604
Views
3
CrossRef citations to date
0
Altmetric
Review

Eco-Friendly and Biodegradable Depressants in Chalcopyrite Flotation: A Review

ORCID Icon &

References

  • Abramov, A. A., and K. S. E. Forssberg. 2005. Chemistry and optimal conditions for copper minerals flotation: Theory and practice. Mineral Processing and Extractive Metallurgy Review. doi:10.1080/08827500590883197.
  • Adams, M. D. 2013. Impact of recycling cyanide and its reaction products on upstream unit operations. Minerals Engineering. doi:10.1016/j.mineng.2013.04.012.
  • Agorhom, E. A., W. Skinner, and M. Zanin. 2014. Diethylenetriamine depression of Cu-activated pyrite hydrophobised by xanthate. Minerals Engineering 57:36–42. doi:10.1016/j.mineng.2013.12.010.
  • Agorhom, E. A., W. Skinner, and M. Zanin. 2015. Post-Regrind selective depression of pyrite in pyritic copper-gold flotation using aeration and diethylenetriamine. Minerals Engineering. doi:10.1016/j.mineng.2014.11.019.
  • Agorhom, E. A., S. N. Asare-Asher, and S. B. Woeko. 2018. Synergistic Effect of Diethylenetriamine and Sodium Metabisulphite on Xanthate-Induced Flotation of Cu-activated Pyrite. Ghana Mining Journal 18:56–60 doi:10.4314/gm.v18i2.7.
  • Ahmadi, M., M. Gharabaghi, and H. Abdollahi. 2018. Effects of type and dosages of organic depressants on pyrite floatability in microflotation system. Advanced Powder Technology. doi:10.1016/j.apt.2018.08.015.
  • Ansari, A., and M. Pawlik. 2007. Floatability of chalcopyrite and molybdenite in the presence of lignosulfonates. Part I. Adsorption studies. Minerals Engineering 20:600–08. doi:10.1016/j.mineng.2006.12.007.
  • Arancibia-Bravo, M. P., A. López-Valdivieso, L. F. Flores, and L. A. Cisternas. 2020. Effects of Potassium Propyl Xanthate Collector and Sodium Sulfite Depressant on the Floatability of Chalcopyrite in Seawater and KCl Solutions. Minerals 10:991. doi:10.3390/min10110991.
  • Asghari, M., F. Nakhaei, and O. VandGhorbany. 2018. Copper recovery improvement in an industrial flotation circuit: A case study of Sarcheshmeh copper mine. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. doi:10.1080/15567036.2018.1520356.
  • Azizi, A. 2017. A study on the modified flotation parameters and selectivity index in copper flotation. Particulate Science and Technology 35:38–44. doi:10.1080/02726351.2015.1121942.
  • Bai, X., J. Liu, Q. Feng, S. Wen, W. Dong, and Y. Lin. 2021. Study on selective adsorption of organic depressant on chalcopyrite and pyrite surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects. doi:10.1016/j.colsurfa.2021.127210.
  • Bakalarz, A., M. Duchnowska, and R. Kubik. 2018. Influence of dextrin on beneficiation of components from copper flotation concentrate. IOP Conference Series: Materials Science and Engineering 427, 012006. 10.1088/1757-899X/427/1/012006
  • Bakalarz, A. 2021. An Analysis of Copper Concentrate from a Kupferschiefer-type Ore from Legnica-Glogow Copper Basin (SW Poland). Mineral Processing and Extractive Metallurgy Review. doi:10.1080/08827508.2021.1971663.
  • Beattie, D. A., L. Huynh, G. B. N. Kaggwa, and J. Ralston. 2006. The effect of polysaccharides and polyacrylamides on the depression of talc and the flotation of sulphide minerals. Minerals Engineering 19:598–608. doi:10.1016/j.mineng.2005.09.011.
  • Bogusz, E., S. R. Brienne, I. Butler, S. R. Rao, and J. A. Finch. 1997. Metal ions and dextrin adsorption on pyrite. Minerals Engineering. doi:10.1016/s0892-6875(97)00020-4.
  • Bulatovic, S. M. 1999. Use of Organic Polymers in the flotation of polymetallic ores: A review. Minerals Engineering 12:341–54 doi:10.1016/S0892-6875(99)00015-1.
