237
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Experimental Measurements of Slag/Matte/Metal/Tridymite Phase Equilibria in the Cu-Fe-O-S-Si System at 1200ºC

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Avarmaa, K., H. Johto, and P. Taskinen. 2016. Distribution of precious metals (Ag, Au, Pd, Pt and Rh) between copper matte and iron silicate slag. Metallurgical and Materials Transactions B 47B (1):244–55. doi:10.1007/s11663-015-0498-4.
  • Bale, C. W., E. Belisle, P. Chartrand, S. A. Decterov, G. Eriksson, A. E. Gheribi, K. Hack, I. H. Jung, Y. B. Kang, J. Melancon, et al. 2016. FactSage thermochemical software and databases, 2010–2016. CALPHAD 54:35–53. doi:10.1016/j.calphad.2016.05.002.
  • Bar, F. Y., and P. Tarasoff. 1971. Solubility of oxygen in copper mattes. Canadian Metallurgical Quarterly 10 (4):267–71. doi:10.1179/cmq.1971.10.4.267.
  • Bastin, G. F., and H. J. M. Heijligers. 1992. Quantitative EPMA of the ultra-light elements boron through oxygen. Microchimica Acta 12:19–36.
  • Chen, M., K. Avarmaa, L. Klemettinen, J. Shi, P. Taskinen, D. Lindberg, and A. Jokilaakso. 2020. Equilibrium of copper matte and silica-saturated iron silicate slags at 1300 °C and pSO2 of 0.5 atm. Metallurgical and Materials Transactions B 51 (5):2107–18. doi:10.1007/s11663-020-01933-6.
  • Geveci, A., and T. Rosenqvist. 1973. Equilibrium relations between liquid copper, iron-copper matte, and iron silicate slag at 1250 °C. Transactions of the Institution of Mining and Metallurgy 82:193–201.
  • Hellsten, N., and P. Taskinen. 2017. Phase relations in the Cu-O-Al2O3-SiO2 system at 1150°C and 1300°C in air. CALPHAD 59:182–88. doi:10.1016/j.calphad.2017.10.004.
  • Henao, H. M., C. H. Nexhip, D. George-Kennedy, P. C. Hayes, and E. Jak. 2010a. Investigation of phase equilibria of copper smelting slags in the FeO-Fe2O3-SiO2-CaO-MgO-Al2O3 system at fixed oxygen potential. Metallurgical and Materials Transactions B 41B (4):767–79. doi:10.1007/s11663-010-9369-1.
  • Henao, H. M., C. Pizarro, J. Font, A. Moyano, P. C. Hayes, and E. Jak. 2010b. Phase equilibria of “Cu2O”-“FeO”-CaO-MgO-Al2O3 Slags at PO2 of 10−8.5 atm in equilibrium with metallic copper for a copper slag cleaning production. Metallurgical and Materials Transactions B 41 (6):1186–93. doi:10.1007/s11663-010-9434-9.
  • Jak, E. 2012. Integrated experimental and thermodynamic modelling research methodology for copper and other metallurgical slags. International Conference on Molten Slags, Fluxes and Salts, Beijing. paper 077.
  • Jak, E., T. Hidayat, V. Prostakova, D. Shishin, M. Shevchenko, and P. C. Hayes. 2019. Integrated experimental and thermodynamic modelling research for primary and recycling pyrometallurgy. International Conferences EMC, 587–604. Düsseldorf, Germany.
  • Jalkanen, H. 1981. Copper and sulphur solubilities in silica saturated iron silicate slags from copper mattes. Scandinavian Journal of Metallurgy 10:.177–195.
  • Kameda, M., and A. Yazawa. 1961. The oxygen content of copper mattes. Proceeding Conference on Physical Chemistry of Process Metallurgy, Part 2, TMS, Interscience, 963–88. NY.
  • Llovet, X., P. T. Pinard, J. J. Donovan, and F. Salvat. 2012. Secondary fluorescence in electron probe microanalysis of material couples. Journal of Physics D: Applied Physics 45 (22):1–12. doi:10.1088/0022-3727/45/22/225301.
  • Nagamori, M. 1974. Metal loss to slag: Part I. Sulfidic and oxidic dissolution of copper in fayalite slag from low grade matte. Metallurgical and Materials Transactions B 5 (3):531–39. doi:10.1007/BF02644646.
  • Nash, W. P. 1992. Analysis of oxygen with the electron microprobe: Application to the hydrated glass and minerals. American Mineralogist 77:453–57.
  • Pelton, A. D., and S. Decterov. 1999. A thermodynamic database for copper smelting and converting. Metallurgical and Materials Transactions B 30 (4):661–69. doi:10.1007/s11663-999-0027-4.
  • Rigby, M., G. Droop, D. Plant, and P. Graser. 2008. Electron probe microanalysis of oxygen in cordierite: Potential implications for the analysis of volatiles in minerals. South African Journal of Geology 111 (2–3):239–50. doi:10.2113/gssajg.111.2-3.239.
