1,477
Views
7
CrossRef citations to date
0
Altmetric
Research Article

A Green Approach for Selective Ionometallurgical Separation of Lithium from Spent Li-Ion Batteries by Deep Eutectic Solvent (DES): Process Optimization and Kinetics Modeling

ORCID Icon, , ORCID Icon &

References

  • Abbott, A. P., D. Boothby, G. Capper, D. L. Davies, and R. K. Rasheed. 2004. Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. Journal of the American Chemical Society 126 (29):9142–47. doi:10.1021/ja048266j.
  • Abbott, A. P., G. Capper, D. L. Davies, R. K. Rasheed, and V. Tambyrajah. 2003. Novel solvent properties of choline chloride/urea mixturesElectronic supplementary information (ESI) available: Spectroscopic data. Chemical Communications (1):70–71. https://doi.org/10.1039/B210714G
  • Abbott, A., G. Capper, D. Davies, and P. Shikotra. 2006. Processing metal oxides using ionic liquids. Mineral Processing and Extractive Metallurgy 115 (1):15–18. doi:10.1179/174328506X91293.
  • Abbott, A. P., Collins, J., Dalrymple, I., Harris, R.C., Mistry, R., Qiu, F., Scheirer, J., and Wise, W.R. 2009. Processing of electric arc furnace dust using deep eutectic solvents. Australian Journal of Chemistry. 62(4):341–47. doi:10.1071/CH08476.
  • Aktas, S., D. Fray, O. Burheim, J. Fenstad, and E. Açma. 2006. Recovery of metallic values from spent Li ion secondary batteries. Mineral Processing and Extractive Metallurgy 115 (2):95–100. doi:10.1179/174328506X109040.
  • Al-Thyabat, S., T. Nakamura, E. Shibata, and A. Iizuka. 2013. Adaptation of minerals processing operations for lithium-ion (LiBs) and nickel metal hydride (NiMH) batteries recycling: Critical review. Minerals Engineering 45:4–17. doi:10.1016/j.mineng.2012.12.005.
  • Albler, F.-J., K. Bica, M. R. S. Foreman, S. Holgersson, and M. S. Tyumentsev. 2017. A comparison of two methods of recovering cobalt from a deep eutectic solvent: Implications for battery recycling. Journal of Cleaner Production 167:806–14. doi:10.1016/j.jclepro.2017.08.135.
  • Asadi Dalini, E., G. Karimi, S. Zandevakili, and M. Goodarzi. 2021. A review on environmental, economic and hydrometallurgical processes of recycling spent lithium-ion batteries. Mineral Processing and Extractive Metallurgy Review 42 (7):451–72. doi:10.1080/08827508.2020.1781628.
  • Bakkar, A. 2014. Recycling of electric arc furnace dust through dissolution in deep eutectic ionic liquids and electrowinning. Journal of Hazardous Materials 280:191–99. doi:10.1016/j.jhazmat.2014.07.066.
  • Brooks, G., M. Cooksey, G. Wellwood, and C. Goodes. 2007. Challenges in light metals production. Mineral Processing and Extractive Metallurgy 116 (1):25–33. doi:10.1179/174328507X163733.
  • Chagnes, A., and B. Pospiech. 2013. A brief review on hydrometallurgical technologies for recycling spent lithium‐ion batteries. Journal of Chemical Technology and Biotechnology 88 (7):1191–99. doi:10.1002/jctb.4053.
  • Chelgani, S. C., and J. C. Hower. 2018. Estimating REY content of eastern Kentucky coal samples based on their associated ash elements. Journal of Rare Earths 36 (11):1234–38. doi:10.1016/j.jre.2018.02.015.
  • Chelgani, S. C., and S. S. Matin. 2018. Study the relationship between coal properties with Gieseler plasticity parameters by random forest. International Journal of Oil, Gas and Coal Technology 17 (1):113–27. doi:10.1504/IJOGCT.2018.089345.
  • Chelgani, S. C., S. Matin, and S. Makaremi. 2016. Modeling of free swelling index based on variable importance measurements of parent coal properties by random forest method. Measurement 94:416–22. doi:10.1016/j.measurement.2016.07.070.
  • Chernyaev, A., Y. Zou, B. P. Wilson, and M. Lundström. 2022. The interference of copper, iron and aluminum with hydrogen peroxide and its effects on reductive leaching of LiNi1/3Mn1/3Co1/3O2. Separation and Purification Technology 281:119903. doi:10.1016/j.seppur.2021.119903.