  • Castellón, C. I., E. C. Piceros, N. Toro, P. Robles, A. López-Valdivieso, and R. I. Jeldres. 2020. Depression of pyrite in seawater flotation by guar gum. Metals. doi:10.3390/met10020239.
  • Chapagai, M. K., B. Fletcher, and M. J. Gidley. 2022. Adsorption and depression effects of native starch, oxidized starch, and dextrin on graphite. Minerals Engineering 181:107549. doi:10.1016/J.MINENG.2022.107549.
  • Chen, J., Y. Li, and Y. Chen. 2011. Cu–s flotation separation via the combination of sodium humate and lime in a low pH medium. Minerals Engineering 24:58–63. doi:10.1016/j.mineng.2010.09.021.
  • Chen, W., Q. Feng, G. Zhang, Q. Yang, and C. Zhang. 2017. The effect of sodium alginate on the flotation separation of scheelite from calcite and fluorite. Minerals Engineering. doi:10.1016/j.mineng.2017.07.016.
  • Chen, Z., G. Gu, S. Li, S. Song, and C. Wang. 2018. Influence of Particle Size in Talc Suppression by a Galactomannan Depressant. Minerals 8:122. doi:10.3390/min8040122.
  • Chen, W., T. Chen, X. Bu, F. Chen, Y. Ding, C. Zhang, S. Deng, and Y. Song. 2019. The selective flotation of chalcopyrite against galena using alginate as a depressant. Minerals Engineering. doi:10.1016/j.mineng.2019.105848.
  • Chen, X., G. Gu, and Z. Chen. 2019a. Seaweed glue as a novel polymer depressant for the selective separation of chalcopyrite and galena. International Journal of Minerals, Metallurgy and Materials 26:1495–503. doi:10.1007/s12613-019-1848-z.
  • Chen, X., G. Gu, L. Li, and Z. Chen. 2019b. Effect of food-grade guar gum on flotation separation of chalcopyrite and monoclinic pyrrhotite in low-alkali systems. Physicochemical Problems of Mineral Processing. doi:10.5277/ppmp18152.
  • Chen, X., G. Gu, R. Zhu, and C. Wang. 2019c. Selective separation of chalcopyrite from jamesonite with guar gum. Physicochemical Problems of Mineral ProcessingPhysicochemical Problems of Mineral Processing. doi:10.5277/ppmp18125.
  • Chen, W., F. Chen, Z. Zhang, X. Tian, X. Bu, and Q. Feng. 2021. Investigations on the depressant effect of sodium alginate on galena flotation in different sulfide ore collector systems. Minerals Engineering. doi:10.1016/j.mineng.2020.106705.
  • Chen, X., S. Liu, and Y. Peng. 2021. A new approach to selectively reject naturally hydrophobic Gangue in the flotation of base metal sulphide minerals. Mining, Metallurgy and Exploration. doi:10.1007/s42461-020-00365-9.
  • Chen, Z., Y. Wang, L. Luo, T. Peng, F. Guo, and M. Zheng. 2021. Enhancing flotation separation of chalcopyrite and magnesium silicate minerals by surface synergism between PAAS and GA. Scientific Reports 11:6368. doi:10.1038/s41598-021-85984-y.
  • Chimonyo, W., B. Fletcher, and Y. Peng. 2020a. The differential depression of an oxidized starch on the flotation of chalcopyrite and graphite. Minerals Engineering. doi:10.1016/j.mineng.2019.106114.
  • Chimonyo, W., B. Fletcher, and Y. Peng. 2020b. Starch chemical modification for selective flotation of copper sulphide minerals from carbonaceous material: A critical review. Minerals Engineering 156:106522. doi:10.1016/j.mineng.2020.106522.
  • Chimonyo, W., B. Fletcher, and Y. Peng. 2021a. Adsorption and morphology of oxidized starches on graphite. Minerals Engineering 168:106936. doi:10.1016/j.mineng.2021.106936.
  • Chimonyo, W., B. Fletcher, and Y. Peng. 2021b. The effect of oxidized starches on chalcopyrite flotation. Minerals Engineering 165:106749. doi:10.1016/j.mineng.2020.106749.
  • Cuba-Chiem, L. T., L. Huynh, J. Ralston, and D. A. Beattie. 2008. In situ particle film ATR FTIR spectroscopy of carboxymethyl cellulose adsorption on talc: Binding mechanism, pH effects, and adsorption kinetics. Langmuir. doi:10.1021/la800490t.
