361
Views
0
CrossRef citations to date
0
Altmetric
Review

Washability Analysis of Coal Using RhoVol: A Novel 3D Image-based Method

, , &

References

  • Behera, D., B. Nandi, and S. Bhattacharya. 2019. Chemical properties and combustion behavior of constituent relative density fraction of a thermal coal. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41:654–64. doi:10.1080/15567036.2018.1520348.
  • Behera, D., B. Nandi, and S. Bhattacharya. 2020. Studies on combustion characteristics of density by density analyzed coal. The Journal of Energy Resources Technology 142 (1):012301. doi:10.1115/1.4044973.
  • Blott, S. J., and K. Pye. 2008. Particle shape: A review and new methods of characterization and classification. Sedimentology 55:31–63.
  • Botlhoko, S., Q. P. Campbell, M. le Roux, and F. Nakhaei. 2021. Application of Rhovol information for coal washability analysis. Coal Processing Conference 2021, Secunda, South Africa
  • Fofana, M., and T. Steyn. 2019. Monitoring the performance of DMS circuits using RhoVol technology. Journal of the Southern African Institute of Mining and Metallurgy 119 (2):133.
  • Forbes, K., A. Voigt, and N. Bodika. 2003. Using silhouette consistency constraints to build 3D models. Proceedings of the Fourteenth Annual Symposium of the Pattern Recognition Association of South Africa (PRASA 2003), 33–38, Langebaan, South Africa, November.
  • Forbes, K., F. Nicolls, G. Dejager, and A. Voigt. 2006. Shape-from-silhouette with two mirrors and an uncalibrated camera. Proceedings of the 9th European Conference on Computer Vision (ECCV 2006), 165–78. Graz, Austria: Springer, May 7–13.
  • Irannajad, M., F. Nakhaei, and S. Mohammadnejad. 2018. Correlation between column flotation froth image features in respect to operational variables. Journal of Mineral Resources Engineering 3 (1):59–76.
  • Iveson, S. M., D. M. Hunter, and K. P. Galvin. 2015. A water-based method for measuring density-based partition curves of separators used in coal and mineral processing. Minerals Engineering 79:196–211. doi:10.1016/j.mineng.2015.06.008.
  • Jargalmaa, S., T. Gerelmaa, E. Baterdene, G. Tsatsral, B. Avid, B. Purevsuren, J. Dugarjav. 2015. Washability of coal from seams IV and VIII of the Tavantolgoi deposit. Natural Resources Research 24:189–95. doi:10.1007/s11053-014-9245-9.
  • Kawatra, S. K. 2020. Advanced coal preparation and beyond: CO2 capture and utilization. 1st ed. Taylor & Francis, Boca Raton: CRC Press.
  • Kelkar, S., S. Stella, C. Boushey, and M. Okos. 2011. Developing novel 3d measurement techniques and prediction method for food density determination. Procedia Food Science 1:483–91. doi:10.1016/j.profoo.2011.09.074.
  • Kim, Y., and G. Dodbiba. 2021. A novel method for simultaneous evaluation of particle geometry by using image processing analysis. Powder Technology 393:60–73. doi:10.1016/j.powtec.2021.07.058.
  • Korkmaz, A. A., and İ. Bentli. 2017. Determination of washability characteristics of Arguvan- Malatya lignite by different washability index methods. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (14):1572–80. doi:10.1080/15567036.2017.1347730.
  • Korolev, I., and V. I. Udovitskiy. 2016. Analytical representation of washability curves with application in the simulation of gravity concentration methods. In XVIII International Coal Preparation Congress, eds. V. Litvinenko, 192–96. Switzerland: Springer International Publishing.
  • Ludwick, J. C., and P. L. Henderson. 1986. Particle shape and inference of size from Sieving. Sedimentology 11 (3–4):197–235. doi:10.1111/j.1365-3091.1968.tb00853.x.
  • Majumder, A. K., and J. P. Barnwal. 2004. Development of a new coal washability index. Minerals Engineering 17:93–96. doi:10.1016/j.mineng.2003.10.005.
  • Mangera, R., G. Morrison, and A. P. Voigt. 2016. Particle volume correction using shape features. Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech), 1–6. Stellenbosch, South Africa, 30 November–2 December.
  • Mendoza, F., P. Verboven, H. K. Mebatsion, G. Kerkhofs, M. Wevers, and B. Nicolai. 2007. Three-dimensional pore space quantification of apple tissue using X-ray computed microtomography. Planta 226:559–70. doi:10.1007/s00425-007-0504-4.
  • Meyers, R. A., J. S. Laskowski, and A. D. Walters. 2003. Coal preparation. In The encyclopedia of physical science and technology, ed. R. A. Meyers, 79–106. San Diego: Academic Press.
  • Miller, J. D., C. L. Lin, and A. B. Cortes. 1990. A review of X-ray computed tomography and its applications in mineral processing. Mineral Processing and Extractive Metallurgy Review 7 (1):1–18. doi:10.1080/08827509008952663.
  • Mukherjee, A. K., and S. N. Gurulaxmi. 2013. Float-sink apparatus and its use in the mineral industry. Mineral Processing and Extractive Metallurgy Review 34 (2):130–38. doi:10.1080/08827508.2011.635734.
  • Mukherjee, A. K. 2009. A new method for evaluation of gravity separation processes. Mineral Processing and Extractive Metallurgy Review 30 (3):191–210. doi:10.1080/08827500802405756.
  • Nakhaei, F., M. Irannajad, and S. Mohammadnejad. 2018. Evaluation of column flotation froth behavior by image analysis: Effects of operational factors in desulfurization of iron ore concentrate. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (19):2286–306. doi:10.1080/15567036.2018.1486485.
  • Nakhaei, F., M. Irannajad, and S. Mohammadnejad. 2019a. A comprehensive review of froth surface monitoring as an aid for grade and recovery prediction of flotation process. Part A: Structural Features, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2019.1663313.
  • Nakhaei, F., M. Irannajad, and S. Mohammadnejad. 2019b. Column flotation performance prediction: PCA, ANN and image analysis-based approaches. Physicochemical Problems of Mineral Processing 55 (5):1298–310.
  • Sushobhan, P., and M. Satyabrata. 2020. A method to perform float-and-sink test for separation of coal samples of various densities and determination of ‘Probable error’ and ‘Imperfection. IOP SciNotes 1:024403. doi:10.1088/2633-1357/abaf36.
  • Van Vlierberghe, S., G. J. Graulus, S. Keshari Samal, I. Van Nieuwenhove, and P. Dubruel. 2014. Porous hydrogel biomedical foam scaffolds for tissue repair. In Biomedical foams for tissue engineering applications, ed. P. A. Netti, 335–90. Cambridge, UK: Woodhead Publishing (76).
  • Zhang, Q., Y. Z. Tian, Y. Q. Qiu, J. X. Cao, and T. C. Xiao. 2011. Study on the washability of the Kaitai coal, Guizhou province China. Fuel Processing Technology 92:692–98. doi:10.1016/j.fuproc.2010.11.030.
  • Zhang, Y. R., N. Yoon, and E. M. Holuszko. 2021. Assessment of coal sortability and washability using dual energy X-ray transmission system. International Journal of Coal Preparation and Utilization 1–13. doi:10.1080/19392699.2021.1914024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.