upgrading iron ore tailings with a teetered bed separator. Separation Science and Technology 51 (17):2844–55. doi:10.1080/01496395.2016.1218514.
  • Rao, M. J., C. Z. Ouyang, G. H. Li, S. H. Zhang, Y. B. Zhang, and T. Jiang. 2015. Behavior of phosphorus during the carbothermic reduction of phosphorus-rich oolitic hematite ore in the presence of Na2SO4. International Journal of Mineral Processing 143:72–79. doi:10.1016/j.minpro.2015.09.002.
  • Roy, S. K., D. Nayak, and S. S. Rath. 2020. A review on the enrichment of iron values of low-grade Iron ore resources using reduction roasting-magnetic separation. Powder Technology 367:796–808. doi:10.1016/j.powtec.2020.04.047.
  • Silva, F. T. D. 1992. Thermodynamic aspects of the roasting processes in the pre-treatment of nickelferrous garnierites. Mineral Processing and Extractive Metallurgy Review 9 (1–4):97–106. doi:10.1080/08827509208952697.
  • Sun, Y. S., Y. X. Han, P. Gao, and J. W. Yu. 2015a. Size distribution behavior of metallic iron particles in coal-based reduction products of an oolitic iron ore. Mineral Processing and Extractive Metallurgy Review 36 (4):249–57. doi:10.1080/08827508.2014.955611.
  • Sun, Y. S., Y. X. Han, Y. F. Li, and Y. J. Li. 2017b. Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore. International Journal of Minerals, Metallurgy and Materials 24 (2):123–29. doi:10.1007/s12613-017-1386-5.
  • Tang, H. Q., W. D. Liu, Y. H. Zhang, and Z. C. Guo. 2014b. Effect of microwave treatment upon processing oolitic high phosphorus iron ore for phosphorus removal. Metallurgical and Materials Transactions B 45 (5):1683–94. doi:10.1007/s11663-014-0072-5.
  • Tang, H. Q., Y. Q. Qin, and T. F. Qi. 2016a. Phosphorus removal and iron recovery from high-phosphorus hematite using direct reduction followed by melting separation. Mineral Processing and Extractive Metallurgy Review 37 (4):236–45. doi:10.1080/08827508.2016.1181628.
  • Tang, Z. D., P. Gao, Y. S. Sun, Y. X. Han, E. L. Li, J. Chen, and Y. H. Zhang. 2020c. Studies on the fluidization performance of a novel fluidized bed reactor for iron ore suspension roasting. Powder Technology 360:649–57. doi:10.1016/j.powtec.2019.09.092.
  • Wu, S. C., T. C. Sun, and H. F. Yang. 2019b. Study on phosphorus removal of high-phosphorus oolitic hematite abroad by direct reduction and magnetic separation. Metal Mine 11:109–104. doi:10.3390/met9010109.
  • Wu, S. C., T. C. Sun, Z. Y. Li, C. Y. Xu, and X. H. Li. 2021a. Research progress of direct reduction-magnetic separation of high phosphorus iron ore. Metal Mine 2:58–64.
  • Wu, S. C., Z. Y. Li, T. C. Sun, J. Kou, and C. Y. Xu. 2021b. The mechanism of CaCO3 in the gas-based direct reduction of a high-phosphorus oolitic iron ore. Physicochemical Problems of Mineral Processing 57 (4):117–24. doi:10.37190/ppmp/138882.
  • Yan., X., T. C. Sun, Z. G. Liu, and Z. H. Liu. 2013. Phosphorus occurrence state and phosphorus removal research of a high phosphorous oolitic hematite by direct reduction roasting method. Journal of Northeastern University (Natural Science) 34 (11):1651–55.
  • Yang, C. C., D. Q. Zhu, J. Pan, and L. M. Lu. 2017a. Simultaneous recovery of iron and phosphorus from a high-phosphorus oolitic iron ore to prepare Fe-P alloy for high-phosphorus steel production. JOM 69 (9):1663–68. doi:10.1007/s11837-017-2385-8.
  • Yang, D. W., T. C. Sun, C. Y. Xu, C. Y. Qi, and Z. X. Li. 2010b. Dephosphorization mechanism in a roasting process for directreduction of high-phosphorus oolitic hematite in west Hubei Province, China. Journal of University of Science and Technology Beijing 32 (8):968–74.
  • Yang, M., Q. S. Zhu, C. L. Fan, Z. H. Xie, and H. Z. Li. 2015c. Roasting-induced phase change and its influence on phosphorus removal through acid leaching for high-phosphorus iron ore. International Journal of Minerals, Metallurgy and Materials 22 (4):346–52. doi:10.1007/s12613-015-1079-x.
  • Yu, J. T., Z. C. Guo, and H. Q. Tang. 2013d. Dephosphorization treatment of high phosphorus oolitic iron ore by hydrometallurgical process and leaching kinetics. ISIJ International 53 (12):2056–64. doi:10.2355/isijinternational.53.2056.
  • Yu, J. W., Y. X. Han, Y. J. Li, and P. Gao. 2020a. Recent advances in magnetization roasting of refractory iron ores: A technological review in the past decade. Mineral Processing and Extractive Metallurgy Review 41 (5):349–59. doi:10.1080/08827508.2019.1634565.
  • Yu, W., T. C. Sun, J. Kou, Y. X. Wei, C. Y. Xu, and Z. Z. Liu. 2013c. The function of Ca(OH)2 and Na2CO3 as additive on the reduction of high-phosphorus oolitic hematite-coal mixed pellets. ISIJ International 53 (3):427–33. doi:10.2355/isijinternational.53.427.
  • Yu, W., T. C. Sun, and Q. Cui. 2014b. Can sodium sulfate be used as an additive for the reduction roasting of high-phosphorus oolitic hematite ore? International Journal of Mineral Processing 133:119–22. doi:10.1016/j.minpro.2014.10.008.
  • Zhang, H. Q., Z. Q. Zhang, L. Q. Luo, and H. Yu. 2019b. Behavior of Fe and P during reduction magnetic roasting-separation of phosphorus-rich oolitic hematite. Energy Sources 41 (1–6):47–64. doi:10.1080/15567036.2018.1496195.
  • Zhang, X. L., Y. X. Han, Y. S. Sun, Y. Lv, Y. J. Li, and Z. D. Tang. 2020a. An novel method for iron recovery from iron ore tailings with pre-concentration followed by magnetization roasting and magnetic separation. Mineral Processing and Extractive Metallurgy Review 41 (2):117–29. doi:10.1080/08827508.2019.1604522.
  • Zhao, Y. Q., T. C. Sun, H. Y. Zhao, X. H. Li, and X. P. Wang. 2018. Effects of CaCO3 as additive on coal-based reduction of high-phosphorus oolitic hematite ore. ISIJ International 58 (10):1768–74. doi:10.2355/isijinternational.ISIJINT-2018-186.
  • Zhou, X. L., D. Q. Zhu, J. Pan, Y. H. Luo, and X. Q. Liu. 2016. Upgrading of high-aluminum hematite-limonite ore by high temperature reduction-wet magnetic separation process. Metals 6 (3):57. doi:10.3390/met6030057.
  • Zhu, D. Q., T. J. Chun, J. Pan, L. M. Lu, and Z. He. 2013. Upgrading and dephosphorization of Western Australian iron ore using reduction roasting by adding sodium carbonate. International Journal of Minerals, Metallurgy and Materials 20 (6):505–13. doi:10.1007/s12613-013-0758-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.