  • da Costa Gonçalves, C., and Q. Liu. 2022. The effect of crosslinking additives and molecular weight of starch depressants on pyrrhotite and pentlandite floatabilities. Minerals Engineering. doi:10.1016/j.mineng.2022.107489.
  • De Cuyper, J., and C. Lucion. 1990. Is flotation the unavoidable way for beneficiating metal sulphide ores? Sulphide Deposits—Their Origin and Processing. doi:10.1007/978-94-009-0809-3_12.
  • Deng, W., L. Xu, J. Tian, Y. Hu, and Y. Han. 2017. Flotation and Adsorption of a New Polysaccharide Depressant on Pyrite and Talc in the Presence of a Pre-Adsorbed Xanthate Collector. Minerals 7:40. doi:10.3390/min7030040.
  • Deng, J., S. Yang, W. Zhang, C. Liu, and H. Li. 2020. The effect of lizardite on talc flotation using carboxymethyl cellulose as a depressant. Physicochemical Problems of Mineral Processing 56:702–09. doi:10.37190/ppmp/124733.
  • Dhar, P., M. Thornhill, and H. R. Kota. 2019. Investigation of Copper Recovery from a New Copper Deposit (Nussir) in Northern Norway. Mineral Processing and Extractive Metallurgy Review. doi:10.1080/08827508.2019.1635475.
  • Dong, J., Q. Liu, and S. H. Subhonqulov. 2021. Effect of dextrin on flotation separation and surface properties of chalcopyrite and arsenopyrite. Water Science and Technology 83:152–61. doi:10.2166/wst.2020.568.
  • Feng, B., Q. Feng, Y. Lu, and H. Li. 2013. Effect of solution conditions on depression of chlorite using CMC as depressant. Journal of Central South University 20:1034–38. doi:10.1007/s11771-013-1581-0.
  • Feng, B., J. Peng, W. Guo, W. Zhang, G. Ai, and H. Wang. 2018a. The effect of changes in pH on the depression of talc by chitosan and the associated mechanisms. Powder Technology 325:58–63. doi:10.1016/j.powtec.2017.11.005.
  • Feng, B., J. Peng, W. Guo, X. Zhu, and W. Huang. 2018b. The stimulus response of chitosan and its depression effect on talc flotation. Mineral Processing and Extractive Metallurgy: Transactions of the Institute of Mining and Metallurgy. doi:10.1080/03719553.2017.1288358.
  • Feng, B., W. Zhang, Y. Guo, J. Peng, X. Ning, and H. Wang. 2018c. Synergistic effect of acidified water glass and locust bean gum in the flotation of a refractory copper sulfide ore. Journal of Cleaner Production. doi:10.1016/j.jclepro.2018.08.214.
  • Feng, B., Y. Guo, W. Zhang, J. Peng, H. Wang, Z. Huang, and X. Zhou. 2019. Flotation separation behavior of chalcopyrite and sphalerite in the presence of locust bean gum. Minerals Engineering. doi:10.1016/j.mineng.2019.105940.
  • Feng, B., C. Zhong, L. Zhang, Y. Guo, T. Wang, and Z. Huang. 2020. Effect of surface oxidation on the depression of sphalerite by locust bean gum. Minerals Engineering. doi:10.1016/j.mineng.2019.106142.
  • Feng, B., X. Jiao, H. Wang, J. Peng, and G. Yang. 2021a. Improving the separation of chalcopyrite and galena by surface oxidation using hydroxyethyl cellulose as depressant. Minerals Engineering 160:106657. doi:10.1016/j.mineng.2020.106657.
  • Feng, B., C. H. Zhong, L. Z. Zhang, J. X. Peng, Y. T. Guo, T. Wang, X. H. Ning, and H. H. Wang. 2021b. Effect and mechanism of potassium-permanganate strengthening and sodium-alginate depression of sphalerite flotation. Gongcheng Kexue Xuebao/Chinese Journal of Engineering. doi:10.13374/j.issn2095-9389.2020.03.16.002.
  • Fletcher, B., W. Chimonyo, and Y. Peng. 2020. A comparison of native starch, oxidized starch and CMC as copper-activated pyrite depressants. Minerals Engineering 156:106532. doi:10.1016/j.mineng.2020.106532.
