2,192
Views
3
CrossRef citations to date
0
Altmetric
Review

Is Near-zero Waste Production of Copper and Its Geochemically Scarce Companion Elements Feasible?

ORCID Icon

References

  • Abaka-Wood, G. B., J. Addai-Mensah, and H. Skinner. 2021. The use of mining tailings as analog of rare earth elements resources: Part I- characterization and preliminary separation. Minerals Processing and Extractive Metallurgy Review 15pp. doi:10.1080/08827508.2021.1980410.
  • Adelman, J. G., S. Elouatik, and G. P. Demopoulos. 2015. Investigation of sodium-silicate derived gels as encapsulants for hazardous materials-The case of scorodite. Journal of Hazardous Materials 292:108–17. doi:10.1016/j.jhazmat.2015.03.008.
  • Afflerbach, P., G. Fridgen, R. Keller, A. W. Rathgeber, and F. Strobel. 2014. The by-product effect on metal markets – New insights to the price behavior of minor metals. Resources Policy 42:35–44. doi:10.1016/j.resourpol.2014.08.003.
  • Agorhom, E. A., J. P. Lem, W. Skinner, and M. Zanin. 2015. Challenges and opportunities in the recovery/rejection of trace elements in copper flotation. Minerals Engineering 78:45–57. doi:10.1016/j.mineng.2015.04.008.
  • Ahmari, S., and L. Zhang. 2012. Production of eco-friendly bricks from copper mine tailings through geopolymerization. Construction and Building Materials 29:323–31. doi:10.1016/j.conbuildmat.2011.10.048.
  • Ahmari, S., and L. Zhang. 2013. Durability and leaching behavior of mine tailing-based geopolymer bricks. Construction and Building Materials 44:743–50. doi:10.1016/j.conbuildmat.2013.03.075.
  • Ahmed, I. M., A. A. Nayl, and J. A. Daoud. 2016. Leaching and recovery of zinc and copper from brass slag by sulfuric acid. Journal of the Saudi Chemical Society 20:S280–S285. doi:10.1016/j.jscs.2012.11.003.
  • Ai, C., Z. Yan, H. Chai, T. Gu, J. Wang, L. Chai, G. Qiu, and W. Zeng. 2019. Increased chalcopyrite bioleaching capabilities of extremely thermoacidophilic Metallosphaera sedula inocula by mixotrophic propagation. Journal of Industrial Biotechnology 46 (8):1113–27. doi:10.1007/s10295-019-02193-3.
  • Akbulut, M., T. J. Webster, P. D. Eason, Z. Cheng, and D. Singh. 2018. NSC Hydrometallurgical pressure oxidation of combined copper and molybdenum concentrates. Journal of Powder Metallurgy and Mining 2 (3):1000115 (10 pp.).
  • Alam, M. S., M. Tanaka, K. Koyama, T. Oishi, and J. C. Lee. 2007. Electrolyte purification in energy-saving monovalent electrowinning processes. Hydrometallurgy 87 (1–2):36–44. doi:10.1016/j.hydromet.2006.12.001.
  • Alcalde, J., U. Kelm, and D. Vergara. 2018. Historical assessment of metal recovery from old mine tailings; a study case for porphyry copper tailings, Chile. Minerals Processing 127:334–38.
  • Alexander, D., C. van der Merwe, R. Lumbule, and J. Kgomo. 2018. Innovative process design for copper-cobalt oxide ores in the Democratic Republic of Congo. Journal of the South African Institute of Mining and Metallurgy 118:1163–67.
  • Allanore, A. 2017. Electrochemical engineering for commodity metals extraction. Electrochemical Society Interface. Accessed February 13, 2020. www.electrochem.org.
  • Altikaya, P., J. Mäkinen, P. Kinnunen, E. Kolehmainen, M. Haapalainen, and M. Lundström. 2018. Effect of biological pretreatment on metal extraction from flotation tailings for chloride leaching. Minerals Engineering 129:47–53. doi:10.1016/j.mineng.2018.09.012.
  • Andersson, M., M. L. Söderman, and B. A. Sandén. 2017. Are metals in cars functionally recycled? Waste Management 60:407–16. doi:10.1016/j.wasman.2016.06.031.
  • Andersson, M., M. L. Söderman, and B. A. Sandén. 2019. Challenges of recycling multiple scarce metals. The case of Swedish ELV and WEEE recycling. Resources Policy 63 (10143):12pp. doi:10.1016/j.resourpol.2019.101403.
  • Araya, N., A. Kraslawski, and L. A. Cisternas. 2020. Towards mine tailings valorization: Recovery of critical materials from Chilean mine tailings. Journal of Cleaner Production 263 (121555):(10. doi:10.1016/j.jclepro.2020.121555.
  • Araya, N., Y. Ramírez, A. Kraslawski, and L. A. Cisternas. 2021. Feasibility of reprocessing mine tailings to obtain critical raw materials using real options analysis. Journal of Environmental Management 284:112060. (10 pp.). doi:10.1016/j.jenvman.2021.112060.
  • Ariizumi, M., M. Takagi, O. Inoue, and N. Oguma 2016. Integrated processing of e-scrap at Naoshima smelter and refinery. Proceedings Copper 2016. Kobe (Japan), November 13-16, 2016 6: RW 1-2.
  • Arroyo-Torralvo, E., A. Rodriguez-Almansa, I. Ruiz, I. Gonzalez, G. Rios, C. Fernandez-Pereira, and L. F. Vilches-Arenas. 2017. Optimizing operating conditions in anion-exchange column treatment applied to the removal of Sb and Bi impurities from an electrolyte of a copper electro-refining plant. Hydrometallurgy 171:285–97. doi:10.1016/j.hydromet.2017.06.009.
  • Arslan, B., M. B. A. Djamgoz, and E. Ukün. 2016. Arsenic: A review on exposure, pathways, accumulation and transmission into the human food chain. Reviews of Environmental Contamination and Toxicology 243:27–51.
  • Arslan, C., and F. Arslan. 2002. Recovery of copper, cobalt and zinc from copper smelter and converter slags. Hydrometallurgy 67 (1–3):1–7. doi:10.1016/S0304-386X(02)00139-1.
  • Asghari, M., F. Nakhaei, and O. VandGhorbany. 2018. Copper recovery improvement in an industrial flotation circuit: A case study of Sarcheshmeh copper mine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41:761–78. doi:10.1080/15567036.2018.1520356.
  • Aurubis. 2017. Environmental protection in the Aurubis Group. Environmental Statement 2017. Hamburg, Germany. Assessed December 20, 2019. www.aurubis.com.
  • Avarmaa, K., H. O’Brien, H. Johto, and P. Taskinen. 2015. Equilibrium distribution of precious metals between slag and copper matte at 1250–1350 °C. Journal of Sustainable Metallurgy 1 (3):216–28. doi:10.1007/s40831-015-0020-x.
  • Avarmaa, K., L. Klemettinen, H. O’Brien, and P. Taskinen. 2019. Urban mining of precious metals via oxidizing copper smelting. Minerals Engineering 133:95–102. doi:10.1016/j.mineng.2019.01.006.
  • Ayres, R. U., L. W. Ayres, and I. Rade. 2002. The life cycle of copper, its coproducts and by-products. INSEAD (Fontainebleau, France): International Institute for Environment and Development & Chalmers University (Gothenburg Sweden).
  • Bakalarz, A. 2019. Chemical and mineral analysis of flotation tailings from stratiform copper ore from Lubin concentrator plant (SW Poland). Minerals Processing and Extractive Metallurgy Review 40 (6):437–46. doi:10.1080/08827508.2019.1667778.
  • Bakhtiari, F., H. Atashi, M. Zivdar, S. Seyedbagheri, and M. H. Fazaelipoor. 2011. Bioleaching kinetics of copper from copper smelting dust. Journal of Industrial Engineering and Chemistry 17 (1):29–35. doi:10.1016/j.jiec.2010.10.005.
  • Banza, A. N., E. Gock, and K. Kongolo. 2001. Base metals recovery from copper smelter slag by oxidising leaching and solvent extraction. Hydrometallurgy 67:63–69. doi:10.1016/S0304-386X(02)00138-X.
  • Batterham, R. J. 2013. Major trends in the mineral processing industry. BHM 158 (2):42–46.
  • Bellemans, I., E. De Wilde, N. Moelans, and K. Verbeken. 2018. Metal losses in pyrometallurgical operations. Advances in Colloid and Interface Science 255:47–63. doi:10.1016/j.cis.2017.08.001.
  • Bidini, G., F. Fantozzi, P. Bartocci, B. D’Alleandro, M. D’Amico, P. Laranci, F. Scozza, and M. Zaragoli. 2015. Recovery of precious metals from scrap printed circuit boards through pyrolysis. Journal of Analytical and Applied Pyrolysis 111:140–42. doi:10.1016/j.jaap.2014.11.020.
  • Bigum, M., L. Brogaard, and T. H. Christensen. 2012. Metal recovery from high grade WEEE: A life cycle assessment. Journal of Hazardous Materials 207-208:8–14. doi:10.1016/j.jhazmat.2011.10.001.
  • Binnemans, K., and P. T. Jones. 2017. Solvometallurgy: An emerging branch of extractive metallurgy. Journal of Sustainable Metallurgy 3 (3):570–300. doi:10.1007/s40831-017-0128-2.
  • Boisvert, J. B., M. E. Rossi, K. Ehrig, and C. V. Deutsch. 2013. Geometallurgical modelling at Olympic Dam Mine, South Australia. Mathematical Geosciences 45 (8):901–25. doi:10.1007/s11004-013-9462-5.
  • Boliden. 2017. Metals for sustainable value creation. GRI report, Stockholm p. 24. Accessed December 14, 2019. www.boliden.com.
  • Botelho, A. B., Jr., D. B. Dreisinger, and D. C. R. Espinosa. 2019. A review of nickel, copper and cobalt recovery by chelating ion exchange resins from mining processes and mining tailings. Mining, Metallurgy & Exploration 36 (1):199–213. doi:10.1007/s42461-018-0016-8.
  • Brest, K. K., M. M. Henock, N. Guellord, M. Kimpiab, and K. E. Kapiamba. 2021. Statistical investigation on flotation parameters for copper recovery from sulfide flotation tailings. Results in Engineering 9:100207. (5 pp.). doi:10.1016/j.rineng.2021.100207.
  • Brito, C., and M. Wyart. 2006. On the rigidity of a hard sphere glass near random close packing. Europhysics Letters 76 (1):149–55. doi:10.1209/epl/i2006-10238-x.
  • Buechler, D. T., N. N. Zyaykina, C. A. Spencer, E. Lawson, N. M. Ploss, and I. Hua. 2020. Comprehensive element analysis of consumer electronic devices: Rare earth, precious and critical elements. Waste Management 103:67–75. doi:10.1016/j.wasman.2019.12.014.
  • Caplan, M., J. Trouba, C. Anderson, and C. Wang. 2021. Hydrometallurgical leaching of copper flash furnace electrostatic precipitator dust for the separation of copper from bismuth and arsenic. Metals 4:371 (18pp.).
  • Carranza, F., N. Iglesias, A. Mazuelos, R. Romero, and O. Forcat. 2009. Ferric leaching of copper slag flotation tailings. Minerals Engineering 22 (1):107–10. doi:10.1016/j.mineng.2008.04.010.
  • Casarin, A. A., S. C. Lazzarini, and R. S. Vassolo. 2020. The forgotten competitive arena: Strategy in the natural resources industry. Academy of Management Perspectives 34 (3):378–99. doi:10.5465/amp.2017.0158.
  • Catinean, A., L. Dascalescu, M. Lungu, L. M. Dumitran, and A. Samuila. 2021. Improving the recovery of Cu from electric cable waste derived from automotive industry by corona-electrostatic separation. Particulate Science and Technology 39 (4):449–56. doi:10.1080/02726351.2020.1756545.
  • Cesaro, A., A. Marra, K. Kuchta, V. Belgiorno, and E. D. van Hullebusch. 2018. WEEE management in a circular economy perspective: An overview. Global NEST Journal 20:743–50.
  • Chancerel, P., C. E. M. Meskers, C. Hagelüken, and V. S. Rotter. 2009. Assessment of precious metal flows during preprocessing of waste electrical and electronic equipment. Journal of Industrial Ecology 13 (5):791–810. doi:10.1111/j.1530-9290.2009.00171.x.
  • Charles, R. G., T. Douglas, M. Dowling, G. Liversage, and M. L. Davies. 2020. Towards increased recovery of critical raw materials from WEEE- evaluations of CRMs at component level and pre-processing methods for interface optimisation with recovery processes. Resources Conservation and Recycling 161:104923. (21 pp.). doi:10.1016/j.resconrec.2020.104923.
  • Chen, C., L. Zhang, and S. Jahanshahi 2013. Application of MPE model to direct-to-blister flash smelting and deportment of minor elements. Proceedings of Copper 2013, Santiago, Chile, 857–71.
  • Chen, C., L. Zhang, S. Wright, and S. Jahanshai. 2006. Thermodynamic modelling of minor elements in copper smelting process. Advanced Processing of Metals and Materials. Thermo and Physicochemical Principles 1:335–48.
  • Chen, C., and S. Wright. 2016. Distribution of Bi between slags and liquid copper. Metallurgy and Materials Transactions B 47 (3):1681–89. doi:10.1007/s11663-016-0610-4.