  • Dewulf, J., Van der Vorst, G., Denturck, K., Van Langenhove, H., Ghyoot, W., Tytgat, J., and Vandeputte, K. 2010. Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings. Resources, Conservation and Recycling. 54(4):229–34. doi:10.1016/j.resconrec.2009.08.004.
  • Dorella, G., and M. B. Mansur. 2007. A study of the separation of cobalt from spent Li-ion battery residues. Journal of Power Sources 170 (1):210–15. doi:10.1016/j.jpowsour.2007.04.025.
  • Entezari-Zarandi, A., D. Azizi, P. A. Nikolaychuk, F. Larachi, and L.-C. Pasquier. 2020. Selective recovery of molybdenum over rhenium from molybdenite flue dust leaching solution using PC88A extractant. Metals 10 (11):1423. doi:10.3390/met10111423.
  • Entezari-Zarandi, A., and F. Larachi. 2019. Selective dissolution of rare-earth element carbonates in deep eutectic solvents. Journal of Rare Earths 37 (5):528–33. doi:10.1016/j.jre.2018.07.015.
  • Entezari, A., M. Karamoozian, and M. Eskandari Nasab. 2013. Investigation on selective rhenium leaching from molybdenite roasting flue dusts. Journal of Mining and Environment 4 (2):77–82.
  • Fan, B., X. Chen, T. Zhou, J. Zhang, and B. Xu. 2016. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries. Waste Management & Research: The Journal for a Sustainable Circular Economy 34 (5):474–81. doi:10.1177/0734242X16634454.
  • Ferreira, D. A., L. M. Z. Prados, D. Majuste, and M. B. Mansur. 2009. Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries. Journal of Power Sources 187 (1):238–46. doi:10.1016/j.jpowsour.2008.10.077.
  • Ghasemi, S. M. S., and A. Azizi. 2018. Alkaline leaching of lead and zinc by sodium hydroxide: Kinetics modeling. Journal of Materials Research and Technology 7 (2):118–25. doi:10.1016/j.jmrt.2017.03.005.
  • Ghassa, S., A. Farzanegan, M. Gharabaghi, and H. Abdollahi. 2020. The reductive leaching of waste lithium ion batteries in presence of iron ions: Process optimization and kinetics modelling. Journal of Cleaner Production 262:121312. doi:10.1016/j.jclepro.2020.121312.
  • Gissey, G. C., P. E. Dodds, and J. Radcliffe. 2018. Market and regulatory barriers to electrical energy storage innovation. Renewable and Sustainable Energy Reviews 82:781–90. doi:10.1016/j.rser.2017.09.079.
  • Golmohammadzadeh, R., F. Rashchi, and E. Vahidi. 2017. Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects. Waste Management 64:244–54. doi:10.1016/j.wasman.2017.03.037.
  • Habashi, F. 1969. Principles of extractive metallurgy: Volume 1: General principles. New York: Gordon and Breach.
  • Habashi, F. 2005. Fire and the art of metals: A short history of pyrometallurgy. Mineral Processing and Extractive Metallurgy 114 (3):165–71. doi:10.1179/037195505X63358.
  • Hanisch, C., Loellhoeffel, T, J.Diekmann, J., Markley, K.J., Haselrieder, W., and Kwade, A. 2015. Recycling of lithium-ion batteries: A novel method to separate coating and foil of electrodes. Journal of Cleaner Production 108:301–11. doi:10.1016/j.jclepro.2015.08.026.
  • HAR, S., and H. Sohn. 2005. The kinetics of metallurgical reactions. Fundamentals of Metallurgy 10 270 .
  • He, L.-P., S.-Y. Sun, X.-F. Song, and J.-G. Yu. 2015. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning. Waste Management 46:523–28. doi:10.1016/j.wasman.2015.08.035.
  • Huang, K., J. Li, and Z. Xu. 2009. A novel process for recovering valuable metals from waste nickel− cadmium batteries. Environmental Science & Technology 43 (23):8974–78. doi:10.1021/es901659n.
  • Jafari, M., Golzadeh, M., Shafaei, S., Abdollahi, H., Gharabaghi, M., and Chehreh Chelgani, S. 2019. Effects of conventional flotation frothers on the population of mesophilic microorganisms in different cultures. Processes. 7(10):653. doi:10.3390/pr7100653.