  • Fletcher, B., W. Chimonyo, and Y. Peng. 2021. The Potential of Modified Starches as Mineral Flotation Depressants. Mining, Metallurgy and Exploration. doi:10.1007/s42461-021-00379-x.
  • Fu, Y. F., W. Z. Yin, B. Yang, C. Li, Z. L. Zhu, and D. Li. 2018. Effect of sodium alginate on reverse flotation of hematite and its mechanism. International Journal of Minerals, Metallurgy and Materials. doi:10.1007/s12613-018-1662-z.
  • Furnell, E., X. Tian, and E. R. Bobicki. 2021. Diethylenetriamine as a selective pyrrhotite depressant: Properties, application, and mitigation strategies. The Canadian Journal of Chemical Engineering 99:1316–33. doi:10.1002/cjce.23943.
  • Ge, B., S. Liu, Q. Nie, Q. Li, C. Zhu, B. Ge, S. Liu, Q. Nie, Q. Li, and C. Zhu. 2013. Applying One-Stage Grinding and Flotation to Improving Copper Recovery of a Fine-Grained Cu- Mo Sulphide. Separation Science and Technology 6395. doi:10.1080/01496395.2012.753633.
  • Göktepe, F. 2011. Effect of H2O2 and NaSH addition to change the electrochemical potential in flotation of chalcopyrite and pyrite minerals. Mineral Processing and Extractive Metallurgy Review. doi:10.1080/08827508.2010.509677.
  • Gowthaman, N. S. K., H. N. Lim, T. R. Sreeraj, A. Amalraj, and S. Gopi. 2021. Chapter 15 - Advantages of biopolymers over synthetic polymers: Social, economic, and environmental aspects, in. Biopolymers and Their Industrial Applications. doi:10.1016/B978-0-12-819240-5.00015-8.
  • Grigorova, I., M. Ranchev, and I. Nishkov. 2018. Non-Cyanide Flotation Method of Iron-Rich Sphalerite in the Processing of Lead-Zinc Ores, in: Proc. of XXIX International Mineral Processing Congress. Moscow.
  • Gu, G., Z. Chen, K. Zhao, S. Song, S. Li, and C. Wang. 2019. The effect of a novel depressant on the separation of talc and copper -nickel sulfide ore. Physicochemical Problems of Mineral Processing. 10.5277/ppmp18115
  • Guo, B., Y. Peng, and R. Espinosa-Gomez. 2014. Cyanide chemistry and its effect on mineral flotation. Minerals Engineering. doi:10.1016/j.mineng.2014.06.010.
  • Gupta, N. 2017. Evaluation of graphite depressants in a poly-metallic sulfide flotation circuit. International Journal of Mining Science and Technology. doi:10.1016/j.ijmst.2017.01.008.
  • Gupta, R. C., R. B. Doss, R. C. Garg, A. Srivastava, R. Lall, and A. Sinha. 2021. Fenugreek: Multiple health benefits. In Nutraceuticals, pp. 585–602. Elsevier. doi:10.1016/B978-0-12-821038-3.00037-9.
  • Gutierrez, L., L. Uribe, V. Hernandez, C. Vidal, and R. Texeira Mendonça. 2020. Assessment of the use of lignosulfonates to separate chalcopyrite and molybdenite by flotation. Powder Technology. doi:10.1016/j.powtec.2019.10.015.
  • Han, G., S. Wen, H. Wang, and Q. Feng. 2019a. Lactic acid as selective depressant for flotation separation of chalcopyrite from pyrite and its depression mechanism. Journal of Molecular Liquids. doi:10.1016/j.molliq.2019.111774.
  • Han, G., S. Wen, H. Wang, and Q. Feng. 2019b. Effect of starch on surface properties of pyrite and chalcopyrite and its response to flotation separation at low alkalinity. Minerals Engineering 143:106015. doi:10.1016/j.mineng.2019.106015.
  • Han, G., S. Wen, H. Wang, and Q. Feng. 2020a. Selective adsorption mechanism of salicylic acid on pyrite surfaces and its application in flotation separation of chalcopyrite from pyrite. Separation and Purification Technology 240:116650. doi:10.1016/j.seppur.2020.116650.
