270
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Arsenic Trioxide Leaching and Scorodite Crystallization in Methanesulfonic Acid

, , &

References

  • Ahn, J., J. Wu, and J. Lee. 2019. Investigation on chalcopyrite leaching with methanesulfonic acid (MSA) and hydrogen peroxide. Hydrometallurgy 187:54–62. doi:10.1016/j.hydromet.2019.05.001.
  • Ahn, J.-W., and J.-S. Seo. 2012. A study on the removal of As, Sb, Bi from the copper sulfate solutions by Ion exchange resin containing Aminophosphosphonic acid as a functional group. Journal of the Korean Institute of Resources Recycling 21 (5):50–57.
  • Carrie, M. J., and E. Vos (1999) Acidic cleaning compositions. US Patent, US5912219A.
  • Debekaussen, R., D. Droppert, and G. Demopoulos. 2001. Ambient pressure hydrometallurgical conversion of arsenic trioxide to crystalline scorodite. CIM Bulletin 94116–22.
  • Feng, Q., S. Wen, W. Zhao, C. Lv, and X. Bai. 2015. Leaching of copper from malachite with methane-sulfonic acid. Solvent Extraction Research and Development, Japan 22 (2):159–68. doi:10.15261/serdj.22.159.
  • Filippou, D., and G. P. Demopoulos. 1997. Arsenic immobilization by controlled scorodite precipitation. Journal of the Minerals Metals & Materials Society 49 (12):52–55. doi:10.1007/s11837-997-0034-3.
  • Filippou, D., P. St-Germain, and T. Grammatikopoulos. 2007. Recovery of metal values from copper—arsenic minerals and other related resources. Mineral Processing and Extractive Metallurgy Review 28 (4):247–98. doi:10.1080/08827500601013009.
  • Fujita, T., R. Taguchi, M. Abumiya, M. Matsumoto, E. Shibata, and T. Nakamura. 2008. Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution. Part I. Hydrometallurgy 90 (2–4):92–102. doi:10.1016/j.hydromet.2007.09.012.
  • Fujita, T., R. Taguchi, M. Abumiya, M. Matsumoto, E. Shibata, and T. Nakamura. 2009. Effect of pH on atmospheric scorodite synthesis by oxidation of ferrous ions: Physical properties and stability of the scorodite. Hydrometallurgy 96 (3):189–98. doi:10.1016/j.hydromet.2008.10.003.
  • Gernon, M. 1999. Environmental benefits of methanesulfonic acid. Comparative properties and advantages. Green Chemistry 1 (3):127–40. doi:10.1039/a900157c.
  • Hidalgo, T., L. Kuhar, A. Beinlich, and A. Putnis. 2018. Kinetic study of chalcopyrite dissolution with iron(III) chloride in methanesulfonic acid. Minerals Engineering 125:66–74. doi:10.1016/j.mineng.2018.05.025.
  • Hoffmann, J. E. 2004. The purification of copper refinery electrolyte. Journal of the Minerals Metals & Materials Society 56 (7):30–33. doi:10.1007/s11837-004-0088-4.
  • Jahromi, F. G., and A. Ghahreman. 2018. In-situ oxidative arsenic precipitation as scorodite during carbon catalyzed enargite leaching process. Journal of Hazardous Materials 360:631–38. doi:10.1016/j.jhazmat.2018.08.019.
  • Jinqing, H. 2007. Research of mineral processing of high arsenic copper zinc in Guangxi. Non-Ferrous Meta 3 18-21.
  • Kartinen, E. O., Jr, and C. J. Martin. 1995. An overview of arsenic removal processes. Desalination 103 (1–2):79–88. doi:10.1016/0011-9164(95)00089-5.
  • Lattanzi, P., S. Da Pelo, E. Musu, D. Atzei, B. Elsener, M. Fantauzzi, and A. Rossi. 2008. Enargite oxidation: A review. Earth-Science Reviews 86 (1–4):62–88. doi:10.1016/j.earscirev.2007.07.006.
  • Long, G., Y. Peng, and D. Bradshaw. 2012. A review of copper–arsenic mineral removal from copper concentrates. Minerals Engineering 36:179–86. doi:10.1016/j.mineng.2012.03.032.
  • Minotas, J. C., H. Djellab, and E. Ghali. 1989. Anodic behaviour of copper electrodes containing arsenic or antimony as impurities. Journal of Applied Electrochemistry 19 (5):777–83. doi:10.1007/BF01320654.
  • Moats, M. S. 1998. Electrochemical characterization of anode passivation mechanisms in copper electrorefining. The University of Arizona. Tucson, AZ