  • Chen, J., and S. J. Bull. 2008. The investigation of creep of electroplated Si and Ni-Sn coating on copper at room temperature by nanoindentation. Surface & Coatings Technology 203 (12):1609–17. doi:10.1016/j.surfcoat.2008.12.007.
  • Chen, T., C. Lei, B. Yan, and X. Xiao. 2014. Metal recovery from copper sulfide tailing with leaching and fractional precipitation technology. Hydrometallurgy 147-148:178–82. doi:10.1016/j.hydromet.2014.05.018.
  • Chen, Y., T. Liao, B. Chen, and X. Shi. 2012. Recovery of bismuth and arsenic from copper smelter flue dusts after copper and zinc extraction. Minerals Engineering 39:23–28. doi:10.1016/j.mineng.2012.06.008.
  • Chmielewski, A. G., D. Wawzczak, and M. Brykala. 2016. Possibility of uranium and rare metal recovery in the Polish copper mining industry. Hydrometallurgy 159:12–18. doi:10.1016/j.hydromet.2015.10.017.
  • Chun, T., C. Ning, H. Long, J. Li, and J. Yang. 2016. Mineralogical characterization of copper slag from Tongling Nonferrous Metals Group China. JOM 68 (9):2332–40. doi:10.1007/s11837-015-1752-6.
  • Clement, T. P., J. R. Wettlaufer, and A. Scott 1986. Process for treating speiss. United States Patent 4891061A.
  • Corin, K. C., M. Kalichini, C. T. O’Connor, and S. Simukanga. 2017. The recovery of oxide copper minerals from a complex copper ore by sulphidisation. Minerals Engineering 102:15–17. doi:10.1016/j.mineng.2016.11.011.
  • Coudert, L., R. Bondu, T. V. Rakotonimaro, E. Rosa, M. Guitonny, and C. M. Neculita. 2020. Treatment of As-rich mine effluents and produced residues stability: Current knowledge and research priorities for gold mining. Journal of Hazardous Materials 386:121920 (19 pp.). doi:10.1016/j.jhazmat.2019.121920.
  • Coursol, P., N. C. Valencia, P. Mackey, S. Bell, and B. Davis. 2012. Minimization of copper losses in copper smelting slag during electric furnace treatment. JOM 64 (11):1305–13. doi:10.1007/s11837-012-0454-6.
  • Crespo, J., M. Reich, F. Barra, J.J. Verdugo, and C. Martinez. 2018. Critical metal particles in copper sulfides from supergiant Rio Blanco porphyry Cu-Mo deposit, Chile. Minerals 8: 519 (13pp) doi:10.3390/min8110519
  • Cusano, G., M. R. Gonzalo, F. Farrell, R. Remus, S. Roudier, and L. D. Sancho 2017. Best Available Techniques (BAT) reference document for the non-ferrous metals industries. Report 28648 EN, Brussels: European Commission.
  • Daehn, K., and A. Allanore. 2020. Electrolytic production of copper from chalcopyrite. Current Opinion in Electrochemistry 22:110–19. doi:10.1016/j.coelec.2020.04.011.
  • Dhar, P., M. Thornhill, and H. R. Kota. 2019. Investigation of copper recovery from a new copper deposit (Nussir) in Northern Norway. Mineral Processing and Extractive Metallurgy Review 40 (6):380–89. doi:10.1080/08827508.2019.1635475.
  • Diaz, L. A., G. G. Clark, and T. E. Lister. 2017. Optimization of the electrochemical extraction and recovery of metals from electronic waste using response surface methodology. Industrial & Engineering Chemistry Research 56 (26):7516–24. doi:10.1021/acs.iecr.7b01009.
  • Ding, Y., S. Zhang, B. Liu, H. Zheng, C. Chang, and C. Ekberg. 2019. Recovery of precious metals from electronic waste and spent catalysts: A review. Resources Conservation and Recycling 141:284–98. doi:10.1016/j.resconrec.2018.10.041.
  • Domic, E. M. 2007. A review of the development and current status of copper bioleaching operations in Chile; 25 years of successful commercial implementation. In Biomining, ed. D. E. Rawlings and D. B. Johnson, 81–95. Berlin: Springer Verlag.
  • Dreisinger, D. B. 2015. New developments in the atmospheric and pressure leaching of copper ores and concentrates. Accessed November 15, 2019. www.convencionminera.com.
  • Dreisinger, D. B. 2016. Case study flowsheets: Copper-gold concentrate treatment. In Biotechnology of Metals: Principles, Recovery Methods and Environmental Concerns, ed. K. A. Natarajan, 803–20. Amsterdam: Elsevier.
  • Drobe, M., F. Haubrich, M. Gajardo, and H. Marbler. 2021. Processing tests, adjusted cost models and the economies of reprocessing copper mine tailings in Chile. Metals 11 (1):103 (21pp.). doi:10.3390/met11010103.
  • Du, B., J. Zhou, B. Lu, C. Zhang, D. Li, J. Zhou, S. Jiao, K. Zhao, and H. Zhang. 2020. Environmental and human health risks from cadmium exposure near an active lead-zinc mine and a copper smelter, China. Science of the Total Environment 720:137585. (9 pp.). doi:10.1016/j.scitotenv.2020.137585.
  • Duester, L., C. Brinkmann, T. A. Ternes, and P. Heininger. 2016. Commentary. Critical Reviews in Environmental Science and Technology 46 (4):434–37. doi:10.1080/10590501.2015.1131559.
  • Duester, L., D.-S. Wahrendorf, C. Brinkmann, A. Fabricius, B. Meermann, J. Pelzer, D. Ecker, M. Renner, H. Schmid, T. A. Ternes, et al. 2017. A framework to evaluate the impact of armourstones on the chemical quality of surface water. PLOS One 12 (1):e0168926 (12pp). doi:10.1371/journal.pone.0168926.
  • Dupont, D., and K. Binnemans. 2017. Preventing antimony from becoming the next rare earth. Recycling Today 1:18–20.
  • Dupont, D., S. Arnout, P. T. Jones, and K. Binnemans. 2016. Antimony recovery from end-of-life products and industrial process residues: A critical review. Journal of Sustainable Metallurgy 2 (1):9–103. doi:10.1007/s40831-016-0043-y.
  • Ebrahimpour, S., H. Abdollahi, M. Gharabaghi, Z. Manafi, and O. H. Tuovinen. 2021. Acid bioleaching of copper from smelter dust at incremental temperatures. Mineral Processing and Extractive Metallurgy Review (10 pp.). doi:10.1080/08827508.2021.1888726.
  • Engelsen, C. J., H. A. van der Sloot, and G. Petkovic. 2017. Long term leaching from recycled aggregates applied as sub-base materials in road construction. Science of the Total Environment 587-588:94–101. doi:10.1016/j.scitotenv.2017.02.052.
  • Falagán, C., B. M. Grail, and D. B. Johnson. 2017. New approaches for extracting and recovering metals from mine tailings. Minerals Engineering 106:71–78. doi:10.1016/j.mineng.2016.10.008.
  • Fizaine, F. 2020. The economics of the recycling rate. New insights from waste electrical and electronic equipment. Resources Policy 67:101675. (14 pp.). doi:10.1016/j.resourpol.2020.101675.
  • Flandinet, L., F. Tedjar, V. Ghetta, and J. Fouletier. 2012. Metals recovering from waste printed circuit boards (WPCBs) using molten salts. Journal of Hazardous Materials 213-214:485–90. doi:10.1016/j.jhazmat.2012.02.037.
  • Fomchenko, N., and M. Muravyov. 2020. Sequential bioleaching of pyritic tailings and ferric leaching of nonferrous slags for metal recovery from mining and metallurgical wastes. Minerals 10 (12):1097 (15 pp.). doi:10.3390/min10121097.
  • Forsén, O., J. Aromaa, and M. Lindström. 2017. Primary copper smelter and refinery as a recycling plant- a system integrated approach to estimate secondary raw material tolerance. Recycling 2 (4):19 (11 pp). doi:10.3390/recycling2040019.
  • Fröhlich, P., T. Lorenz, G. Martin, B. Brett, and M. Bertau. 2017. Valuable metals-recovery processes, current trends and recycling strategies. Angewandte Chemie International Edition 56 (10):2544–80. doi:10.1002/anie.201605417.
  • Fry, K. L., C. A. Wheeler, M. M. Gillings, A. R. Flegal, and M. P. Taylor. 2020. Anthropogenic contamination of residential environments from smelter As, Cu and Pb emissions: Implications for human health. Environmental Pollution 262 (114235):(11. doi:10.1016/j.envpol.2020.114235.
  • Gao, J., Z. Huang, Z. Wang, and Z. Guo. 2020. Recovery of crown zinc and metallic copper from copper smelter dust by evaporation, condensation and super gravity. Separation and Purification Technology 231 (115925):(8. doi:10.1016/j.seppur.2019.115925.
  • Gao, W., B. Xu, J. Yang, Y. Yang, Q. Li, B. Zhang, G. Liu, Y. Na, and T. Jang. 2021. Comprehensive recovery of valuable metals from copper smelting open-circuit dust with a clean and economical hydometallurgical process. Chemical Engineering Journal 124 (130411):(13.
  • Garza-Montes-de-Oca, N. F., N. A. Garcia-Gomez, J. Alvarez-Elcoro, and R. Colás. 2014. Surface degradation of nickel-plated brass fittings. Engineering Failure Analysis 36:314–21. doi:10.1016/j.engfailanal.2013.10.019.
  • Gentina, J. C., and F. Acevedo. 2016. Copper bioleaching in Chile. Minerals 6 (1):23 (9 pp.). doi:10.3390/min6010023.
  • Gertenbach, D. D. 2016. Scale up of pressure oxidation processes. Minerals and Metallurgical Processing 33 (4):178–86. doi:10.19150/mmp.6839.
  • Ghodrat, M., B. Samali, M. A. Rhamdhani, and G. Brooks. 2019. Thermodynamic-based exergy analysis of precious metal recovery out of printed circuit board through black copper smelting process. Energies 12 (7):1313 (20 pp). doi:10.3390/en12071313.
  • Ghodrat, M., M. A. Rhamdhani, G. Brooks, M. Rashidi, and B. Samali. 2017. A thermodynamic-based life cycle assessment of precious metal recycling out of waste printed circuit boards through secondary copper smelting. Environmental Development 24:36–49. doi:10.1016/j.envdev.2017.07.001.
  • Ghodrati, S., F. Fardis Nakhaei, O. VandGhorbany, and M. Hekmani. 2020. Modeling and optimization of chemical reagents to improve copper flotation performance using response surface methodology. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (13):1633–48. doi:10.1080/15567036.2019.1604874.
  • Ghorbani, Y., J. Franzidis, and J. Petersen. 2018. Heap leaching technology – Current state, innovations, and future directions: A review. Minerals Processing and Extractive Metallurgy Review 37:73–119.
  • Glencore. 2018. Who we are & recycling services FAQ. Accessed December 5, 2019. www.glencore.ca.
  • Glöser, S., M. Soulier, and L. A. T. Espinoza. 2013. Dynamic analysis of global copper flows: Global stocks, postconsumer material flows: Recycling indicators and uncertainty evaluation. Environmental Science & Technology 47 (12):6564–72. doi:10.1021/es400069b.
  • Gong, Y., M. Chen, Z. Wang, and J. Zhan. 2021. With or without deposit-refund system for a network platform-led electronic closed-loop supply system. Journal of Cleaner Production 231:125356. (14 pp). doi:10.1016/j.jclepro.2020.125356.
  • González, A., O. Font, N. Moreno, X. Querol, N. Arancibia, and R. Navia. 2017. Copper flash smelting flue dust as a source of germanium. Waste and Biomass Valorization 8 (6):2121–29. doi:10.1007/s12649-016-9725-8.
  • González-Castanedo, Y., T. Moreno, R. Fernández-Camcho, A. M. Sanchez De La Camp, A. Alastuey, X. Querol., and J. De La Rosa. 2014. Emitted smelter dusts with As, Cd and Pb represent a risk to human health. Atmospheric Environment 98:271–82. doi:10.1016/j.atmosenv.2014.08.057.
  • Gorman, M., and D. Dzombak. 2020. Stocks and flows of copper in the US; analysis of circularity 1970-2015. Resources Conservation and Recycling 153:104542. (15 pp.). doi:10.1016/j.resconrec.2019.104542.
  • Government of Canada. 2018. Accessed December 21, 2019. https://ec.gc.ca/plan2-p2plan/
  • Graedel, T. E., B. K. Reck, L. Ciacci, and F. Passarini. 2019. On the spatial dimension of the circular economy. Resources 8 (1):32 (10 pp.). doi:10.3390/resources8010032.
  • Green, C., J. Robertson, and J. O. Marsden. 2018. Pressure leaching of copper concentrates at Morenci, Arizona −10 years of experience. Minerals and Metallurgical Processing 35 (3):109–16. doi:10.19150/mmp.8459.
  • Gregurek, D., J. Schmidl, K. Reinharter, V. Reiter, and A. Spanring. 2018. Copper anode furnace: Chemical, mineralogical and thermochemical considerations of refractory wear mechanisms. JOM 70 (11):2428–34. doi:10.1007/s11837-018-3089-4.