  • Shevchenko, M., and E. Jak. 2017. Experimental liquidus studies of the Pb-Fe-Si-O system in equilibrium with metallic Pb. Metallurgical and Materials Transactions B 2017:49. doi:10.1007/s11663-017-1136-0.
  • Shevchenko, M., and E. Jak. 2019a. Experimental liquidus studies of the Pb-Fe-Si-O System in air. Journal of Phase Equilibria and Diffusion 40 (3):319–25. doi:10.1007/s11669-019-00727-x.
  • Shevchenko, M., and E. Jak. 2019b. Experimental liquidus studies of the binary Pb-Cu-O and ternary Pb-Cu-Si-O systems in equilibrium with metallic Pb-Cu alloys. Journal of Phase Equilibria and Diffusion 40:671–85. doi:10.1007/s11669-019-00754-8.
  • Shimpo, R., S. Goto, O. Ogawa, and I. Asakura. 1986. A study on the equilibrium between copper matte and slag. Canadian Metallurgical Quarterly 25 (2):113–21. doi:10.1179/cmq.1986.25.2.113.
  • Shishin, D., S. Decterov, and E. Jak. 2015. Thermodynamic assessment and database for the Cu–Fe–O–S system. CALPHAD 50:144–58. doi:10.1016/j.calphad.2015.06.004.
  • Shishin, D., S. Decterov, and E. Jak. 2018. Thermodynamic assessment of slag-matte-metal equilibria in the Cu–Fe–O–S–Si system. Journal of Phase Equilibrium and Diffusion 39:475. doi:10.1007/s11669-018-0661-0.
  • Shishin, D., P. C. Hayes, and E. Jak. 2018. Multicomponent thermodynamic databases for complex non-ferrous pyrometallurgical processes. Extraction 2018, 853–68. Ottawa, Canada. doi:10.1007/978-3-319-95022-8_68.
  • Sineva, S., J. Chen, T. Hidayat, M. Shevchenko, P. C. Hayes, and E. Jak. 2020a. Experimental investigation of slag/matte/metal/tridymite equilibria in the Cu–Fe–O–S–Si system at 1473 K (1200 °C), 1523 K (1250 °C) and 1573 K (1300 °C). International Journal of Materials Research (Formerly Z.Metallkd.) 111:1–7.
  • Sineva, S., J. Chen, T. Hidayat, M. Shevchenko, P. C. Hayes, and E. Jak. 2020b. Experimental investigation of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si-Al-Ca-Mg system in controlled gas atmosphere: Experimental results at 1473 K (1200 °C), 1573 K (1300 °C) and pSO2 = 0.25 atm. Journal of Phase Equilibria and Diffusion 41 (3):243–56. doi:10.1007/s11669-020-00810-8.
  • Starykh, R. V., S. I. Sineva, and S. B. Zakhryapin. 2010. Study of the liquidus and solidus surfaces of the four-component Fe-Ni-Cu-S system. IV. Construction of a meltability diagram and determination of miscibility gap boundaries for the ternary Cu–Fe–S sulphide system. Russian Metallurgy (Metally) 11:1025–31. doi:10.1134/s0036029510110066.
  • Tavera, F. J., and E. Bedolla. 1990. Distribution of copper, sulphur, oxygen and minor elements between silica-saturated slag, matte and copper - experimental measurements. International Journal of Mineral Processing 29:289–309. doi:10.1016/0301-7516(90)90060-C.
  • Wan, X., L. Shen, A. Jokilaakso, H. Eriç, and P. Taskinen. 2020. Experimental approach to matte–slag reactions in the flash smelting process. Mineral Processing and Extractive Metallurgy Review. doi:10.1080/08827508.2020.1737801.
  • Wen, X., M. Shevchenko, and E. Jak. 2021. Experimental study of “CuO0.5”-“FeO”-SiO2 and “FeO”-SiO2 systems in equilibrium with metal at 1400–1680 °C. Journal of Alloys and Compounds 885:160853. doi:10.1016/j.jallcom.2021.160853.
  • Yang, S.-Y., R.-X. Zhang, S.-Y. Jing, and J. Xie. 2017. Electron probe microanalysis of variable oxidation state oxides: Protocol and pitfalls. Geostandards and Geoanalytical Recearch 42 (1):131–37. doi:10.1111/ggr.12199.
  • Yazawa, A., and M. Kameda. 1955. Fundamental Studies on Copper Smelting. IV. Solubility of FeO in Copper Matte from SiO2-saturated FeO-SiO2 Slag. Technology Reports of the Tohoku University 19:251–61.
  • Yazawa, A., S. Nakazawa, and Y. Takeda. 1983. Distribution behaviour of various elements in copper smelting systems. Proceedings International Sulphide Smelting Symposium, 99–103. San Francisco, USA: Metallurgical Society of AIME.
  • Zoukel, A., and L. Khouchaf. 2014. The secondary X-ray fluorescence and absorption near the interface of multi-material: Case of EDS microanalysis. Micron 67 (Dec):81–89. doi:10.1016/j.micron.2014.06.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.