  • Han, G., S. Wen, H. Wang, and Q. Feng. 2020b. Interaction mechanism of tannic acid with pyrite surfaces and its response to flotation separation of chalcopyrite from pyrite in a low-alkaline medium. Journal of Materials Research and Technology. doi:10.1016/j.jmrt.2020.02.067.
  • Han, G., S. Wen, H. Wang, Q. Feng, and X. Bai. 2021. Pyrogallic acid as depressant for flotation separation of pyrite from chalcopyrite under low-alkalinity conditions. Separation and Purification Technology. doi:10.1016/j.seppur.2021.118670.
  • Hartmann, R., T. Rinne, and R. Serna-Guerrero. 2021. On the Colloidal Behavior of Cellulose Nanocrystals as a Hydrophobization Reagent for Mineral Particles. Langmuir 37:2322–33. doi:10.1021/acs.langmuir.0c03131.
  • Hassanzadeh, A., and M. Hasanzadeh. 2016. A study on selective flotation in low and high pyritic copper sulphide ores. Separation Science and Technology 51:2214–24. doi:10.1080/01496395.2016.1202980.
  • Hassanzadeh, A., and M. Hasanzadeh. 2017. Chalcopyrite and pyrite floatabilities in the presence of sodium sulfide and sodium metabisulfite in a high pyritic copper complex ore. Journal of Dispersion Science and Technology. doi:10.1080/01932691.2016.1194763.
  • Hassanzadeh, A., and F. Karakaş. 2017. The kinetics modeling of chalcopyrite and pyrite, and the contribution of particle size and sodium metabisulfite to the flotation of copper complex ores. Particulate Science and Technology 35:455–61. doi:10.1080/02726351.2016.1165323.
  • Hassanzadeh, A., and F. Karakaş. 2017. Recovery improvement of coarse particles by stage addition of reagents in industrial copper flotation circuit. Journal of Dispersion Science and Technology. doi:10.1080/01932691.2016.1164061.
  • Hayat, M. B., L. Alagha, and S. M. Sannan. 2017. Flotation Behavior of Complex Sulfide Ores in the Presence of Biodegradable Polymeric Depressants. International Journal of Polymer Science 2017:1–9. doi:10.1155/2017/4835842.
  • Holley, E. A., and C. Mitcham. 2016. The Pebble Mine Dialogue: A case study in public engagement and the social license to operate. Resources Policy. doi:10.1016/j.resourpol.2015.11.002.
  • Hong, J., Y. Chen, J. Liu, X. Ma, C. Qi, and L. Ye. 2018. Life cycle assessment of copper production: A case study in China. The International Journal of Life Cycle Assessment. doi:10.1007/s11367-017-1405-9.
  • Huang, P., M. Cao, and Q. Liu. 2012. Adsorption of chitosan on chalcopyrite and galena from aqueous suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. doi:10.1016/j.colsurfa.2012.06.016.
  • Huang, P., M. Cao, and Q. Liu. 2013. Selective depression of pyrite with chitosan in Pb-Fe sulfide flotation. Minerals Engineering. doi:10.1016/j.mineng.2013.03.027.
  • Jeldres, R. I., L. Uribe, L. A. Cisternas, L. Gutierrez, W. H. Leiva, and J. Valenzuela. 2019. The effect of clay minerals on the process of flotation of copper ores - a critical review. Applied Clay Science 170:57–69. doi:10.1016/j.clay.2019.01.013.
  • Jiang, T. G., J. J. Fang, T. M. Zhang, S. Wang, and Y. B. Mao. 2014. The effects of different depressants on oxidised copper ores flotation, in. Advanced Materials Research. doi:10.4028/scientific.net/AMR.915-916.1118.
  • Jianhua, C., F. Qiming, and Ö. Leming. 1998. Separation of pyrite from chalcopyrite with organic depressant CTP. English. Transactions of Nonferrous Metals Society of China 8:132–137.
  • Jiao, F., Y. Cui, D. Wang, and C. Hu. 2022. Research of the replacement of dichromate with depressants mixture in the separation of copper-lead sulfides by flotation. Separation and Purification Technology 278:119330. doi:10.1016/J.SEPPUR.2021.119330.
  • Jin, S., Q. Shi, Q. Li, L. Ou, and K. Ouyang. 2018. Effect of calcium ionic concentrations on the adsorption of carboxymethyl cellulose onto talc surface: Flotation, adsorption and AFM imaging study. Powder Technology 331:155–61. doi:10.1016/j.powtec.2018.03.014.