  • Grudinsky, P. I., E. E. Zhiltsova, D. D. Grigorieva, and V. G. Dyubanov. 2021. Experimental study of the sulphatizing roasting of flotation tailings from copper slag processing using iron sulfates. IOP Conference Series of Earth and Environmental Science 666 (2):022046 (7 pp.). doi:10.1088/1755-1315/666/2/022046.
  • Grudinsky, P. I., V. G. Dyubanov, and P. A. Kozlov. 2018. Distillation of copper-smelting dusts with primary recovery of lead. Russian Metallurgy 1:7–13. doi:10.1134/S003602951801007X.
  • Grudinsky, P. I., V. G. Dyubanov, and P. A. Kozlov. 2019. Copper smelter dust is a promising material for the recovery of nonferrous metals by the Waelz process. Inorganic Materials: Applied Research 10 (2):496–501. doi:10.1134/S2075113319020175.
  • Gu, W., J. Bai, L. Lu, X. Zhuang, J. Zhao, W. Yuan, C. Zhang, and J. Wang. 2019. Improved bioleaching efficiency of metals from waste printed circuit boards by mechanical activation. Waste Management 98:21–28. doi:10.1016/j.wasman.2019.08.013.
  • Guarino, S., N. Ucciardello, S. Venettacci, and S. Genna. 2017. Life cycle assessment of new graphene-based electrodeposition process on copper components. Journal of Cleaner Production 165:520–29. doi:10.1016/j.jclepro.2017.07.168.
  • Guezennec, A., S. Hedrich, A. Schippers, A. Kamradt, S. Matys, R. Michels, C. Joulian, and F. Bodenan. 2017. Bioleaching in stirred tank reactors to process Kupferschiefer-type ore: Current status and perspectives. HAL: 16ème Congrès de la Societè Francaise de Gènie des Procèdès. Jul 2017. Nancy, France Hal Archives Ouvertes –01501238 (3 pp.).
  • Gunaratne, T., J. Krook, H. Andersson, and M. Eklund. 2020b. Guiding future research in the valorisation of shredder fine residues: A review of four decades of research. Detritus 9:150–64
  • Gunaratne, T., J. Krook, H. Andersson, and M. Eklund. 2020a. Potential valorisation of shredder fines: Towards integrated processes for material upgrading and resource recovery. Resources Conservation and Recycling 154:104590 (12 pp.). doi:10.1016/j.resconrec.2019.104590.
  • Guo, F., and G. P. Demopoulos. 2018. Development of an encapsulation process to extend the stability of scorodite under wider pH and redox potential range conditions. In Extraction 2018, The Minerals, Metals and Materials Series, ed. B. Davis, 1411–20. Cham: Springer Verlag.
  • Guo, Z., D. Zhu, J. Pan, T. Wu, and F. Zhang. 2016. Improving beneficiation of copper and iron from copper slag by modifying the molten copper slag. Metals 6 (86):(17. doi:10.3390/met6040086.
  • Guo, Z., D. Ziu, J. Pan, F. Zhang, and C. Yang. 2018. Industrial tests to modify copper slag for improvement of copper recovery. JOM 70 (4):533–38. doi:10.1007/s11837-017-2671-5.
  • Ha, T. K., B. H. Kwon, K. S. Park, and D. Mohapatra. 2015. Selective leaching and recovery of bismuth as Bi2O3 from copper smelter converter dust. Separation and Purification Technology 142:116–22. doi:10.1016/j.seppur.2015.01.004.
  • Hagelüken, C. 2006a. Improving metal returns and eco-efficiency in electronic recycling. Proceedings of the 2006 IEEE International Symposium on Electronics and the Environment, 218–23
  • Hagelüken, C. 2006b. Recycling of electronic scrap at Umicore’s integrated metals smelter and refinery. Erzmetall 59:152–61.
  • Hagelüken, C. 2015. Closing the loop for rare metals used in consumer products: Opportunities and challenges. Natural Resources Management and Policy 46:103–19.
  • Hagelüken, C., and C. W. Corti. 2010. Recycling gold from electronics: Cost effective use through ‘design for recycling´. Gold Bulletin 43 (3):209–20. doi:10.1007/BF03214988.
  • Hait, J., R. K. Jana, and S. K. Sanyal. 2009. Processing of copper electrorefining anode slime: A review. Minerals Processing and Extractive Metallurgy 118 (4):240–52. doi:10.1179/174328509X431463.
  • Halinen, A. 2015. Heap bioleaching of low-grade multimetal sulphidic ore in Boreal conditions. PhD thesis. Tampere University of Technology. Publication 1347
  • Han, F., F. Yu, and Z. Cui. 2016. Industrial metabolism of copper and sulfur in a copper-specific eco-industrial park in China. Journal of Cleaner Production 133:459–66. doi:10.1016/j.jclepro.2016.05.184.
  • Hao, X., Y. Liang, H. Yin, H. Liu, W. Zeng, and X. Liu. 2017. Thin-layer heap bioleaching of copper flotation tailings containing high levels of fine grains and microbial community analysis. International Journal of Minerals, Metallurgy and Materials 24 (4):360–68. doi:10.1007/s12613-017-1415-4.
  • Hawker, W., J. Vaughan, E. Jak, and P. C. Hayes. 2018. The synergistic copper process concept. Mineral Processing and Extractive Metallurgy 127 (4):210–20. doi:10.1080/03719553.2017.1375768.
  • He, R., S. Zhang, X. Zhang, Z. Zhang, Y. Zhao, and H. Ding. 2021. Copper slag: The leaching of heavy metals and its applicability as a supplementary cementitious material. Journal of Environment and Chemical Engineering 9 (2):105132 (12pp.). doi:10.1016/j.jece.2021.105132.
  • Hedjazi, F., and A. J. Monhemius. 2014. Copper-gold or processing with ion exchange and SART technology. Minerals Engineering 64:120–25. doi:10.1016/j.mineng.2014.05.025.
  • Hedrich, S., R. Kermer, T. Aubel, M. Martin, A. Schippers, D. B. Johnson, and E. Janneck. 2018. Implementation of biological and chemical techniques to recover metals from copper-rich leach solutions. Hydrometallurgy 179:274–81. doi:10.1016/j.hydromet.2018.06.012.
  • Henckens, M. L. C. M., and E. Worrell. 2020. Reviewing the availability of copper and nickel for future generations. The balance between production growth, sustainability and recycling rates. Journal of Cleaner Production 264:121460 (12 pp.). doi:10.1016/j.jclepro.2020.121460.
  • Holland, K., R. H. Eric, P. Taskinen, and A. Jokilaakso. 2019. Upgrading copper slag cleaning tailings for reuse. Minerals Engineering 133:35–42. doi:10.1016/j.mineng.2018.12.026.
  • Hosseinzadeh, M., A. Azizi, and A. Hassanzadeh. 2021. Solvent extraction and kinetic studies of copper from a heap leach liquor using CuPRO MEX-3302. Separation Science and Technology (18pp). doi:10.1080/01496395.2021.1922445.
  • Hubau, A., A. Guezennec, C. Joulian, C. Falagán, D. Dew, and K. A. Hudson-Edwards. 2020. Bioleaching to reprocess sulfidic polymetallic primary mining residues: Determination of metal leaching mechanisms. Hydrometallurgy 197:105484 (14 pp.). doi:10.1016/j.hydromet.2020.105484.
  • Hughes, S. 2000. Applying Ausmelt technology to recover Cu, Ni, and Co from slags. JOM 52 (8):30–33. doi:10.1007/s11837-000-0170-5.
  • Ibragimov, R. M., O. G. Bernayaev, S. A. Kazakov, and G. V. Skopov. 2019. Processing of the silver-zinc crust of the product of refining raw lead in a copper-smelting converter. Metallurgist 63 (5–6):529–33. doi:10.1007/s11015-019-00853-4.
  • ICSG (International Copper Study Group). 2016. The World Copper Factbook 2016. Lisbon, Portugal. Accessed May 10, 2019. www.icsg.org.
  • ICSG (International Copper Study Group). 2019. Copper market forecast 2019/2020. Lisbon, Portugal. Press release 23.10.2019.
  • Imamura, Y., K. Ikeda, J. Piao, and T. Takemoto 2015. Solder alloy, solder paste, and electronic circuit board. US Patent 9221132B2.
  • Ince, C., S. Derogar, K. Gurkaya, and R. J. Ball. 2020. Properties, durability and efficiency of cement and hydrated lime mortars reusing copper mine tailings of Lefke-Xeroos in Cyprus. Construction and Building Materials 268:121070 (17 pp.).
  • Ioannidou, D., G. Meylan, G. Sonnemann, and G. Habert. 2017. Is gravel becoming scarce? Evaluating the local criticality of construction materials. Resources Conservation and Recycling 126:25–33. doi:10.1016/j.resconrec.2017.07.016.
  • Isildar, A., E. R. Rene, E. D. van Hullebusch, and P. N. L. Lens. 2018. Electronic waste as a secondary source of critical materials: Management and recovery technologies. Resources Conservation and Recycling 136:296–314. doi:10.1016/j.resconrec.2017.07.031.
  • Izatt, R. M., S. R. Izatt, N. E. Izatt, K. E. Krakowiak, R. L. Bruening, and L. Navarro. 2015. Industrial applications of molecular recognition technology to separations of platinum group metals and selective removal of metal impurities from process streams. Green Chemistry 17 (4):2236–45. doi:10.1039/C4GC02188F.
  • Izatt, R. M., S. R. Izatt, R. L. Bruening, N. E. Izatt, and B. A. Moyer. 2014. Challenges to achievement of metal sustainability in our high-tech society. Chemical Society Reviews 43 (8):2451–75. doi:10.1039/C3CS60440C.
  • Jak, E., T. Hidayat, D. Shishin, P. J. Mackey, and P. C. Hayes. 2019. Modelling of liquid phases and metal distributions in copper converters: Transferring process fundamentals to plant practice. Minerals Processing and Extractive Metallurgy Review 128 (1–2):74–107. doi:10.1080/25726641.2018.1506273.
  • Jeon, S., M. Ito, C. B. Tabelin, K. Pongsumrankul, N. Kitajima, I. Park, and N. Hiroyoshi. 2018. Gold recovery from shredder light fraction E-waste recycling plant by flotation-ammonium thiosulfate leaching. Waste Management 77:195–202. doi:10.1016/j.wasman.2018.04.039.
  • Jian, S., W. Gao, Y. Lv, H. Tan, X. Li, B. Li, and W. Huang. 2020. Potential utilization of copper tailings in the preparation of low heat cement clinker. Construction and Building Materials 252 (119130):(9. doi:10.1016/j.conbuildmat.2020.119130.
  • Jin, W., M. Hu, and J. Hu. 2018. Selective and efficient electrochemical recovery of dilute copper and tellurium from acid chloride solutions. ACS Sustainable Chemistry & Engineering 6 (10):13378–84. doi:10.1021/acssuschemeng.8b03150.
  • Jolly, J. L. 2013. The US Copper-based scrap industry and its by-products. New York, USA: Copper Development Association Inc.
  • Jordao, H., A. J. Sousa, and M. T. Cavalho. 2016. Optimization of wet shaking table process using response surface methodology applied to the separation of copper and aluminum from the fine fraction of shredder ELVs. Waste Management 48:366–73. doi:10.1016/j.wasman.2015.10.006.
  • Jorjani, E., and A. Ghahreman. 2017. Challenges with elemental sulfur removal during the leaching of copper and zinc sulfdes, and from the residues; a review. Hydrometallurgy 171:333–43. doi:10.1016/j.hydromet.2017.06.011.
  • Kaksonen, A. H., S. Särjijävi, E. Peuraniemi, S. Junnikkala, J. A. Puhakka, and O. H. Tuovinen. 2017. Metal biorecovery in acid solutions from a copper smelter slag. Hydrometallurgy 168:135–40. doi:10.1016/j.hydromet.2016.08.014.
  • Kammel, R., M. Göktepe, and H. Oerlmann. 1987. Zinc electrowinning from flue dust at a secondary copper smelter and connected adhesion problems of the metal deposits. Hydrometallurgy 19 (1):11–24. doi:10.1016/0304-386X(87)90038-7.
  • Kanlayasiri, K., and T. Ariga. 2015. Physical properties of Sn58Bi-xNi lead-free solder and its interfacial reaction with copper substrate. Materials & Design 86:371–78. doi:10.1016/j.matdes.2015.07.108.
  • Karhu, M., J. Kotnis, Y. Yang, P. Mener, A. G. Uriarte, K. Kaunisto, E. Huttunen-Saarvita, E. Yli-Rantala, M. Karhu, L. S. Okvist, et al. 2018. Circular economy and zero waste aspects and business models of production. Solutions for Critical Raw Materials, 206 pp. Brussels: European Union.
  • Karpagavalli, R., and R. Balasubramaniam. 2007. Development of novel brasses to resist dezincification. Corrosion Science 49 (3):963–79. doi:10.1016/j.corsci.2006.06.024.
  • Katwika, C., M. Kime, P. N. M. Kalenga, B. I. Mbuya, and T. R. Mwilen. 2019. Application of Knelson concentrator for beneficiation of copper-cobalt ore tailings. Minerals Processing and Extractive Metallurgy Review 40 (1):35–45. doi:10.1080/08827508.2018.1481057.
