182
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Densimetric Analysis of Flotation Concentrate from Kupferschiefer-type Copper Ore

ORCID Icon, ORCID Icon, ORCID Icon &

References

  • Anthony, J. W., R. A. Bideaux, K. W. Bladh, and M. C. Nichols. 2004. Handbook of mineralogy. Chantilly, VA 20151-1110, USA: Mineralogical Society of America. http://www.handbookofmineralogy.org/.
  • Bakalarz, A. 2019. Chemical and mineral analysis of flotation tailings from stratiform copper ore from lubin concentrator plant (SW Poland). Mineral Processing and Extractive Metallurgy Review 40 (6):437–46. doi:https://doi.org/10.1080/08827508.2019.1667778.
  • Bakalarz, A. 2021. An analysis of copper concentrate from a Kupferschiefer-type ore from legnica-glogow copper basin (SW Poland). Mineral Processing and Extractive Metallurgy Review: 1–13. (ahead-of-print). doi:https://doi.org/10.1080/08827508.2021.1971663.
  • Bakalarz, A., G. Gloy, and A. Luszczkiewicz. 2015. Flotation of sulfide components of copper ore in the presence of n-dodecane. Mineral Processing and Extractive Metallurgy Review 36:103–11. doi:https://doi.org/10.1080/08827508.2014.898301.
  • Berger, G. S., and I. A. Yefimov. 1962. Metody vydeleniya monomineralnykh fraktsii (Methods of separation of monomineral fractions). Moskva: Izd. 2. Gosgeoltekhizdat. (Бергер, Г.С., Ефимоф, И.А., Методы выделения мономинералных фракции. Изд. 2. Госгеолтехиздат, Москва 1962) (In Russian).
  • Borg, G., A. Piestrzynski, G. Bachmann, W. Püttmann, S. Walther, and M. Fiedler. 2012. An overview of the European Kupferschiefer deposits. In Geology and genesis of major copper deposits and districts of the world: A tribute to Richard H. Sillitoe. Special Publication, 16 (18). ed. J. W. Hedenquist, M. Harris, and F. Camus, 455–86. Littleton, Colorado, United States: Society of Economic Geologists.
  • Brown, A. C. 1997. World‐class sediment‐hosted stratiform copper deposits: Characteristics, genetic concepts and metallotects. Australian Journal of Earth Sciences 44 (3):317–28. doi:https://doi.org/10.1080/08120099708728315.
  • Cerli, C., L. Celi, K. Kalbitz, G. Guggenberger, and K. Kaiser. 2012. Separation of light and heavy organic matter fractions in soil – Testing for proper density cut-off and dispersion level. Geoderma 170:403–16. doi:https://doi.org/10.1016/j.geoderma.2011.10.009.
  • Chenu, C., and A. F. Plante. 2006. Clay‐sized organo‐mineral complexes in a cultivation chronosequence: Revisiting the concept of the ‘primary organo‐mineral complex’. European Journal of Soil Science 57 (4):596–607. doi:https://doi.org/10.1111/j.1365-2389.2006.00834.x.
  • Chmielewski, T., and A. Luszczkiewicz. 6-10 June 2010. Leaching of gangue in technological flotation circuits of Polish copper ores. In Proceedings of the 7th International Copper Conference COPPER 2010, vol. 7, 2655–72. Hamburg, GDMB Clausthal-Zellerfeld.
  • Collell, J., P. Ungerer, G. Galliero, M. Yiannourakou, F. Montel, and M. Pujol. 2014. Molecular simulation of bulk organic matter in type II shales in the middle of the oil formation window. Energy & Fuels 28 (12):7457–66. doi:https://doi.org/10.1021/ef5021632.
  • Commeau, J. A., L. J. Poppe, and R. F. Commeau. 1992. Separation and identification of the silt-sized heavy-mineral fraction in sediments. U.S. Geological Survey Circular 1071:1–13. doi:https://doi.org/10.3133/cir1071.
  • Cox, D. P., D. A. Lindsay, D. A. Singer, B. Moring, and M. F. Diggles. 2007, Sediment‐hosted copper deposits of the world: Deposit models and database. Open‐File Report 03‐107. v. 1.3., Department of the Interior, U.S. Geological Survey, 53. Accessed Dec 2020. http://pubs.usgs.gov/of/2003/of03-107/
  • Das, A., and B. Sarkar. 2018. Advanced gravity concentration of fine particles: A review. Mineral Processing and Extractive Metallurgy Review 39 (6):1–36. doi:https://doi.org/10.1080/08827508.2018.1433176.