  • Jin, S., P. Zhang, and L. Ou. 2021. Study on the depression mechanism of zinc sulfate on talc in chalcopyrite flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects. doi:10.1016/j.colsurfa.2021.126474.
  • Khoso, S. A., Z. Gao, X. Meng, Y. Hu, and W. Sun. 2019a. The Depression and Adsorption Mechanism of Polyglutamic Acid on Chalcopyrite and Pyrrhotite Flotation Systems. Minerals 9:510. doi:10.3390/min9090510.
  • Khoso, S. A., Z. Gao, M. Tian, Y. Hu, and W. Sun. 2019b. Adsorption and depression mechanism of an environmentally friendly reagent in differential flotation of Cu-Fe sulphides. Journal of Materials Research and Technology. doi:10.1016/j.jmrt.2019.09.009.
  • Khoso, S. A., Y. Hu, R. Liu, M. Tian, W. Sun, Y. Gao, H. Han, and Z. Gao. 2019c. Selective depression of pyrite with a novel functionally modified biopolymer in a Cu–Fe flotation system. Minerals Engineering. doi:10.1016/j.mineng.2019.02.044.
  • Khoso, S. A., Y. Hu, F. Lyu, R. Liu, and W. Sun. 2019d. Selective separation of chalcopyrite from pyrite with a novel non-hazardous biodegradable depressant. Journal of Cleaner Production 232:888–97. doi:10.1016/j.jclepro.2019.06.008.
  • Khoso, S. A., F. Lyu, X. Meng, Y. Hu, and W. Sun. 2019e. Selective separation of chalcopyrite and pyrite with a novel and non-hazardous depressant reagent scheme. Chemical Engineering Science 209:115204. doi:10.1016/j.ces.2019.115204.
  • Khoso, S. A., Z. Gao, M. Tian, Y. Hu, and W. Sun. 2020. The synergistic depression phenomenon of an organic and inorganic reagent on FeS2 in Cu S flotation scheme. Journal of Molecular Liquids 299:112198. doi:10.1016/j.molliq.2019.112198.
  • Khoso, S. A., Z. Gao, and W. Sun. 2021a. Recovery of high-grade copper concentrate from sulfur-rich porphyry ore using tricarboxystarch micromolecule as pyrite depressant. Minerals Engineering. doi:10.1016/j.mineng.2021.106916.
  • Khoso, S. A., Y. Hu, M. Tian, Z. Gao, and W. Sun. 2021b. Evaluation of green synthetic depressants for sulfide flotation: Synthesis, characterization and floatation performance to pyrite and chalcopyrite. Separation and Purification Technology 259:118138. doi:10.1016/j.seppur.2020.118138.
  • Khraisheh, M., C. Holland, C. Creany, P. Harris, and L. Parolis. 2005. Effect of molecular weight and concentration on the adsorption of CMC onto talc at different ionic strengths. International Journal of Mineral Processing 75:197–206. doi:10.1016/j.minpro.2004.08.012.
  • Kirjavainen, V., and K. Heiskanen. 2007. Some factors that affect beneficiation of sulphide nickel-copper ores. Minerals Engineering. doi:10.1016/j.mineng.2007.01.001.
  • Koleini, S. M. J., M. Abdollahy, and F. Soltani. 2012. The comparison between sodium cyanide and white dextrin as pyrite depressants in the sequential flotation Cu-Zn massive sulphide ore-taknar. In 26th International Mineral Processing Congress, IMPC 2012: Innovative Processing for Sustainable Growth - Conference Proceedings New Delhi, India 5120–5128.
  • Kor, M., P. M. Korczyk, J. Addai-Mensah, M. Krasowska, and D. A. Beattie. 2014. Carboxymethylcellulose Adsorption on Molybdenite: The Effect of Electrolyte Composition on Adsorption, Bubble–Surface Collisions, and Flotation. Langmuir 30:11975–84. doi:10.1021/la503248e.
  • Laskowski, J. S., Q. Liu, and N. J. Bolin. 1991. Polysaccharides in flotation of sulphides. Part I. Adsorption of polysaccharides onto mineral surfaces. International Journal of Mineral Processing. doi:10.1016/0301-7516(91)90054-M.