  • Kawasaki, M. 2014. Innovative system for e-scrap treatment at Naoshima smelter and refinery. presented at Workshop 2014 of the Asian network for prevention of illegal transboundary movement of hazardous wastes. Accessed April 3, 2019. https://www.env.gov.jp/.
  • Kaya, M. 2016. Recovery of metals from electronic waste by physical and chemical recycling processes. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering 10:232–43.
  • Ke, P., K. Song, and Z. Liu. 2018. Encapsulation of scorodite using crystalline polyferric sulphate precipitated from SO42–O2-H2O system. Hydrometallurgy 180:78–87. doi:10.1016/j.hydromet.2018.07.011.
  • Ke, P., and Z. Liu. 2018. Fe (III)-As(V) precipitates obtained from a sulfate system and their leach stability. Canadian Metallurgical Quarterly 57 (3):304–11. doi:10.1080/00084433.2018.1460441.
  • Khalid, M. K., J. Hamuyuni, V. Agarwal, J. Pihlasalo, M. Haapalainen, and M. Lundström. 2019. Sulfuric acid leaching for capturing value from copper-rich converter slag. Journal of Cleaner Production 215:1005–13. doi:10.1016/j.jclepro.2019.01.083.
  • Khaliq, A., M. A. Rhadhani, G. Brooks, and S. Masood. 2014. Metal extraction processes for electronic waste and existing industrial routes: A review and Australian perspective. Resources 3 (1):153–79. doi:10.3390/resources3010152.
  • Khanna, R., G. Ellamparuthy, B. Cayumil, S. K. Mishra, and P. S. Mukherjee. 2018. Concentration of rare earth elements during high temperature pyrolysis of waste printed circuit boards. Waste Management 78:602–10. doi:10.1016/j.wasman.2018.06.041.
  • Kim, J. W., A. S. Lee, S. Yu, and J. W. Han. 2018. En masse pyrolysis of flexible printed circuit board wastes quantitatively yielding environmental resources. Journal of Hazardous Materials 342:51–57. doi:10.1016/j.jhazmat.2017.08.010.
  • Kimball, B. E., A. L. Forster, R. R. Seal, N. M. Piatak, S. M. Webb, and J. M. Hammarstrom. 2016. Copper speciation in variably toxic sediments at the Ely copper mine, Vermont, USA. Environmental Science & Technology 50 (3):1126–36. doi:10.1021/acs.est.5b04081.
  • Kinnunen, P., J. Mäkinen, M. Salo, R. Soth, and K. Komnitsas. 2020. Efficiency of chemical and biological leaching for the recovery of metals and valorisation of the leach residue as raw material in cement production. Minerals 10 (8):654 (19 pp.). doi:10.3390/min10080654.
  • Klaffenbach, E., S. Mostaghel, M. Guo, and B. Blanpain. 2021. Thermodynamic analysis of copper smelting, considering the impact of minor elements behavior on slag application options and Cu recovery. Journal of Sustainable Metallurgy (20 pp.). doi:10.1007/s40831-021-00345-2.
  • Knapp, F. L. 2018. The birth of the flexible mine: Changing geographies of mining and e-waste commodity frontier. Environmental Planning A 48:1885–909.
  • Kodier, A., K. Williams, and N. Dallison. 2018. Challenges around automobile shredder residue production and disposal. Waste Management 73:566–73. doi:10.1016/j.wasman.2017.05.008.
  • Komnitsas, K., E. Petrakis, G. Bartzas, and V. Karnali. 2019. Column leaching of low-grade saprolitic laterites and valorization of leaching residues. Science of the Total Environment 665:347–57. doi:10.1016/j.scitotenv.2019.01.381.
  • Komnitsas, K., G. Bartzas, V. Karnali, and E. Petrakis. 2021. Factors affecting alkali activation of laterite acid leaching residues. Environments 8 (4):(21. doi:10.3390/environments8010004.
  • Kondriat´eva, T. F., T. A. Pivovarova, A. G. Bulaev, V. S. Melamud, A. Muravyov, and E. A. Vasil´ev. 2012. Percolation bioleaching of copper and zinc and gold from flotation tailings of the sulfide complex ores of the Ural region, Russia. Hydrometallurgy 111-112:81–86.
  • Kosson, D. S., H. A. van der Sloot, F. Sanchez, and A. C. Garrabrants. 2004. An integrated framework for evaluating leaching in waste management and utilization of secondary materials. Environmental Engineering Science 19 (3):159–204. doi:10.1089/109287502760079188.
  • Kotarski, J., J. Stec, T. Niemiec, J. Czernecki, and R. Parjsnar. 1999. Progress in processing of lead bearing materials from Polish copper smelters. Erzmetall 52:49–54.
  • Krishnamoorthy, S., G. Ramakrishnan, and B. Dhandopani. 2021. Recovery of valuable metals from waste printed circuit boards using organic acids synthesised by Aspergillus niveus. IET Nanotechnology 15 (2):212–20. doi:10.1049/nbt2.12001.
  • Kubissa, W., R. Jaskulski, D. Gil, and I. Wilinska. 2020. Holistic analysis of waste copper slag-based concrete by means of EIPI method. Buildings 10 (1):(14.
  • Kumar, A., H. S. Sain, and S. Kumar. 2018. Bioleaching of gold and silver from waste printed circuit boards by Pseudomonas balearica SAE1 isolated from an e-waste recycling facility. Current Microbiology 75 (2):194–201. doi:10.1007/s00284-017-1365-0.
  • L. Liu, and G.A.Keoleian 2020. LCA of rare earth and critical metal recovery and replacement decisons for commercial lighting waste management. Resources, Conservation and Recycling 159: 104846 (12pp) doi:10.1016/j.resconrec.2020.104846
  • Lagno, F., S. D. F. Rocha, S. Chryssoulos, and G. F. Demopoulos. 2010. Scorodite encapsulation by controlled deposition of aluminum phosphate coating. Journal of Hazardous Materials 181 (1–3):526–34. doi:10.1016/j.jhazmat.2010.05.046.
  • Lagos, G., D. Peters, A. Videla, and J. J. Jara. 2018. The effect of mine aging on the evolution of environmental footprint indicators in Chilean copper mining industry 2001-2005. Journal of Cleaner Production 174:389–400. doi:10.1016/j.jclepro.2017.10.290.
  • Lam, E. J., V. Zetola, Y. Ramirez, I. L. Montofré, and F. Perreira. 2020. Making paving stones from copper mine tailings as aggregates. International Journal of Environmental Research and Public Health 17 (7):2448 (14 pp.). doi:10.3390/ijerph17072448.
  • Lane, D. J., N. J. Cook, S. R. Grano, and K. Ehrig. 2016. Selective leaching of penalty elements from copper concentrates. A review. Minerals Egineering 98:110–21. doi:10.1016/j.mineng.2016.08.006.
  • Langmuir, D., J. Mahoney, and J. Rowson. 2006. Stability of amorphous ferric arsenate and crystalline scorodite (FeAsO4.2H2O) and their application to arsenic behavior in buried mine tailings. Geochimica et Cosmochimica Acta 70 (12):2942–56. doi:10.1016/j.gca.2006.03.006.
  • Lasheen, T. A., M. E. El-Ahmadi, H. B. Hassib, and A. S. Helal. 2015. Molybdenum metallurgy review: Hydrometallurgical routes to recovery of molybdenum from ores and mineral raw materials. Minerals Processing and Extractive Metallurgy Review 36 (3):145–73. doi:10.1080/08827508.2013.868347.
  • Laws, K. J., C. Crosby, A. Sridhar, P. Conway, L. S. Koloadin, M. Zhao, S. Aron-Dire, and L. C. Bossman. 2015. High entropy brasses and bronzes – Microstructure, phase evolution and properties. Journal of Alloys and Compounds 650:949–61. doi:10.1016/j.jallcom.2015.07.285.
  • Lee, D. 2018. Experimental investigation of laser ablation characteristics on nickel-coated beryllium-copper. Metals 8 (4):211 (14 pp.). doi:10.3390/met8040211.
  • Leetma, K., F. Guo, L. Becze, M. A. Gomez, and G. P. Demopoulos. 2016. Stabilization of iron arsenate solids by encapsulation with aluminum hydroxyl gels. Journal of Chemical Technology and Biotechnology 91 (2):408–15. doi:10.1002/jctb.4590.
  • Lennartsson, A., F. Engström, C. Samuelsson, B. Björkman, and J. Petersson. 2018. Large-scale WEEE recycling integrated in an ore-based Cu extraction system. Journal of Sustainable Metallurgy 4 (2):222–32. doi:10.1007/s40831-018-0157-5.
  • Lewis, G., S. Gaydardzhiev, D. Bastin, and P. Bareel. 2011. Bio hydrometallurgical recovery of metals from fine shredder residues. Minerals Engineering 24 (11):1166–71. doi:10.1016/j.mineng.2011.03.025.
  • Li, D., X. Guo, Z. Xu, R. Xu, and Q. Feng. 2016. Metal values separation from residue generated in alkali fusion-leaching of copper anode slime. Hydrometallurgy 165:290–94. doi:10.1016/j.hydromet.2016.01.021.
  • Li, G., W. Weng, W. Weng, T. Zuo, T. Zuo, and T. Zuo. 2017b. Overview of recycling technology for copper containing cables. Resources Conservation and Recycling 126:132–40. doi:10.1016/j.resconrec.2017.07.024.
  • Li, H., J. Eksteen, and E. Oraby. 2018a. Hydrometallurgical recovery of metals from waste printed circuit board (WPCBs). Current status and perspectives - a review. Resources Conservation and Recycling 139:122–39. doi:10.1016/j.resconrec.2018.08.007.
  • Li, L., Z. Cao, H. Zhong, M. Wang, G. Liu, S. Wang, and X. Cao. 2013. The selective leaching and separation of molybdenum from complex molybdenite concentrate containing copper. Minerals Metallurgical Processing 30:233–37.
  • Li, X., H. Yang, Z. Jin, L. Tong, and F. Xiao. 2017a. Selenium leaching from copper anode slimes using a nitric acid-sulfuric acid mixture. Metallurgist 61 (3–4):348–56. doi:10.1007/s11015-017-0500-2.
  • Li, Y., S. Yang, C. Tang, Y. Chen, J. He, and M. Tang. 2018b. Reductive–sulfurizing treatment of smelter slag for copper and cobalt recovery. Journal of Mining and Metallurgy B 54 (1):73–79. doi:10.2298/JMMB160315049L.
  • Li, Y., X. Zhu, Y. Qi, B. Shu, X. Zhang, K. Li, Y. Wie, and H. Wang. 2020. Removal and immobilization of arsenic from copper smelter using copper slag by in situ encapsulation in silica gel. Chemical Engineering Journal 394:124833 (10 pp.). doi:10.1016/j.cej.2020.124833.
  • Li, Z., L. A. Diaz, Z. Yang, H. Jin, T. E. Lister, E. Vahidi, and F. Zhao. 2019. Comparative life cycle analysis for value recovery of precious metals and rare earth elements from electronic waste. Resources Conservation and Recycling 149:20–30. doi:10.1016/j.resconrec.2019.05.025.
  • Liu, K., J. Yang, H. Hou, S. Liang, Y. Chen, J. Wang, B. Liu, K. Xiao, J. Hu, and H. Deng. 2019. Facile and cost-effective approach for copper recovery from waste printed circuit boards via a sequential mechanochemical/leaching/recrystallization process. Environmental Science & Technology 53 (5):2748–57. doi:10.1021/acs.est.8b06081.
  • Liu, W., X. Fu, T. Yang, D. Zhang, and L. Chen. 2018. Oxidation leaching of copper smelting dust by controlling potential. Transactions of the Nonferrous Metals Society China 28 (9):1854–61. doi:10.1016/S1003-6326(18)64830-7.
  • Liu, W., Z. Yang, D. Zhang, D. Chen, and Y. Liu. 2014. Pretreatment of copper anode slime with alkaline pressure oxidative leaching. International Journal of Minerals Processing 128:48–54. doi:10.1016/j.minpro.2014.03.002.
  • Liu, X., X. Ke, H. Zhu, R. Chen, X. Chen, X. Zhang, S. Jin, and B. van der Bruggen. 2020. Treatment of raffinate generated via copper ore hydrometallurgical processing using bipolar membrane electrodialysis system. Chemical Engineering Journal 382:122956 (10 pp.). doi:10.1016/j.cej.2019.122956.
  • Liu, Y., M. Zhou, G. Zeng, X. Li, W. Xu, and T. Fan. 2007. Effect of solids concentration on the removal of heavy metals from mine tailings via bioleaching. Journal of Hazardous Materials 141 (1):202–08. doi:10.1016/j.jhazmat.2006.06.113.
  • Lu, D., Y. Chang, H. Yang, and F. Xie. 2015. Sequential removal of selenium and tellurium from copper anode slime with high nickel content. Transactions of the Nonferrous Metals Society China 25 (4):1307–14. doi:10.1016/S1003-6326(15)63729-3.
  • Lu, J., J. Xu, S. Kumagai, T. Kameda, Y. Saito, and T. Yashioka. 2019. Separation mechanism of polyvinylchloride and copper components from swollen electric cables by mechanical agitation. Waste Management 93:54–62. doi:10.1016/j.wasman.2019.05.024.