  • Moskalyk, R., and A. Alfantazi. 2003. Review of copper pyrometallurgical practice: Today and tomorrow. Minerals Engineering 16 (10):893–919. doi:10.1016/j.mineng.2003.08.002.
  • Navarro, P., and F. J. Alguacil. 2002. Adsorption of antimony and arsenic from a copper electrorefining solution onto activated carbon. Hydrometallurgy 66 (1–3):101–05. doi:10.1016/S0304-386X(02)00108-1.
  • Nazari, A. M., R. Radzinski, and A. Ghahreman. 2017. Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic. Hydrometallurgy 174:258–81.
  • Otgon, N., G. Zhang, K. Zhang, and C. Yang. 2019. Removal and fixation of arsenic by forming a complex precipitate containing scorodite and ferrihydrite. Hydrometallurgy 186:58–65. doi:10.1016/j.hydromet.2019.03.012.
  • Padilla, R., A. Aracena, and M. C. Ruiz. 2012. Reaction mechanism and kinetics of enargite oxidation at roasting temperatures. Metallurgical and Materials Transactions B 43 (5):1119–26. doi:10.1007/s11663-012-9675-x.
  • Piret, N. 1999. The removal and safe disposal of arsenic in copper processing. Journal of the Minerals Metals & Materials Society 51 (9):16. doi:10.1007/s11837-999-0150-3.
  • Qi, X., Y. Li, L. Wei, F. Hao, X. Zhu, Y. Wei, K. Li, and H. Wang. 2020. Disposal of high-arsenic waste acid by the stepwise formation of gypsum and scorodite. RSC Advances 10 (1):29–42. doi:10.1039/C9RA06568G.
  • Safarzadeh, M. S., and J. D. Miller. 2016. The pyrometallurgy of enargite: A literature update. International Journal of Mineral Processing 157:103–10. doi:10.1016/j.minpro.2016.09.008.
  • Safarzadeh, M. S., M. S. Moats, and J. D. Miller. 2014. An update to “Recent trends in the processing of enargite concentrates. Mineral Processing and Extractive Metallurgy Review 35 (6):390–422. doi:10.1080/08827508.2012.725683.
  • Schlesinger, M. E., K. C. Sole, and W. G. Davenport. 2011. Extractive metallurgy of copper. Elsevier Oxford, UK.
  • Singhania, S., Q. Wang, D. Filippou, and G. P. Demopoulos. 2005. Temperature and seeding effects on the precipitation of scorodite from sulfate solutions under atmospheric-pressure conditions. Metallurgical and Materials Transactions B 36 (3):327–33. doi:10.1007/s11663-005-0062-8.
  • Singhania, S., Q. Wang, D. Filippou, and G. P. Demopoulos. 2006. Acidity, valency and third-ion effects on the precipitation of scorodite from mixed sulfate solutions under atmospheric-pressure conditions. Metallurgical and Materials Transactions B 37 (2):189–97. doi:10.1007/BF02693148.
  • Srinivasan, K., and S. John. 2009. Electroless nickel deposition from methane sulfonate bath. Journal of Alloys and Compounds 486 (1–2):447–50. doi:10.1016/j.jallcom.2009.06.178.
  • Vink, B. 1996. Stability relations of antimony and arsenic compounds in the light of revised and extended Eh-pH diagrams. Chemical Geology 130 (1–2):21–30. doi:10.1016/0009-2541(95)00183-2.
  • Welham, N., K. Malatt, and S. Vukcevic. 2000. The stability of iron phases presently used for disposal from metallurgical systems—a review. Minerals Engineering 13 (8–9):911–31. doi:10.1016/S0892-6875(00)00078-9.
  • Wiertz, J., R. Lunar, H. Maturana, and B. Escobar. 1999. Bioleaching of copper and cobalt arsenic-bearing ores: A chemical and mineralogical study. Process metallurgy 9, 397–404
  • Wu, Z., D. B. Dreisinger, H. Urch, and S. Fassbender. 2014. The kinetics of leaching galena concentrates with ferric methanesulfonate solution. Hydrometallurgy 142:121–30. doi:10.1016/j.hydromet.2013.10.017.
  • Zanella, C., S. Xing, and F. Deflorian. 2013. Effect of electrodeposition parameters on chemical and morphological characteristics of Cu–Sn coatings from a methanesulfonic acid electrolyte. Surface and Coatings Technology 236:394–99. doi:10.1016/j.surfcoat.2013.10.020.
  • Zhou, W.-K., Y.-L. Peng, Y.-J. Zheng, and C. Tao. 2011. Reduction and deposition of arsenic in copper electrolyte. Transactions of Nonferrous Metals Society of China 21 (12):2772–77. doi:10.1016/S1003-6326(11)61122-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.