  • Jha, M. K., Kumari, A., Jha, A.K., Kumar, V., Hait, J. and Pandey, B.D. 2013. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone. Waste Management. 33(9):1890–97. doi:10.1016/j.wasman.2013.05.008.
  • Ji, Y., C. T. Jafvert, and F. Zhao. 2021. Recovery of cathode materials from spent lithium-ion batteries using eutectic system of lithium compounds. Resources, Conservation and Recycling 170:105551. doi:10.1016/j.resconrec.2021.105551.
  • Kumar, R. V. 2017. A low-cost green technology for recovering lead paste and lead-alloy grid materials for spent lead acid batteries. Mineral Processing and Extractive Metallurgy 126 (1–2):89–93. doi:10.1080/03719553.2016.1263783.
  • Levenspiel, O. 1999. Chemical reaction engineering. New York: John Wiley & Sons.
  • Li, M.T., Wei, C., Zhou, X.J., Qiu, S., Deng, Z.G and Li, X.B. 2012. Kinetics of vanadium leaching from black shale in non-oxidative conditions. Mineral Processing and Extractive Metallurgy. 121(1):40–47. doi:10.1179/1743285511Y.0000000012.
  • Li, L., Fan, E., Guan, Y., Zhang, X., Xue, Q., Wei, L., Wu, F., and Chen, R. 2017. Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system. ACS Sustainable Chemistry & Engineering. 5(6):5224–33. doi:10.1021/acssuschemeng.7b00571.
  • Lin, X., F. Pan, and H. Wang. 2014. Progress of Li4Ti5O12 anode material for lithium ion batteries. Materials Technology 29 (sup4):A82–A87. doi:10.1179/1753555714Y.0000000170.
  • Liu, F., Peng, C., Porvali, A., Wang, Z., Wilson, B.P. and Lundström, M. 2019. Synergistic recovery of valuable metals from spent Nickel–Metal hydride batteries and Lithium-Ion batteries. ACS Sustainable Chemistry & Engineering. 7(19):16103–11. doi:10.1021/acssuschemeng.9b02863.
  • Liu, C., Q. Yan, X. Zhang, L. Lei, and C. Xiao. 2020. Efficient recovery of end-of-life NdFeB permanent magnets by selective leaching with deep eutectic solvents. Environmental Science & Technology 54 (16):10370–79. doi:10.1021/acs.est.0c03278.
  • Lu, J., and K. S. Lee. 2016. Spinel cathodes for advanced lithium ion batteries: A review of challenges and recent progress. Materials Technology 31 (11):628–41. doi:10.1080/10667857.2016.1208957.
  • Lyu, Y., Y. Liu, and L. Gu. 2015. Surface structure evolution of cathode materials for Li-ion batteries. Chinese Physics B 25 (1):18209. doi:10.1088/1674-1056/25/1/018209.
  • Mao, J., J. Li, and Z. Xu. 2018. Coupling reactions and collapsing model in the roasting process of recycling metals from LiCoO2 batteries. Journal of Cleaner Production 205:923–29. doi:10.1016/j.jclepro.2018.09.098.
  • Marcus, Y., Zakharchenko. 2019. Deep Eutectic Solvents. New York: Springer.
  • Mylarappa, M., Lakshmi, V.V., Mahesh, K.V., Nagaswarupa, H.P., Prashantha, S.C., Kumara, K.S., Siddeswara, D.M.K., and Raghavendra, N. 2017. Resource recovery and material characterization of metals from waste Li-ion batteries by an eco-friendly leaching agent. Materials Today: Proceedings 4(11):12215–22.
  • Nan, J., D. Han, and X. Zuo. 2005. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction. Journal of Power Sources 152:278–84. doi:10.1016/j.jpowsour.2005.03.134.
  • Nayaka, G.P., Manjanna, J., Pai, K.V., Vadavi, R., Keny, S.J. and Tripathi, V.S. 2015. Recovery of valuable metal ions from the spent lithium-ion battery using aqueous mixture of mild organic acids as alternative to mineral acids. Hydrometallurgy 151:73–77. doi:10.1016/j.hydromet.2014.11.006.