  • Lucheva, B., I. Iliev, and D. Kolev. 2017. Hydro-pyrometallurgical treatment of copper converter flue dust. Journal of Chemical Technology and Metallurgy 52:320–25.
  • Lutandula, M. S., and B. Maloba. 2013. Recovery of cobalt and copper through reprocessing of tailings from flotation of oxidised ore. Journal of Environmental Chemistry and Engineering 1 (4):1085–90. doi:10.1016/j.jece.2013.08.025.
  • Ma, L., X. Wang, X. Feng, Y. Liang, Y. Xiao, X. Han, H. Yin, H. Liu, and X. Liu. 2017. Co-culture microorganisms with different initial proportions reveal the mechanism of chalcopyrite bioleaching coupling with microbial community succession. Bioresource Technology 223:121–30. doi:10.1016/j.biortech.2016.10.056.
  • Ma, L., X. Wang, X. Liu, S. Wang, and H. Wang. 2018. Intensified bioleaching of chalcopyrite by communities with enriched ferrous or sulphur oxidizers. Bioresource Technology 268:415–24. doi:10.1016/j.biortech.2018.08.019.
  • Ma, Z., H. Yang, S. Huang, Y. Lu, and L. Xiong. 2015. Ultra-fast microwave-assisted leaching for the recovery of copper and tellurium from copper-anode slime. International Journal of Minerals, Metallurgy and Materials 22 (6):582–88. doi:10.1007/s12613-015-1110-2.
  • Mahmoud, A., P. Cezac, A. F. A. Hoadley, and F. Contamine. 2017. A review of sulfide minerals microbially assisted leaching in stirred tank reactor. International Biodeterioration Biodegradation 119:118–46.
  • Mäkinen, J., J. Bacher, T. Kaartinen, M. Wahlström, and J. Saklminen. 2015. The effect of flotation parameters for bioleaching of printed circuit boards. Minerals Engineering 75:26–31. doi:10.1016/j.mineng.2015.01.009.
  • Makuei, F. M., and G. Senanayake. 2018. Extraction of tellurium from lead and copper bearing feed materials and interim metallurgical product- a short review. Minerals Engineering 115:79–87. doi:10.1016/j.mineng.2017.10.013.
  • Manjarrez, L., and L. Zhang. 2018. Utilization of copper mine tailings as road base construction material through geopolymerization. Journal of Materials for Civil. Engineering 30 (9):04018201. doi:10.1061/(ASCE)M.T.1943-5533.00052397.
  • Manouchehri, H. B. 2018. Magnetic conditioning of sulfide minerals to improve recoveries of fines in flotation- a plant practice. Minerals Metallurgy Processing 36:46–54. doi:10.19150/mmp.8057.
  • Marra, A., A. Cesaro, E. R. Rene, V. Belgiorno, and P. N. L. Lens. 2018b. Bioleaching of metals from WEEE shredding dust. Journal of Environmental Management 210:180–90. doi:10.1016/j.jenvman.2017.12.066.
  • Marra, A., A. Cesaro, and V. Belgiorno. 2018a. Separation efficiency of valuable and critical metals in WEEE mechanical treatments. Journal of Cleaner Production 186:490–98. doi:10.1016/j.jclepro.2018.03.112.
  • Marshakov, I. K. 2005. Corrosion resistance in dezincing of brasses. Protection of Metals 41 (3):205–10. doi:10.1007/s11124-005-0031-2.
  • Miganei, L., E. Gock, M. Achimovicova, L. Koch, H. Zobel, and J. Kähler. 2017. New residue-free processing of copper slag from smelter. Journal of Cleaner Production 164:534–42. doi:10.1016/j.jclepro.2017.06.209.
  • Mikoda, B., A. Potysz, and E. Kmiecik. 2019b. Bacterial leaching of critical metal values from Polish copper metallurgical slags using Acidithiobacillus thiooxidans. Journal of Environmental Management 236:436–45. doi:10.1016/j.jenvman.2019.02.032.
  • Mikoda, B., H. Kucha, A. Potysz, and E. Kmiecik. 2019a. Metallurgical slags from Cu production and Pb recovery in Poland - their environmental stability and resource potential. Applied Geochemistry 101:63–74.
  • Mikula, K., G. Izydorczyk, D. Skzypzak, K. Moustakas, A. Wirtek-Kowiak, and K. Chojnacka. 2021. Value-added strategies for the sustainable handling, disposal or value-added use of copper smelter and refinery wastes. Journal of Hazardous Materials 403:123602 (13 pp.). doi:10.1016/j.jhazmat.2020.123602.
  • Mitiadis, S. K., I. Giannopoulou, M. F. M. Tatur, M. F. Hashin, and D. Padias. 2020. Upgrading copper slags to added value fire resistant geopolymers. Waste and Biomass Valorization 11 (7):3811–20. doi:10.1007/s12649-019-00666-1.
  • Mitsune, Y., and S. Satoh. 2007. Lead smelting and refining at Kosaka smelter. Journal of MMIJ 123 (12):630–33. doi:10.2473/journalofmmij.123.630.
  • Moats, M., L. Alagha, and K. Awuah-Offei. 2021. Towards resilient and sustainable supply of critical elements from copper supply chain. Journal of Cleaner Production 307:127207 (14 pp.). doi:10.1016/j.jclepro.2021.127207.
  • Mokmeli, M., D. Dreisinger, and B. Wassink. 2015. Modeling of selenium and tellurium removal from copper electrowinning solution. Hydrometallurgy 53:12–20. doi:10.1016/j.hydromet.2015.01.007.
  • Moldabayeva, G. Z., S. K. Akilbekova, K. K. Mamyrbayeva, and B. Mishra. 2015. Electrosmelting of lead-containing dusts from copper smelters. Journal of Sustainable Metallurgy 1 (4):286–96. doi:10.1007/s40831-015-0025-5.
  • Montenegro, V., H. Sano, and T. Fujisawa. 2013. Recirculation of high arsenic content copper smelting dust to smelting and converting processes. Minerals Engineering 48:184–89. doi:10.1016/j.mineng.2010.03.020.
  • Morales, A., M. Cruells, A. Roc, and R. Bergo. 2010. Treatment of flash smelter flue dusts for copper and zinc extraction and arsenic stabilization. Hydrometallurgy 105 (1–2):148–54. doi:10.1016/j.hydromet.2010.09.001.
  • Mudd, G. M., S. M. Jowitt, and T. T. Werner. 2017. The world’s by-product and critical metal resources part I: Uncertainties, current reporting practices, implications and grounds for optimism. Ore Geology Reviews 86:924–38. doi:10.1016/j.oregeorev.2016.05.001.
  • Mudd, G. M., Z. Weng, and S. M. Jowitt. 2013a. A detailed assessment of global Cu reserve and resource trends and worldwide Cu endowments. Economic Geology 108 (5):1163–83. doi:10.2113/econgeo.108.5.1163.
  • Mudd, G. M., Z. Weng, S. M. Jowitt, J. D. Turnbull, and T. E. Graedel. 2013b. Quantifying the recoverable resources of by-product metals: The case of cobalt. Ore Geology Reviews 55:87–98. doi:10.1016/j.oregeorev.2013.04.010.
  • Mudhoo, A., S. K. Sharma, V. K. Garg, and C. Tseng. 2011. Arsenic: An overview of applications, health and environmental concerns and removal processes. Critical Reviews in Environmental Science and Technology 41 (5):435–519. doi:10.1080/10643380902945771.
  • Murani, K., R. Siddique, and K. K. Jain. 2015. Use of copper slag: A sustainable material. Journal of Material Cycles and Waste Management 17 (1):13–26. doi:10.1007/s10163-014-0254-x.
  • Muravyov, M. I., N. V. Fomchenko, A. V. Usoltsev, E. A. Vasilyev, and T. F. Kondrat’eva. 2012. Leaching of copper and zinc from copper converter flotation tailings using H2SO4 and biologically generated Fe2(SO4)3. Hydrometallurgy 119-120:40–46. doi:10.1016/j.hydromet.2012.03.001.
  • Muruchi, L., N. Schaeffer, H. Passos, C. M. N. Mendonca, J. A. P. Coutinho, and Y. P. Jimenez. 2019. Sustainable extraction and separation of rhenium from model copper mining effluents using a polymeric aqueous two-phase system. ACS Sustainable Chemistry & Engineering 7 (1):1178–785. doi:10.1021/acssuschemeng.8b05759.
  • Nagel, N. 2018. Beryllium and copper-beryllium alloys. ChemBioEng Reviews 3:30–33. doi:10.1002/cben.201700016.
  • Nakajima, K., O. Takeda, T. Miki, K. Matsubae, and T. Nagasaka. 2011. Thermodynamic analysis for the controllability of elements in the recycling process of metals. Environmental Science & Technology 45 (11):4929–36. doi:10.1021/es104231n.
  • Navazo, J. M. V., G. Villalba Mendez, and L. Talens Peiro. 2014. Material flow and energy requirements of mobile phone material recovery processes. International Journal of Life Cycle Assessment 19 (3):567–79. doi:10.1007/s11367-013-0653-6.
  • Nazari, A. M., R. Radzinski, and A. Ghahreman. 2017. Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic. Hydrometallurgy 174:258–81.
  • Nekouei, R. K., F. Pahlevani, R. Rajarao, R. Gohmohammadzadeh, and V. Sahajwalla. 2018. Two-step pre-processing enrichment of waste printed circuit boards: Mechanical milling and physical separation. Journal of Cleaner Production 184:1113–24. doi:10.1016/j.jclepro.2018.02.250.
  • Noor, E. E. M., H. Zuhallawati, and O. Radzali. 2016. Low temperature In-Bi-Zn solder alloy on copper substrate. Journal of Materials Science and Materials Electronics 27 (2):1408–15. doi:10.1007/s10854-015-3904-4.
  • Norgate, T., and S. Jahanshahi. 2010. Low grade ores –smelt, leach or concentrate?”. Minerals Engineering 23 (2):65–73. doi:10.1016/j.mineng.2009.10.002.
  • Okanigbe, D. O., A. P. I. Popoola, A. A. Adeleke, I. O. Otunniyi, and O. M. Popoola. 2019. Investigating impact of pretreating a waste copper smelter dust for likely higher recovery of copper. Procedia Manufacturing 35:430–35. doi:10.1016/j.promfg.2019.05.062.
  • Okibe, N., M. Koga, S. Morishita, M. Tanaka, S. Heguri, S. Asano, K. Sasaki, and T. Hirajima. 2014. Microbial formation of crystalline scorodite for the treatment of As(III)-bearing copper refinery process solution using Acidianus brierleyi. Hydrometallurgy 143:34–41. doi:10.1016/j.hydromet.2014.01.008.
  • Olvera, B. C. 2021. Innovation in mining: What are the challenges and opportunities along the value chain for Latin American suppliers? Mineral Economics (18 pp.). doi:10.1007/s13563-021-00251-w.
  • Orrego, P., J. Hernández, and A. Reyes. 2019. Uranium and molybdenum recovery from copper leaching solutions using ion exchange. Hydrometallurgy 184:116–22. doi:10.1016/j.hydromet.2018.12.021.
  • Ozberk, E., W. A. Jankola, M. Vecchiarelli, and B. D. Krysa. 1995. Commercial operations of the Sherritt zinc pressure leach process. Hydrometallurgy 39 (1–3):49–52. doi:10.1016/0304-386X(95)00047-K.
  • Paktunc, D., and K. Bruggeman. 2010. Solubility of nanocrystalline scorodite and amorphous ferric arsenate for stabilization of arsenic in mine wastes. Applied Geochemistry 25 (5):674–83. doi:10.1016/j.apgeochem.2010.01.021.
  • Panda, R., P. R. Jadhao, K. K. Pani, S. N. Naik, and T. Bhaskar. 2020. Eco-friendly recovery of metals from waste mobile printed circuit boards using low temperature roasting after pyrolysis. Journal of Hazardous Materials 395:122642 (11 pp.). doi:10.1016/j.jhazmat.2020.122642.
  • Panda, S., G. Mishra, C. K. Sarangi, K. Sanjay, T. Subbaiah, S. K. Das, K. Sarangi, M. K. Ghosh, N. Pradhan, and B. K. Mishra. 2016. Reactor and column leaching studies for extraction of copper from two low grade resources. A comparative study. Hydrometallurgy 165:111–17. doi:10.1016/j.hydromet.2015.10.005.
  • Papassiopi, N., K. Vaxevanidou, and J. Paspaliaris. 2003. Investigating the use of iron reducing bacteria for the removal of arsenic from contaminated soils. Water, Air, and Soil Pollution 3 (3):81–90. doi:10.1023/A:1023905128860.
  • Parajuly, K., K. Thapa, C. Cimpan, and H. Wenzel. 2018. Electronic waste and informal recycling in Kathmandu, Nepal: Challenges and opportunities. Journal of Material Cycles and Waste Management 20 (1):656–66. doi:10.1007/s10163-017-0610-8.
  • Parviainen, A., F. Soio, and M. A. Caraballo. 2020. Revalorization of Haveri Au-Cu mine tailings (SWE Finland) for potential reprocessing. Journal of Geochemical Exploration 218:106614 (9 pp.). doi:10.1016/j.gexplo.2020.106614.