  • Legawiec, K. J., and I. Polowczyk. 2020. Evolution of ideas towards the implementation of nanoparticles as flotation reagents. Physicochemical Problems of Mineral Processing. doi:10.37190/ppmp/130269.
  • Leung, A., J. Wiltshire, A. Blencowe, Q. Fu, D. H. Solomon, and G. G. Qiao. 2011. The effect of acrylamide-co-vinylpyrrolidinone copolymer on the depression of talc in mixed nickel mineral flotation. Minerals Engineering. doi:10.1016/j.mineng.2010.12.010.
  • Li, M., D. Wei, Q. Liu, W. Liu, J. Zheng, and H. Sun. 2015. Flotation separation of copper-molybdenum sulfides using chitosan as a selective depressant. Minerals Engineering. doi:10.1016/j.mineng.2015.09.013.
  • Li, Y., L. Quanjun, L. Shimei, S. Chao, G. Yang, and S. Jianwen. 2019. The synergetic depression effect of KMnO 4 and CMC on the depression of galena flotation. Chemical Engineering Communications 206:581–91. doi:10.1080/00986445.2018.1513403.
  • Li, C., Q. Shi, G. Zhang, H. Liu, and H. Feng. 2021. Effect of aluminum ions on the adsorption of carboxymethyl cellulose onto talc. Minerals Engineering 170:107018. doi:10.1016/j.mineng.2021.107018.
  • Liang, Z., G. Li, Z. Wei, W. Wu, X. Huang, J. Wang, L. Cui, X. Ni, and S. Zhong. 2021. Replacing Dichromate with Polysaccharide Depressant in Cu-Pb Separation: Lab Bench Tests and Plant Trials in Zijin Mining. Mining, Metallurgy & Exploration 2021 38(5 38):2285–95. doi:10.1007/S42461-021-00479-8.
  • Likhacheva, S. V., and Y. N. Neradovskiy. 2017. Talc and serpentine particles morphology effect upon their distribution in flotation products (through the example of the Pechenga copper-nickel ores). Obogashchenie Rud. doi:10.17580/or.2017.01.07.
  • Lin, S., R. Liu, Y. Bu, C. Wang, L. Wang, W. Sun, and Y. Hu. 2018. Oxidative depression of arsenopyrite by using calcium hypochlorite and sodium humate. Minerals. doi:10.3390/min8100463.
  • Liu, Q., and Y. Zhang. 2000. Effect of calcium ions and citric acid on the flotation separation of chalcopyrite from galena using dextrin. Minerals Engineering 13:1405–16. doi:10.1016/S0892-6875(00)00122-9.
  • Liu, G., Q. Feng, L. Ou, Y. Lu, and G. Zhang. 2006. Adsorption of polysaccharide onto talc. Minerals Engineering. doi:10.1016/j.mineng.2005.08.005.
  • Liu, R. Q., W. Sun, Y. H. Hu, and D. Z. Wang. 2009. Effect of organic depressant lignosulfonate calcium on separation of chalcopyrite from pyrite. In Journal of Central South University of Technology, English ed. doi:10.1007/s11771-009-0125-0.
  • Liu, R. Z., W. Q. Qin, F. Jiao, X. J. Wang, B. Pei, Y. J. Yang, and C. H. Lai. 2016. Flotation separation of chalcopyrite from galena by sodium humate and ammonium persulfate. In Transactions of Nonferrous Metals Society of China, English ed. doi:10.1016/S1003-6326(16)64113-4.
  • Liu, S., X. Chen, R. A. Lauten, Y. Peng, and Q. Liu. 2018. Mitigating the negative effects of clay minerals on gold flotation by a lignosulfonate-based biopolymer. Minerals Engineering 126:9–15. doi:10.1016/j.mineng.2018.06.021.
  • Liu, J., S. Yuan, Y. Han, and Y. Li. 2019. The effects of various activators on flotation performance of lime-depressed pyrrhotite. Canadian Metallurgical Quarterly 58:132–39. doi:10.1080/00084433.2018.1535931.