  • Drzymala, J., P. B. Kowalczuk, M. Oteng-Peprah, D. Foszcz, A. Muszer, T. Henc, and A. Luszczkiewicz. 2013. Application of the grade-recovery curve in the batch flotation of Polish copper ore. Minerals Engineering 49:17–23. doi:https://doi.org/10.1016/j.mineng.2013.04.024.
  • Duchnowska, M., and A. Bakalarz. 2018. Copper and organic carbon upgrading selectivity analysis in the copper ore flotation plant. International Multidisciplinary Scientific GeoConference: SGEM 18 (1.4):51–58. doi:https://doi.org/10.5593/sgem2018/1.4.
  • Gregory, M. R., and K. A. Johnston. 1987. A nontoxic substitute for hazardous heavy liquids – Aqueous sodium polytungstate (3Na2WO4.9WO3.H2O) solution. New Zealand Journal of Geology and Geophysics 30:317–20. doi:https://doi.org/10.1080/00288306.1987.10552626.
  • Hassanzadeh, A., and M. Hasanzadeh. 2016. A study on selective flotation in low and high pyritic copper sulphide ores. Separation Science and Technology 51 (13):2214–24. doi:https://doi.org/10.1080/01496395.2016.1202980.
  • Hitzman, M. W., D. Selley, and S. Bull. 2010. Formation of sedimentary rock-hosted stratiform copper deposits through Earth history. Economic Geology 105 (3):627–39. doi:https://doi.org/10.2113/gsecongeo.105.3.627.
  • Jagadisan, A., A. Yang, and Z. Heidari. 2017. Experimental quantification of the impact of thermal maturity on kerogen density, In Petrophysics, SPWLA 57th annual logging symposium. Society of Petrophysicists and Well-Log Analysts 58 (6):603–12.
  • Kamradt, A., S. Walther, J. Schaefer, S. Hedrich, and A. Schippers. 2018. Mineralogical distribution of base metal sulfides in processing products of black shale-hosted Kupferschiefer-type ore. Minerals Engineering 119:23–30. doi:https://doi.org/10.1016/j.mineng.2017.11.009.
  • Katoh, S., T. Danhara, W. K. Hart, and G. Woldegabriel. 1999. Use of sodium polytungstate solution in the purification of volcanic glass shards for bulk chemical analysis. Nature and Human Activities 4:45–54. doi:https://doi.org/10.24713/nha.4.0_45.
  • Katwika, C. N., M. B. Kime, P. N. M. Kalenga, B. I. Mbuya, and T. R. Mwilen. 2019. Application of Knelson concentrator for beneficiation of copper–cobalt ore tailings. Mineral Processing and Extractive Metallurgy Review 40 (1):35–45. doi:https://doi.org/10.1080/08827508.2018.1481057.
  • Kijewski, P., and R. Leszczynski. 2010. Organic carbon in copper ores – Importance and problems. The Bulletin of the Mineral and Energy Economy Research Institute of the Polish Academy of Sciences (Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi I Energia Polskiej Akademii Nauk) 79:131–46. (In Polish).
  • Konieczny, A., W. Pawlos, M. Krzeminska, R. Kaleta, and P. Kurzydlo. 2013. Evaluation of organic carbon separation from copper ore by pre-flotation. Physicochemical Problems of Mineral Processing 49 (1):189–201.
  • Kowalczuk, P. B., D. Mroczko, and J. Drzymala. 2015. Influence of frother type and dose on collectorless flotation of copper-bearing shale in a flotation column. Physicochemical Problems of Mineral Processing 51 (2):547–58. doi:https://doi.org/10.5277/ppmp150215.
  • Kucha, H. 1990. Geochemistry of the Kupferschiefer, Poland. Geologische Rundschau 79:387–99. doi:https://doi.org/10.1007/BF01830634.
  • Kucha, H. 1993. Noble metals associated with organic matter, Kupferschiefer, Poland. In Bitumens in ore deposits, special publication of the society for geology applied to mineral deposits. ed. J. Parnell, H. Kucha, and P. Landais. Vol. 9. 153–70. Berlin, Heidelberg: Springer. doi: https://doi.org/10.1007/978-3-642-85806-2_10.
  • Kucha, H. 2007. Mineralogy and geochemistry of the Lubin-Sieroszowice orebody. Biuletyn Państwowego Instytutu Geologicznego 423:77–94. (In Polish).
  • Lewis, D. W., and D. McConchie. 1994. Analytical sedimentology. New York, London: Chapman and Hall.