  • Paz-Gómez, D. C., S. M. Pérez-Moreno, I. Ruiz-Oria, G. Rios, and J. P. Bolivar. 2020. Characterization of two sludges from a pyrometallurgical copper smelting complex for designing a Pb and Se recovery proposal. Waste and Biomass Valorization 12 (5):2739–55. doi:10.1007/s12649-020-01197-w.
  • Pazik, P. M., T. Chmielewski, H. J. Glass, and P. B. Kowalczuk. 2016. World production and possible recovery of cobalt from the Kupferschiefer stratiform copper ore. E3S Web of Conferences 8:01063 (9 pp.). doi:10.1051/e3sconf/20160801063.
  • Perez-Moreno, S. M., M. J. Gasquez, I. Ruiz-Oria, G. Rios, and J. P. Bolivar. 2018. Diagnose for valorisation of reprocessed slag cleaning furnace flue dust from copper smelting. Journal of Cleaner Production 194:383–95. doi:10.1016/j.jclepro.2018.05.090.
  • Petersen, J. 2016. Heap leaching as a key technology for recovery of values from low grade ores – A brief overview. Hydrometallurgy 165:201–12. doi:10.1016/j.hydromet.2015.09.001.
  • Potysz, A., E. D. van Hullebusch, and J. Kierczak. 2018. Perspective regarding use of metallurgical slags as secondary metal resource. A review of bioleaching approaches. Journal of Environmental Management 219:128–52. doi:10.1016/j.jenvman.2018.04.083.
  • Potysz, A., E. D. van Hullebusch, J. Kierczak, M. Grybos, P. N. L. Leens, and G. Guibaud. 2015. Copper metallurgical slags- current knowledge and fate: A review. Critical Reviews in Environmental Science and Technology 45 (22):2423–88. doi:10.1080/10643389.2015.1046769.
  • Potysz, A., E. D. van Hullebusch, J. Kierczak, M. Grybos, P. N. L. Leens, and G. Guibaud. 2016. Response to comment on “Copper metallurgical slags- current knowledge and fate: A review. Critical Reviews in Environmental Science and Technology 46:438–40. doi:10.1080/10643389.2015.1131560.
  • Potysz, A., and J. Kierczak. 2019. Prospective (bio)leaching of historical copper slags as an alternative to their disposal. Minerals 9 (9):542 (24 pp.). doi:10.3390/min9090542.
  • Pradhan, D., D. J. Kim, L. B. Sukla, A. Pattanaik, and D. P. K. Samal. 2019. Bacterial leaching of chalcopyrite concentrates using Acidithiobacillus ferrooxidans. Inglomayor C 16:1–9.
  • Prem, P. R., M. Verma, and P. S. Ambily. 2018. Sustainable cleaner production of concrete with high volume copper slag. Journal of Cleaner Production 173:43–58. doi:10.1016/j.jclepro.2018.04.245.
  • Priya, A., and S. Hait. 2017. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching. Environmental Science and Pollution Research 24 (8):6989–7008. doi:10.1007/s11356-016-8313-6.
  • Priya, A., and S. Hait. 2018a. Comprehensive characterization of printed circuit boards of various end-of-life electrical and electronic equipment for beneficiation investigation. Waste Management 75:103–23. doi:10.1016/j.wasman.2018.02.014.
  • Priya, A., and S. Hait. 2018b. Extraction of metals from high grade waste printed circuit board by conventional and hybrid bioleaching using Acidithiobacillus ferrooxidans. Hydrometallurgy 127:132–39. doi:10.1016/j.hydromet.2018.03.005.
  • Priya, J., N. S. Randhawa, J. Hait, N. Bordoloi, and J. N. Patel. 2020. High purity copper recycled from smelter dust by sulfation roasting, water leaching and electrorefining. Environmental Chemistry Letters 18 (6):2133–39. doi:10.1007/s10311-020-01047-0.
  • Randive, K., and S. Jawadand. 2019. Strategic minerals in India: Present status and future challenges. Mineral Economics 32 (3):337–52. doi:10.1007/s13563-019-00189-0.
  • Raposeiras, A. C., D. Movilla-Quesada, O. Munoz-Cáseres, V. Andrés-Valeri, and M. Lagos-Varas. 2021. Production of asphalt mixes with copper industry wastes: Use of copper slags as raw material replacement. Journal of Environmental Management 293:112867 (8 pp.). doi:10.1016/j.jenvman.2021.112867.
  • Reck, B. K., and T. E. Graedel. 2012. Challenges in metal recycling. Science 337 (6095):690–95. doi:10.1126/science.1217501.
  • Restrepo, E., A. Lovik, P. Wäger, R. Widmer, R. Lonka, and D. B. Müller. 2017. Stocks, flows and distribution of critical metals in embedded electronics in passenger vehicles. Environmental Science & Technology 51 (3):1129–39. doi:10.1021/acs.est.6b05743.
  • Reuter, M. A. 2016. Digitalizing the circular economy. Metallurgy and Materials Transactions B 47 (6):3194–220. doi:10.1007/s11663-016-0735-5.
  • Reuter, M. A., A. van Schaik, and M. Ballester. 2018. Limits of the circular economy: Fairphone modular design pushing the limits. Erzmetall 71:68–78.
  • Reuter, M. A., and I. V. Kojo. 2014. Copper: A key enabler of resource efficiency. Erzmetall 67:46–53.
  • Revesz, E., D. Fortin, and D. Pactunc. 2015. Reductive dissolution of scorodite in the presence of Shewanella sp. CN 32 and Shewanella sp. ANA-3. Applied Geochemistry 63:347–56. doi:10.1016/j.apgeochem.2015.09.022.
  • Revesz, E., D. Fortin, and D. Pactunc. 2016. Reductive dissolution of arsenical ferrihydrite by bacteria. Applied Geochemistry 66:129–39. doi:10.1016/j.apgeochem.2015.12.007.
  • Riedewald, F., and M. Sousa-Gallagher. 2015. Novel waste printed circuit board recycling process with molten salt. Methods X 2:100–06.
  • Rincon, J., S. Gaydardzhiev, and L. Stamenov. 2019. Investigation on the flotation recovery of copper sulphosalts through an integrated mineralogical approach. Minerals Engineering 130:36–47. doi:10.1016/j.mineng.2018.10.006.
  • Riveros, P. A., J. E. Dutizac, and P. Spencer. 2013. Arsenic disposal practices in the metallurgical industry. Canadian Metallurgical Quarterly 40:395–420. doi:10.1179/cmq.2001.40.4.395.
  • Rocchetti, L., A. Amato, and F. Beolchini. 2018. Printed circuit board recycling: A patent review. Journal of Cleaner Production 178:814–32. doi:10.1016/j.jclepro.2018.01.076.
  • Rong, Z., X. Tang, L. Wu, X. Chen, W. Dang, and Y. Wang. 2020. A novel method to synthesize scorodite using ferrihydrite and its role in the removal and immobilization of arsenic. Journal of Materials Research and Technology 9 (3):5848–57. doi:10.1016/j.jmrt.2020.03.112.
  • Rönnlund, I., M. Reuter, S. Horn, J. Aho, M. Aho, M. Päällysaho, L. Yilmäki, and T. Pursula. 2016. Eco-efficiency indicator framework implemented in the metallurgical industry: Part 2 – A case study from the copper industry. International Journal of Life Cycle Assessment 21 (12):1719–48. doi:10.1007/s11367-016-1123-8.
  • Ruan, J., and Z. Xu. 2016. Constructing environment-friendly return road of metals from e-waste: Combination of physical separation technologies. Renewable and Sustainable Energy Reviews 54:745–60. doi:10.1016/j.rser.2015.10.114.
  • Ruan, R., G. Zou, S. Zhong, Z. Wu, B. Chan, and D. Wang. 2013. Why Zijinshan copper bioheap leaching plant works efficiently at low microbial activity – Study on leaching kinetics of copper sulfides and its implications. Minerals Engineering 48:36–43. doi:10.1016/j.mineng.2013.01.002.
  • Rubinos, D. A., O. Jerez, G. Forghani, M. Edraki, and U. Kelm. 2021. Geochemical stability of potentially toxic elements in porphyry copper-mine tailings from Chile as linked to ecotoxicological and human health risk assessment. Environmental Science and Pollution Research. doi:10.1007/s11356-021-12844.7.
  • Ruzic, J., J. Stasic, V. Rajkovic, and D. Božić. 2013. Strengthening effects in precipitation and dispersion hardened powder metallurgy copper alloys. Materials & Design 49:746–54. doi:10.1016/j.matdes.2013.02.030.
  • Sabzezari, B., S. M. J. Koleini, S. Ghassa, R. Shahbazi, and S. C. Chelani. 2019. Microwave-leaching of copper smelting dust for Cu and Zn extraction. Materials 12 (1822):(18. doi:10.3390/ma12111822.
  • Safarzadeh, M. S., M. Horton, and A. D. Van Rythoven. 2018. Review of recovery of platinum group metals from copper leach residues and other resources. Minerals Processing and Extractive Metallurgy Review 39 (1):1–17. doi:10.1080/08827508.2017.1323745.
  • Sahu, S. K., B. Chmielowiec, and A. Allanore. 2017. Electrolytic extraction of copper. molybdenum and rhenium from molten sulfide electrolyte. Electrochimica Acta 243:382–89. doi:10.1016/j.electacta.2017.04.071.
  • Sakoor, M. B., R. Nawaz, E. Hussain, M. Raza, S. Ali, M. Rizwan, S. Oh, and S. Ahmad. 2017. Human health implications. Risk assessment and remediation of As contaminated water: A critical review. Science of the Total Environment 601-602:756–64. doi:10.1016/j.scitotenv.2017.05.223.
  • Samal, D. P. K., L. B. Sukla, A. Pattanaik, and D. Pradhan. 2019. Extraction of gold from electronic scraps: A biohydrometallurgical process overview. Biointerface Research and Applied Chemistry 9:4362–67.
  • Samuels, E. R., and J. C. Méranger. 1984. Preliminary studies on the leaching of some trace metals from kitchen faucets. Water Research 18 (1):75–80. doi:10.1016/0043-1354(84)90049-6.
  • Sanchez, M., F. Parada, R. Parra, F. Marquez, R. Jara, J. C. Carrasco, and J. Palacios. 2004. Management of copper pyrometallurgical slags giving additional value to copper smelting industry. In Management of copper metallurgical slags, 543–50. South African Institute of Mining and Metallurgy, Johannesburg.
  • Sanchez, M., and M. Sudbury. 2013. Reutilization of primary metallurgical wastes: Copper slag as a source of copper, molybdenum, and iron – Brief review of test work and the proposed way forward. In Proceedings of the Third International Slag Valorisation Symposium, 19-20 March, ed. A. Malfliet, P. T. Jones, K. Binnemans, O. Cizer, J. Fransaer, F. Yan, Y. Pontikes, M. Guo, and B. Blanpain, 135–46. Leuven (Belgium): KU Leuven.
  • Sarver, E., and M. Edwards. 2011. Effects of flow, brass location, tube materials and temperature on corrosion of brass plumbing devices. Corrosion Science 53 (5):1813–24. doi:10.1016/j.corsci.2011.01.060.
  • Scheffel, R. E., A. Guzman, and J. E. Dreier. 2016. Development of metallurgy guidelines for copper heap-leach. Minerals and Metallurgical Processing 33 (4):187–99. doi:10.19150/mmp.6840.
  • Schlesinger, M. E., M. J. King, K. C. Sole, and W. G. Davenport. 2011. Chemical metallurgy of copper recycling. In Extractive metallurgy of copper, 389–96. Fifth ed. Oxford: Elsevier.
  • Schreck, P. 1999. Flue dust from copper shale smelting in central Germany: Environmental pollution and its prevention. IMWA Proceedings, 163–67 Sevilla (Spain).
  • Schwartz, D. M., V. Y. Omaynikova, and S. K. Stocker 2017. Environmental benefits of the CESL process for the treatment of high-arsenic copper-gold concentrates Hydroprocess ICMSE 2017, (9 pp.). Accessed April 21, 2021. www.teck.com
  • Selivanov, E. N., G. V. Skopov, R. I. Gulyaeva, and A. V. Matveev. 2014. Material composition of the dust from electrostatic precipitators of a Vanyukov furnace in the middle Ural copper smelter. Metallurgist 58 (5–6):431–35. doi:10.1007/s11015-014-9928-9.
  • Selivanov, E. N., I. Popov, N. I. Selmenskikh, and A. B. Lebed. 2013. Oxide inclusions of copper during its fire refining. Nonferrous Metals 13:19–22.
  • Sethurajan, M., E. D. van Hullebusch, D. Fontana, A. Akcil, H. Deveci, B. Batinic, J. P. Leal, J. P. Gasche, M. A. Kurucer, K. Kuchta, et al. 2019. Recent advances on hydrometallurgical recovery of critical and precious elements from end-of-life electronic wastes – Review. Critical Reviews in Environmental Science and Technology 49 (3):212–75. doi:10.1080/10643389.2018.1540760.
  • Shen, H., and E. Forssberg. 2003. An overview of recovery of metals from slags. Waste Management 23 (10):933–49. doi:10.1016/S0956-053X(02)00164-2.
  • Shengo, L. M. 2021. Potentially exploitable reprocessing routes for recovering copper and cobalt retained in flotation tailings. Journal of Sustainable Metallurgy 7 (1):60–77. doi:10.1007/s40831-020-00325-z.