  • Nayl, A., R. Elkhashab, S. M. Badawy, and M. El-Khateeb. 2017. Acid leaching of mixed spent Li-ion batteries. Arabian Journal of Chemistry 10:S3632–S3639. doi:10.1016/j.arabjc.2014.04.001.
  • Nie, H., Xu, L., Song, D., Song, J., Shi, X., Wang, X., Zhang, L. and Yuan, Z. 2015. LiCoO2: Recycling from spent batteries and regeneration with solid state synthesis. Green Chemistry. 17(2):1276–80. doi:10.1039/C4GC01951B.
  • Orefice, M., and K. Binnemans. 2021. Solvometallurgical process for the recovery of rare-earth elements from Nd–Fe–B magnets. Separation and Purification Technology 258:117800. doi:10.1016/j.seppur.2020.117800.
  • Othman, E. A., A. G. van der Ham, H. Miedema, and S. R. Kersten. 2020. Recovery of metals from spent lithium-ion batteries using ionic liquid [P8888][Oleate]. Separation and Purification Technology 252:117435. doi:10.1016/j.seppur.2020.117435.
  • Parameswaran, K., C. Mapes, A. Ibarra, J. Landrum, and T. Morris. 2018. Sustainable development considerations in copper hydrometallurgy, extraction 2018, 1279–88. New York: Springer.
  • Peeters, N., K. Binnemans, and S. Riaño. 2020. Solvometallurgical recovery of cobalt from lithium-ion battery cathode materials using deep-eutectic solvents. United Kingdom: Green Chemistry.
  • Pinna, E. G., M. C. Ruiz, M. W. Ojeda, and M. H. Rodriguez. 2017. Cathodes of spent Li-ion batteries: Dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors. Hydrometallurgy 167:66–71. doi:10.1016/j.hydromet.2016.10.024.
  • Ray, H. S., and S. Ray. 2018. Kinetics of metallurgical processes. New York: Springer.
  • Riaño, S., Petranikova, M., Onghena, B., Vander Hoogerstraete, T., Banerjee, D., Foreman, M.R.S., Ekberg, C. and Binnemans, K. 2017. Separation of rare earths and other valuable metals from deep-eutectic solvents: A new alternative for the recycling of used NdFeB magnets. RSC Advances. 7(51):32100–13. doi:10.1039/C7RA06540J.
  • Rozelle, P. L., Khadilkar, A.B., Pulati, N., Soundarrajan, N., Klima, M.S., Mosser, M.M., Miller, C.E. and Pisupati, S.V. 2016. A study on removal of rare earth elements from US coal byproducts by ion exchange. Metallurgical and Materials Transactions E. 3(1):6–17. doi:10.1007/s40553-015-0064-7.
  • Santana, I., T. Moreira, M. Lelis, and M. Freitas. 2017. Photocatalytic properties of Co3O4/LiCoO2 recycled from spent lithium-ion batteries using citric acid as leaching agent. Materials Chemistry and Physics 190:38–44. doi:10.1016/j.matchemphys.2017.01.003.
  • Schiavi, P. G., Altimari, P., Branchi, M., Zanoni, R., Simonetti, G., Navarra, M.A. and Pagnanelli, F. 2021. Selective recovery of cobalt from mixed lithium ion battery wastes using deep eutectic solvent. Chemical Engineering Journal 417:129249. doi:10.1016/j.cej.2021.129249.
  • Scrosati, B., and J. Garche. 2010. Lithium batteries: Status, prospects and future. Journal of Power Sources 195 (9):2419–30. doi:10.1016/j.jpowsour.2009.11.048.
  • Skulcova, A., A. Russ, M. Jablonsky, and J. Sima. 2018. The pH behavior of seventeen deep eutectic solvents. Bioresource 13 (3):5042–51.
  • Smith, E. L., A. P. Abbott, and K. S. Ryder. 2014. Deep eutectic solvents (DESs) and their applications. Chemical Reviews 114 (21):11060–82. doi:10.1021/cr300162p.
  • Swain, B., J. Jeong, J.-C. Lee, G.-H. Lee, and J.-S. Sohn. 2007. Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries. Journal of Power Sources 167 (2):536–44. doi:10.1016/j.jpowsour.2007.02.046.
  • Tang, B., H. Zhang, and K. H. Row. 2015. Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. Journal of Separation Science 38 (6):1053–64. doi:10.1002/jssc.201401347.