  • Luszczkiewicz, A. 2002. Scientific and technological aspects of occurrence of heavy minerals in detrital raw materials. Scientific Papers of the Institute of Mining of the Wroclaw University of Technology 99/36:1–200. (In Polish).
  • Luszczkiewicz, A., P. Karwowski, A. Muszer, and J. Drzymala. 25-28 September 2016. Separation of copper flotation concentrates into density fractions by means of polytungstate aqueous solution. In Proceedings of Mineral Engineering Conference MEC2016, vol. 8 (01009), 1–6. Swieradow-Zdroj, Poland: E3S Web of Conferences. https://doi.org/10.1051/e3sconf/20160801009.
  • Majumder, A. K., and J. P. Barnwal. 2006. Modeling of enhanced gravity concentrators – Present status. Mineral Processing and Extractive Metallurgy Review 27 (1):61–86. doi:https://doi.org/10.1080/08827500500339307.
  • Mastalerz, M., A. Schimmelmann, G. P. Lis, A. Drobniak, and A. Stankiewicz. 2012. ”Influence of maceral composition on geochemical characteristics of immature shale kerogen: Insight from density fraction analysis”. International Journal of Coal Geology 103:60–69. doi:https://doi.org/10.1016/j.coal.2012.07.011.
  • Morton, A. C. 1978. Heavy minerals. In Sedimentology, encyclopedia of earth science, 573–95. Berlin, Heidelberg: Springer. doi:https://doi.org/10.1007/3-540-31079-7_109.
  • Okiongbo, K. S., A. C. Aplin, and S. R. Larter. 2005. Changes in type II kerogen density as a function of maturity: Evidence from the Kimmeridge clay formation. Energy & Fuels 19 (6):2495–99. 10.1021/ef050194±.
  • Oszczepalski, S. 1999. Origin of the Kupferschiefer polymetallic mineralization in Poland. Mineralium Deposita 34 (5/6):599–613. doi:https://doi.org/10.1007/s001260050222.
  • Rahfeld, A., and J. Gutzmer. 2017. MLA-based detection of organic matter with iodized epoxy resin – An alternative to carnauba. Journal of Minerals and Materials Characterization and Engineering 5:198–208. doi:https://doi.org/10.4236/jmmce.2017.54017.
  • Rahfeld, A., R. Kleeberg, R. Möckel, and J. Gutzmer. 2018. Quantitative mineralogical analysis of European Kupferschiefer ore. Minerals Engineering 115:21–32. doi:https://doi.org/10.1016/j.mineng.2017.10.007.
  • Sawlowicz, Z. 1993. Organic matter and its significance for the genesis of the copper-bearing shales (Kupferschiefer) from the fore-sudetic monocline (Poland). In Bitumens in ore deposits, special publication of the society for geology applied to mineral deposits. ed. J. Parnell, H. Kucha, and P. Landais. Vol. 9. 431–46. Berlin, Heidelberg: Springer. doi: https://doi.org/10.1007/978-3-642-85806-2_23.
  • Sawlowicz, Z., A. P. Gize, and M. Rospondek. 2000. Organic matter from Zechstein copper deposits (Kupferschiefer) in Poland. In Organic matter and mineralisation: Thermal alteration. Hydrocarbon generation and role in metallogenesis, M. Glikson and M. Mastalerz. ed., 220–42. Dordrecht: Springer. doi:https://doi.org/10.1007/978-94-015-9474-5_11.
  • Skorupska, B., A. Wieniewski, and N. Kubacz. 2011. Possibility of copper concentrates production of different organic elements. Gornictwo I Geologia Quaterly. 6(2): 201–16. Wydawnictwo Politechniki Slaskiej, Gliwice. (In Polish). https://www.polsl.pl/Wydzialy/RG/Wydawnictwa/Documents/kwartal/6_2_17.pdf
  • Tomaszewski, J. 1985. Problems of a rational utilization of copper-polymetallic ores from the Foresudetic Monocline deposits. Physicochemical Problems of Mineral Processing 17:131–41. (In Polish).
  • Vaughan, D. J., M. A. Sweeney, G. Friedrich, R. Diedel, and C. Haranczyk. 1989. The Kupferschiefer; an overview with an appraisal of the different types of mineralization. Economic Geology 84 (5):1003–27. doi:https://doi.org/10.2113/gsecongeo.84.5.1003.
  • Wills, B. A., and J. Finch. 2015. Wills’ mineral processing technology: An introduction to the practical aspects of ore treatment and mineral recovery, 8th ed. Oxford, United Kingdom: Butterworth-Heinemann.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.