  • Shengo, L. M., B. K. Kitungwa, C. W. N. Mutiti, J. L. M. Mulumba, and F. P. Ilunga. 2021. Recovery of copper metal through reprocessing of residues from a hydrometallurgy plant: An advance study. Advanced Aspects of Engineering Research 13:33–47.
  • Shi, J., Y. Shi, Y. Feng, Q. Li, W. Chen, W. Zhang, and H. Li. 2020. Anthropogenic cadmium cycle and emissions in Mainland China 1990-2015. Journal of Cleaner Production 230:256–65.
  • Shibayama, A., Y. Takasaki, T. William, A. Yamatodani, Y. Higuchi, S. Sunagawa, and E. Ono. 2010. Treatment of smelting residue for arsenic removal and recovery of copper using pyro-hydrometallurgical process. Journal of Hazardous Materials 181 (1–3):1016–23. doi:10.1016/j.jhazmat.2010.05.116.
  • Shihshin, D., P. C. Hayes, and E. Jak. 2018. Multicomponent thermodynamic databases for complex non-ferrous pyrometallurgical processes. In Extraction 2018, The Minerals, Metals & Materials Series, ed. B. Davies, 853–68. Cham: Springer Verlag.
  • Shuva, M. A. H., M. A. Rhamdhani, G. A. Brooks, S. Masood, M. A. Reuter, and M. Firdaus. 2017. Analysis for optimum conditions for recovery of valuable metals from e-waste through black copper smelting. In 8th International Symposium on High Temperature Metallurgical Processing, The Minerals, Metals and Material Series, ed. J. Y. Hwang, 419–27. Cham: Springer Verlag.
  • Shuva, M. A. H., M. A. Rhamdhani, G. A. Brooks, S. Masood, and M. A. Reuter. 2016. Thermodynamics data of valuable elements relevant to e-waste processing and secondary copper production. Journal of Cleaner Production 131:795–809. doi:10.1016/j.jclepro.2016.04.061.
  • Sibanda, V., E. Sipunga, G. Danha, and T. A. Mamvura. 2020. Enhancing the flotation recovery of copper minerals in smelter slags from Namibia prior to disposal. Heliyon 6 (1):e03135 (11 pp.). doi:10.1016/j.heliyon.2019.e03135.
  • Siddique, R., M. Singh, and M. Jain. 2020. Recycling copper slag in steel fibre concrete for sustainable construction. Journal of Cleaner Production 221:122559 (10 pp.).
  • Sineva, S., M. Shevchenko, D. Shishin, T. Hidayat, J. Chen, P. C. Hayes, and E. Jak. 2021. Phase equilibria distributions in complex copper/slag/matte systems. JOM 72 (10):3401–09. doi:10.1007/s11837-020-04326-x.
  • Singh, J., and B. Lee. 2016. Recovery of precious metals from low-grade automobile shredder residue: A novel approach to the recovery of nanozero-valent copper particles. Waste Management 48:353–65. doi:10.1016/j.wasman.2015.10.019.
  • Sögaard, C., J. Funching, M. Gregoric, and Z. Abbas. 2018. The long-term stability of silica nanoparticulate gels in waters of different ionic compositions and pH values. Colloids and Surfaces A 554:127–30. doi:10.1016/j.colsurfa.2018.02.020.
  • Sokhanvaran, S., S. Lee, G. Lambotte, and A. Allanore. 2016. Electrochemistry of molten sulfides: Copper extraction from BaS-Cu2S. Journal of the Electrochemical Society 163 (3):D115–D120. doi:10.1149/2.0821603jes.
  • Sole, K. C., J. Parker, P. M. Cole, and M. B. Mooiman. 2019. Flowsheet options for cobalt recovery in African copper-cobalt hydrometallurgy circuits. Minerals Processing and Extractive Metallurgy Review 40 (3):194–206. doi:10.1080/08827508.2018.1514301.
  • Sole, K. C., M. B. Mooiman, and E. Hardwick. 2017. Ion exchange in hydrometallurgical processing; an overview and selected applications. Separation and Purification Review 60:1–20.
  • Soo, V. K., J. Peeters, P. Compiston, M. Doolan, and J. R. Duflou. 2017. Comparative study of end-of-life vehicle recycling in Australia and Belgium. Procedia CRIP 61:269–74. doi:10.1016/j.procir.2016.11.222.
  • Sorooshian, A., J. Csavina, T. Shingler, S. Dey, F. J. Brechtel, A. E. Sáez, and E. Betterton. 2012. Hygroscopic and chemical properties of aerosols collected near a copper smelter: Implications for public and environmental health. Environmental Science & Technology 46 (17):9473–80. doi:10.1021/es302275k.
  • Sousa, R., A. Futuro, C. S. Pires, and M. M. Leite. 2017. Froth flotation of Aljustrel sulphide complex ore. Physicochemical Problems of Mineral Processing 53:758–60.
  • Spooren, J., K. Binnemans, J. Björkmalm, K. Breeemersch, Y. Dams, K. Folens, M. González-Moya, L. Horckmans, K. Komitsas, V. Kurylak, et al. 2020. Near-zero waste processing of low grade, complex primary ores and secondary raw materials in Europe: Technology development trends. Resources Conservation and Recycling 160:104919 (18 pp.). doi:10.1016/j.resconrec.2020.104919.
  • Sracek, O., F. Veselovsky, B. Kribek, B. Malec, and J. Jehlicka. 2010. Geochemistry, mineralogy and environmental impact of precipitated efflorescent salts at the Kabwe Cu-Co chemical leaching plant in Zambia. Applied Geochemistry 25 (12):1815–24. doi:10.1016/j.apgeochem.2010.09.008.
  • Sridhar, R., J. M. Toguri, and S. Simeonov. 1997. Copper losses and thermodynamic considerations in copper smelting. Metallurgical and Materials Transactions B 28 (2):191–200. doi:10.1007/s11663-997-0084-5.
  • Stamp, A., H. Althaus, and P. A. Wäger. 2013. Limitation to applying life cycle assessment to complex co-product systems: The case of an integrated precious metals smelter-refinery. Resources Conservation and Recycling 80:85–96. doi:10.1016/j.resconrec.2013.09.003.
  • Steinacker, S.-R., and J. Antrekowitsch. 2017. Treatment of residues from the copper industry with an alternative approach to electric furnace slag. BHM 162 (7):252–57.
  • Sthiannopkao, S., and M. H. Wong. 2013. Handling e-waste in developed and developing countries: Initiatives, practices, and consequences. Science of the Total Environment 463-464:1147–53. doi:10.1016/j.scitotenv.2012.06.088.
  • Sukhomlinov, D., K. Avarmaa, O. Virtanen, P. Taskinen, and A. Jokilaakso. 2020. Slag-copper equilibria of selected trace elements in black-copper smelting. Part II. Trace element distributions. Minerals Processing and Extractive Metallurgy Review 41 (3):171–77. doi:10.1080/08827508.2019.1634561.
  • Sukhomlinov, D., L. Klemettinen, K. Avarmaa, H. O´Brien, P. Taskinen, and A. Jokilaakso. 2019. Distribution of Ni, Co, precious and platinum group metals in copper making process. Metallurgical and Materials Transactions B 50 (4):1752–65. doi:10.1007/s11663-019-01576-2.
  • Sun, Y., Q. Yao, N. Li, N. Li, Z. Hao, Z. Hao, and Z. Hao. 2018. Insight into mineralizer modified and tailored scorodite crystal characteristics and leachability for arsenic-rich smelter wastewater stabilization. RSC Advances 9 (35):19560–69. doi:10.1039/C8RA01721B.
  • Sun, Z., X. Y. Agterhuis, H. Sietsma, and J. Yang. 2016. Recycling metals from urban mines – Strategic evaluation. Journal of Cleaner Production 112:2977–87. doi:10.1016/j.jclepro.2015.10.116.
  • Sutliff-Johansson, S., S. Pontér, E. Engström, I. Rodushkin, P. Peltola, and A. Widerlund. 2021. Tracing anthropogenic sources of tantalum and niobium in Bothnian Bay sediments, Sweden. Journal of Soils and Sediments 21 (3):1488–503. doi:10.1007/s11368-020-02852-4.
  • Sverdrup, H. U., A. H. Olafsdottir, and K. V. Ragnarsdottir. 2019. On the long-term sustainability of copper, zinc and lead supply using a system dynamics model. Resources Conservation and Recycling X 4:100007 (21 pp.).
  • Tabelin, C. B., I. Park, T. Phengsaart, S. Jeo, M. Villacorte-Tabelin, D. Alonzo, K. Yoo, M. Ito, and N. Hiroyoshi. 2021. Copper and critical metal production from porphyry ores and E-wastes. A review of resource availability. Processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resources Conservation and Recycling 170:105610 (35 pp.).
  • Tan, M., R. He, Y. Yuan, Z. Wang, and X. Jinn. 2016. Electrochemical sulfur removal from chalcopyrite in molten NaCl-KCl. Electrochimica Acta 213:148–54. doi:10.1016/j.electacta.2016.07.088.
  • Tanabe, E. H., R. M. Silva, D. L. Olivera Jr, and D. A. Bertuol. 2019. Recovery of valuable metals from waste cables employing mechanical processing followed by sprouted bed elutriation. Particulogy 45:71–80. doi:10.1016/j.partic.2018.12.002.
  • Tanne, C. K., and A. Schippers. 2019. Electrochemical investigation of chalcopyrite (bio)leaching residues. Hydrometallurgy 187:8–17. doi:10.1016/j.hydromet.2019.04.022.
  • Tesfaye, F., D. Lindberg, J. Hmayuni, P. Taskinen, and L. Hupa. 2017. Improving urban mining practices for optimal recovery of resources from e-waste. Minerals Engineering 111:209–21. doi:10.1016/j.mineng.2017.06.018.
  • Tian, H., Z. Guo, J. Pan, D. Zhu, C. Yang, Y. Xue, S. Li, and D. Wang. 2021. Comprehensive review on metallurgical recycling and cleaning of copper slag. Resources Conservation and Recycling 168:105366 (22 pp.). doi:10.1016/j.resconrec.2020.105366.
  • Tian, S., Y. Gong, H. Ji, J. Duan, and D. Zhao. 2020. Efficient removal and long-term sequestration of cadmium from aqueous solution using ferrous sulfide nanoparticles: Performance, mechanisms and long-term stability. Science of the Total Environment 704:135402 (10 pp.). doi:10.1016/j.scitotenv.2019.135402.
  • Torres, A., M. U. Simoni, J. K. Kleiding, D. B. Müller, S. O. S. E. zu Ermgassen, J. Liu, J. A. G. Jaeger, M. Winter, and E. F. Lambin. 2021. Sustainability of the global sand system in the Anthropocene. One Earth 4 (5):639–50. doi:10.1016/j.oneear.2021.04.011.
  • Tshipeng, S. Y., A. Tsamala-Kanaki, and M. Kime. 2017. Effect of addition points of reducing agents on the extraction of copper and cobalt from oxidized copper-cobalt ores. Journal of Sustainable Metallurgy 3 (4):823–28. doi:10.1007/s40831-017-0149-x.
  • Turan, M. D., Z. A. Sari, and J. D. Miller. 2017. Leaching of blended copper slag in microwave oven. Transactions of the Nonferrous Metals Society China 27 (6):1404–10. doi:10.1016/S1003-6326(17)60161-4.
  • Ueberschaar, M., D. D. Jalapoor, N. Korf, and V. S. Rotter. 2017. Potentials and barriers for tantalum recovery from waste electric and electronic equipment. Journal of Industrial Ecology 21 (3):700–14. doi:10.1111/jiec.12577.
  • Ulman, K., S. Maoufi, S. Bhattacharyya, and V. Sahajwalla. 2018. Thermal transformation of printed circuit boards at 500 °C for synthesis of a copper-based product. Journal of Cleaner Production 198:1485–93. doi:10.1016/j.jclepro.2018.07.140.
  • Ulsen, C., J. L. Antoniassi, I. M. Martins, and H. Kahn. 2021. High quality recycled sand from mixed CDW - is that possible? Journal of Materials Research and Technology 12:27–42. doi:10.1016/j.jmrt.2021.02.057.
  • UNEP. 2013. Report of the working group on the global metal flows to the international resource panel. Accessed June 22, 2020. http://www.resourcepanel.org/reports.
  • US Geological Survey. 2020. Minerals commodity summaries 2020. US Government Publishing Office, Washington DC. Virginia.
  • Van Schalkwyk, R. F., M. A. Reuter, J. Gutzmer, and M. Stelter. 2018. Challenges in digitalizing the circular economy. Assessment of the state-of-the art metallurgical carrier metal platform for lead and its associated technology elements. Journal of Cleaner Production 186:585–601. doi:10.1016/j.jclepro.2018.03.111.
  • Vardanyan, N., G. Svoyan, T. Navasardy, and A. Vardanyan. 2019. Recovery of valuable metals from polymetallic mine tailings by natural microbial consortium. Environmental Technology 40 (26):3467–72. doi:10.1080/09593330.2018.1478454.
  • Vermeulen, A., W. Müller, K. D. Matson, B. I. Tieleman, L. Bervoets, and M. Eens. 2015. Sources of variation in innate immunity in great tit nestlings living along a metal pollution gradient: An individual-based approach. Science of the Total Environment 508:297–306. doi:10.1016/j.scitotenv.2014.11.095.