  • Taskinen, P., A. Jokilaakso, D. Lindberg, and J. Xia. 2020. Modelling copper smelting–the flash smelting plant, process and equipment. Mineral Processing and Extractive Metallurgy 129 (2):207–20. doi:10.1080/25726641.2019.1688904.
  • Tohry, A., M. Jafari, M. Farahani, M. Manthouri, and S. C. Chelgani. 2020. Variable importance assessments of an innovative industrial-scale magnetic separator for processing of iron ore tailings. Mineral Processing and Extractive Metallurgy 1–8. doi:10.1080/25726641.2020.1827674.
  • Tran, T. T., Y. Liu, and M. S. Lee. 2021. Recovery of pure molybdenum and vanadium compounds from spent petroleum catalysts by treatment with ionic liquid solution in the presence of oxidizing agent. Separation and Purification Technology 255:117734. doi:10.1016/j.seppur.2020.117734.
  • Tran, M. K., M.-T. F. Rodrigues, K. Kato, G. Babu, and P. M. Ajayan. 2019. Deep eutectic solvents for cathode recycling of Li-ion batteries. Nature Energy 4 (4):339. doi:10.1038/s41560-019-0368-4.
  • von Gleich, A., R. U. Ayres, and S. Gössling-Reisemann. 2007. Sustainable metals management: Securing our future-steps towards a closed loop economy, 19. New York: Springer Science & Business Media.
  • Wang, Y., S. Jin, Y. Lv, Y. Zhang, and H. Su. 2017. Hydrometallurgical process and kinetics of leaching manganese from semi-oxidized manganese ores with sucrose. Minerals 7 (2):27. doi:10.3390/min7020027.
  • Wang, W., Y. Zhang, X. Liu, and S. Xu. 2019. A simplified process for recovery of Li and Co from spent LiCoO2 cathode using Al foil as the in situ reductant. ACS Sustainable Chemistry & Engineering 7 (14):12222–30.
  • Wang, -M.-M., -C.-C. Zhang, and F.-S. Zhang. 2016. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach. Waste Management 51:239–44. doi:10.1016/j.wasman.2016.03.006.
  • Winslow, K. M., S. J. Laux, and T. G. Townsend. 2018. A review on the growing concern and potential management strategies of waste lithium-ion batteries. Resources, Conservation and Recycling 129:263–77. doi:10.1016/j.resconrec.2017.11.001.
  • Xiong, F., Yan, H.J., Chen, Y., Xu, B., Le, J.X., and Ouyang, C.Y. 2012. The atomic and electronic structure changes upon delithiation of LiCoO2: From first principles calculations. Int. J. Electrochem. Sci 7 (10):9390–400.
  • Yang, Y., G. Huang, S. Xu, Y. He, and X. Liu. 2016. Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries. Hydrometallurgy 165:390–96. doi:10.1016/j.hydromet.2015.09.025.
  • Zeng, X., J. Li, and N. Singh. 2014. Recycling of spent lithium-ion battery: A critical review. Critical Reviews in Environmental Science and Technology 44 (10):1129–65. doi:10.1080/10643389.2013.763578.
  • Zhang, X., L. Ji, O. Toprakci, Y. Liang, and M. Alcoutlabi. 2011. Electrospun nanofiber-based anodes, cathodes, and separators for advanced lithium-ion batteries. Polymer Reviews 51 (3):239–64. doi:10.1080/15583724.2011.593390.
  • Zhang, Q., K. D. O. Vigier, S. Royer, and F. Jerome. 2012. Deep eutectic solvents: Syntheses, properties and applications. Chemical Society Reviews 41 (21):7108–46. doi:10.1039/c2cs35178a.
  • Zheng, B., Xu, H., Guo, L, Yu, X., Ji, J., Ying, C., Chen, Y., Shen, P., Han, H., Huang, C., and Zhang, S. 2016. Sustainable recycling and regeneration of cathode scraps from industrial production of lithium-ion batteries. ACS Sustainable Chemistry & Engineering. 4(12):7041–49. doi:10.1021/acssuschemeng.6b01948.
  • Zhu, F., H. Xia, and T. Feng. 2015. Nanowire interwoven NiCo2S4 nanowall arrays as promising anodes for lithium ion batteries. Materials Technology 30 (sup2):A53–A57. doi:10.1179/17535557A15Y.000000007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.