  • Vidyadhar, A., and A. Das. 2013. Enrichment implication of froth flotation kinetics in separation and recovery of metal values from printed circuit boards. Separation and Purification Technology 118:305–302. doi:10.1016/j.seppur.2013.07.027.
  • Vitkova, M., V. Ettler, J. Hyks, T. Astrup, and B. Kribek. 2011. Leaching of metals from copper smelter flue dust (Mufulira, Zambian Copperbelt). Applied Geochemistry 26:S263–S266. doi:10.1016/j.apgeochem.2011.03.120.
  • Vlaamse Milieu Maatschappij. 2018. Luchtkwaliteit in Hoboken. Focus op de periode 2016-2018. (Air quality in Hoboken. Focus on the 2016-2018 period). Aalst (103 pp.).
  • Voigt, P., A. Burrows, N. Somerville, and C. Chen. 2017. Direct-to-blister copper smelting with the ISASMELTTM Process. In 8th International Symposium on High-Temperature Metallurgical Processing, The Minerals, Metals & Materials Series, ed. J. Y. Hwang, 261–67. Cham: Springer Verlag.
  • Wan, X., P. Taskinen, J. Shi, and A. Jokilaakso. 2021. A potential industrial waste-waste co-treatment process of utilizing waste SO2 gas and residue heat to recover Co, Ni and Cu from copper melting slag. Journal of Hazardous Materials 414:125541 (14 pp.). doi:10.1016/j.jhazmat.2021.125541.
  • Wang, D., Q. Wang, and Z. Hang. 2020. Reuse of copper slag as a supplementary cementitious material: Reactivity and safety. Resources Conservation and Recycling 162:105037 (9 pp.). doi:10.1016/j.resconrec.2020.105037.
  • Wang, F., Y. Zhao, T. Zhang, G. Zhang, X. Yang, Y. He, L. Wang, and C. Duan. 2017a. Metals recovery from dust derived from recycling line of waste printed circuit board. Journal of Cleaner Production 165:452–57. doi:10.1016/j.jclepro.2017.07.112.
  • Wang, Q., X. Guo, Q. Tian, T. Jiang, M. Chen, and B. Zhao. 2017b. Effects of matte grade on the distribution of minor elements (Pb, Zn, As, Sb and Bi) in the bottom blown copper smelter process. Metals 7 (11):502 (11 pp.). doi:10.3390/met7110502.
  • Wang, R. W., Q. Shi, Y. Li, Z. Cao, and Z. Si. 2021. A critical review of the use of copper slag (CS) as substitute constituent in concrete. Construction and Building Materials 292:123371 (21 pp.). doi:10.1016/j.conbuildmat.2021.123371.
  • Wang, Y., X. Liu, Y. Si, and R. Wang. 2016. Release and transformation of arsenic from As-bearing iron minerals by Fe-reducing bacteria. Chemical Engineering Journal 293:29–38. doi:10.1016/j.cej.2016.03.027.
  • Waterman, B. T. 2013. Methods and systems for recovering rhenium from a copper leach. US patent 8491700 B2
  • Watling, H. R. 2006. The bioleaching of sulphide minerals with emphasis on copper sulphides – A review. Hydrometallurgy 84 (1–2):81–108. doi:10.1016/j.hydromet.2006.05.001.
  • Weidenbach, M., G. Dunn, and Y. Y. Tao 2016. Removal of impurities from copper sulfide mineral concentrates. ALTA 2016 Nickel-Cobalt-Copper Proceedings, 21-28 May (17 pp). Perth (Australia). Accessed May 23, 2021. www.orway.com.au.
  • Welfens, M. J., J. Nordman, and A. Seibt. 2016. Drivers and barriers to return and recycling mobile phones. Case studies of communication and collection campaigns. Journal of Cleaner Production 132:108–21. doi:10.1016/j.jclepro.2015.11.082.
  • Wellmer, F., and C. Hagelüken. 2015. The feedback control cycle of mineral supply, increase of raw material efficiency, and sustainable development. Minerals 5 (4):815–36. doi:10.3390/min5040527.
  • Widmer, R., X. Du, O. Heag, E. Restrepo, and A. Wager. 2015. Scarce metals in conventional passenger vehicles and end-of-life shredder output. Environmental Science & Technology 49 (7):4591–99. doi:10.1021/es505415d.
  • Wijenayake, J. J., and H. S. Sohn. 2020. The synthesis of tire grade ZnO from top submerged lance (TSL) furnace flue dust generated in Cu recycling industries. Hydrometallurgy 198:105466 (8 pp.). doi:10.1016/j.hydromet.2020.105466.
  • Wiklund, J. A., J. L. Kirk, D. C. G. Muir, J. Carrier, A. Gleason, F. Yang, M. Evans, and J. Keating. 2018. Widespread atmospheric tellurium contamination in industrial and remote regions of Canada. Environmental Science & Technology 52 (11):6137–45. doi:10.1021/acs.est.7b06242.
  • Williams, P. T. 2010. Valorization of printed circuit boards from waste electrical and electronic equipment by pyrolysis. Waste and Biomass Valorization 1 (1):107–20. doi:10.1007/s12649-009-9003-0.
  • Wu, J., J. Ahn, and J. Lee. 2021. Gold deportment and leaching study from a pressure oxidation residue of chalcopyrite concentrate. Hydometallurgy 201:105583 (9 pp.).
  • Xia, M., P. Bao, A. Liu, M. Wang, L. Shen, B. Yu, Y. Liu, M. Chen, H. Li, X. Wu, et al. 2018. Bioleaching of low-grade waste printed circuit boards by mixed fungal culture and its community structure analysis. Resources Conservation and Recycling 136:267–75. doi:10.1016/j.resconrec.2018.05.001.
  • Xia, Z., X. Zhang, X. Huang, S. Yang, Y. Chen, and L. Ye. 2020. Hydrometallurgical stepwise recovery of Cu and Zn from smelting slag of waste brass in ammonium chloride solution. Hydrometallurgy 157:105475 (7 pp.).
  • Xu, B., W. Goa, R. Jiang, R. Jiang, R. Jiang, R. Jiang, and T. Jiang. 2020a. Comprehensive recovery of valuable elements from copper smelting open circuit dust and arsenic treatment. JOM 72 (11):3860–75. doi:10.1007/s11837-020-04242-0.
  • Xu, J., S. Kumagai, T. Kameda, Y. Saito, K. Takahashi, H. Hayashi, and T. Yashioka. 2019. Separation of copper and polyvinylchloride from thin waste electric cables: A combined swelling and centrifugal approach. Waste Management 89:27–36. doi:10.1016/j.wasman.2019.03.049.
  • Xu, L., Y. Yiong, Y. Song, G. Zhang, F. Zhang, Y. Yang, Z. Hua, Y. Tian, J. You, and Z. Zhao. 2020b. Recycling of copper telluride from copper anode slime processing: Toward efficient recovery of tellurium and copper. Hydrometallurgy 196:105436 (10 pp.). doi:10.1016/j.hydromet.2020.105436.
  • Yang, B., G. L. Zhang, W. Deng, and J. Ma. 2013. Review of arsenic pollution and treatment progress in nonferrous metallurgy industry. Advanced Materials Research 634-638:3239–49.
  • Yang, H., J. Wolters, P. Pischke, H. Soltner, S. Eckert, G. Natour, and J. Fröhlich. 2018. Modelling and simulation of a copper slag cleaning process improved by magnetic stirring. IOP Conference Series: Materials Science and Engineering 228:01204 (11 pp.).
  • Yin, S., L. Wang, A. Wu, E. Kabwe, C. Chen, and R. Yan. 2018a. Copper recycle from sulfide tailings using combined leaching of ammonia solution and alkaline bacteria. Journal of Cleaner Production 189:746–53. doi:10.1016/j.jclepro.2018.04.116.
  • Yin, S., L. Wang, A. Wu, M. L. Free, and E. Kabwe. 2018b. Enhancement of copper recovery by acid leaching of high-mud copper oxides: A case study at Yangla copper mine, China. Journal of Cleaner Production 202:321–31. doi:10.1016/j.jclepro.2018.08.122.
  • Yin, Z., W. Sun, Y. Hu, J. Zhai, and G. Qingjun. 2017. Evaluation of replacement of NaCN with depressant mixtures in the separation of copper-molybdenum sulphide ore by flotation. Separation and Purification Technology 173:9–16. doi:10.1016/j.seppur.2016.09.011.
  • Young, M. L., and D. C. Dunand. 2015. Comparing composition of modern cast bronze sculptures: Optical emission spectroscopy versus X-ray fluorescence spectroscopy. JOM 67 (7):1646–58. doi:10.1007/s11837-015-1445-1.
  • Yu, F., Z. Liu, F. Ye, L. Xia, and A. Jokilaakso. 2021. A study of selenium and tellurium distribution behavior, taking the copper matte flash converting process as the background. JOM 73 (2):694–702. doi:10.1007/s11837-020-04517-6.
  • Yuan, Z., D. Zhang, S. Wang, L. Xu, K. Wang, Y. Song, F. Xiao, and Y. Jia. 2016. Effect of hydroquinone-induced iron reduction of the stability of scorodite and arsenic mobilization. Hydrometallurgy 164:228–37. doi:10.1016/j.hydromet.2016.06.001.
  • Yuan, Z., S. Wang, X. Ma, X. Wang, G. Zhang, J. Jia, and W. Zheng. 2017. Effect of iron reduction by enolic hydoxyl groups on the stability of scorodite in hydrometallurgical industries and arsenic mobilization. Environmental Science and Pollution Research 24 (34):26534–44. doi:10.1007/s11356-017-0016-0.
  • Yun, L., A. Goyal, V. P. Singh, L. Gao, X. Peng, X. Niu, C. Wang, and A. Garg. 2019. Experimental coupled predictive modelling-based recycling of waste printed circuit boards for maximum extraction of copper. Journal of Cleaner Production 218:763–71. doi:10.1016/j.jclepro.2019.01.027.
  • Zablocka-Malicka, M., P. Rutkowski, and W. Szczapaniak. 2015. Recovery of copper from PVC multiwire cable waste by steam gasification. Waste Management 46:488–96. doi:10.1016/j.wasman.2015.08.001.
  • Zanin, M., I. Ametov, S. Grano, L. Zhou, and W. Skinner. 2009. A study of mechanisms affecting molybdenite recovery in a bulk copper/molybdenum flotation circuit. International Journal of Minerals Processing 93 (3–4):256–66. doi:10.1016/j.minpro.2009.10.001.
  • Zeghoul, T., S. Touhami, G. Richard, M. Miloudi, O. Dahou, and L. Dascalescu. 2016. Optimal operation of a plate-type corona-electrostatic separator for the recovery of metals and plastics from granular wastes. IEEE Transactions Industrial Applications 52 (3):2506–12. doi:10.1109/TIA.2016.2533482.
  • Zemlick, K., B. M. Thomson, J. Cheermak, and V. C. Tidwell. 2017. Modeled impacts of economics and policy on historic uranium mining operations in New Mexico. New Mexico Geology 39:11–24.
  • Zeng, X., J. A. Mathews, and J. Li. 2018. Urban mining of e-waste is becoming more cost-effective than virgin mining. Environmental Science & Technology 52 (8):4835–41. doi:10.1021/acs.est.7b04909.
  • Zhang, H., X. Liu, C. Su, and Y. Liu. 2019a. Effect of copper solvent extraction reagent on metabolism and leaching efficiency of bioleaching bacteria. IOP Conference Series: Earth and Environmental Science 237:052009 (6 pp.). doi:10.1088/1755-1315/237/5/052009.
  • Zhang, R., S. Hedrich, E. Römer, D. Goldmann, and A. Schippers. 2020. Bioleaching of cobalt from Cu/Co-rich sulfidic mine tailings from the polymetallic Rammelsberg mine, Germany. Hydrometallurgy 197:105443 (8 pp.). doi:10.1016/j.hydromet.2020.105443.
  • Zhang, Y., B. Jin, Y. Huang, Q. Song, and C. Wang. 2019b. Two-stage leaching of zinc and copper from arsenic-rich copper smelting hazardous dusts after alkali leaching or arsenic. Separation and Purification Technology 220:250–58. doi:10.1016/j.seppur.2019.03.067.
  • Zhao, H., Y. Zhang, X. Zhang, L. Qian, M. Sun, Y. Yang, Y. Zhang, J. Wang, H. Kim, and G. Qiu. 2019. The dissolution and passivation mechanism of chalcopyrite in bioleaching.: An overview. Minerals Engineering 136:140–54. doi:10.1016/j.mineng.2019.03.014.
  • Zhao, Z., L. Chai, B. Peng, Y. J. Liang, Y. He, and Z. Yam. 2017. Arsenic vitrification by copper-based glass: Mechanism and stability studies. Journal of Non-Crystalline Solids 466-467:21–28. doi:10.1016/j.jnoncrysol.2017.03.039.
  • Zschiesche, C., M. Ayhan, and J. Antrelkowitsch. 2018. Challenges and opportunities of lead smelting process for complex feed mixture. In Extraction 2018, The Minerals, Metals and Materials Series, ed. B. Davis, 325–38. Cham: Springer Verlag.