  • Liu, C., Q. Feng, Q. Shi, W. Zhang, and S. Song, 2019a. Utilization of N-carboxymethyl chitosan as a selective depressant for talc in flotation of chalcopyrite. Physicochemical Problems of Mineral Processing. 10.5277/ppmp18114
  • Liu, C., W. Zhang, S. Song, and H. Li. 2019b. A novel method to improve carboxymethyl cellulose performance in the flotation of talc. Minerals Engineering 131:23–27. doi:10.1016/j.mineng.2018.11.003.
  • Liu, D., G. Zhang, G. Huang, Y. Gao, and M. Wang. 2020. Investigations on the selective flotation of chalcopyrite from talc using gum Arabic as depressant. Separation Science and Technology. doi:10.1080/01496395.2019.1677716.
  • Liu, M., C. Zhang, B. Hu, Z. Sun, Q. Xu, J. Wen, J. Xiao, Y. Dong, M. Gan, W. Sun, et al. 2020. Enhancing flotation separation of chalcopyrite and galena by the surface synergism between sodium sulfite and sodium lignosulfonate. Applied Surface Science. doi:10.1016/j.apsusc.2019.145042.
  • Liu, D., G. Zhang, and Y. Chen. 2021. Investigations on the selective depression of fenugreek gum towards galena and its role in chalcopyrite-galena flotation separation. Minerals Engineering. doi:10.1016/j.mineng.2021.106886.
  • Liu, J., J. Hao, W. Dong, and Y. Zeng. 2021. Depression mechanism of environment-friendly depressant dithiocarbamate chitosan in flotation separation of Cu-Zn sulfide. Colloids and Surfaces A: Physicochemical and Engineering Aspects 615:126290. doi:10.1016/j.colsurfa.2021.126290.
  • Liu, M., B. Hu, C. Zhang, Q. Wang, Z. Sun, P. He, Y. Chen, D. Chen, and J. Zhu. 2022. Effect of sodium silicate on the flotation separation of chalcopyrite and galena using sodium sulfite and sulfonated lignin as depressant. Minerals Engineering 182:107563. doi:10.1016/J.MINENG.2022.107563.
  • Liu, Y., Z. Wei, X. Hu, F. Zi, Y. Zhang, M. Zeng, Y. Chen, S. Chen, R. Bai, and Z. Xie. 2022. Effect of peracetic acid as a depressant on the flotation separation of chalcopyrite from arsenopyrite. Minerals Engineering 178:107426. doi:10.1016/J.MINENG.2022.107426.
  • López-Valdivieso, A., L. A. Lozano-Ledesma, A. Robledo-Cabrera, and O. A. Orozco-Navarro. 2017. Carboxymethylcellulose (CMC) as PbS depressant in the processing of Pb-Cu bulk concentrates. Adsorption and floatability studies. Minerals Engineering. doi:10.1016/j.mineng.2017.07.012.
  • López-Valdivieso, A., A. A. Sánchez-López, E. Padilla-Ortega, A. Robledo-Cabrera, E. Galvez, and L. Cisternas. 2018. Pyrite depression by dextrin in flotation with xanthates. Adsorption and floatability studies. Physicochemical Problems of Mineral Processing. doi:10.5277/ppmp18147.
  • Lotfi, R., H. M. Kalaji, G. R. Valizadeh, E. Khalilvand Behrozyar, A. Hemati, P. Gharavi-Kochebagh, and A. Ghassemi. 2018. Effects of humic acid on photosynthetic efficiency of rapeseed plants growing under different watering conditions. Photosynthetica. doi:10.1007/s11099-017-0745-9.
  • Lu, D., and Y. Wang. 2018. Optimisation of fine auriferous pyrite recovery using anionic and non-ionic collectors Mineral Processing and Extractive Metallurgyp. 6641. doi: 10.1080/03719553.2017.1346748.
  • Lu, J., M. Sun, Z. Yuan, S. Qi, Z. Tong, L. Li, and Q. Meng. 2019. Innovative insight for sodium hexametaphosphate interaction with serpentine. Colloids and Surfaces A: Physicochemical and Engineering Aspects. doi:10.1016/j.colsurfa.2018.09.076.
  • Luo, Y., G. Zhang, Q. Mai, H. Liu, C. Li, and H. Feng. 2020. Flotation separation of smithsonite from calcite using depressant sodium alginate and mixed cationic/anionic collectors. Colloids and Surfaces A: Physicochemical and Engineering Aspects. doi:10.1016/j.colsurfa.2019.124227.
  • Magdalinovic, N., M. Trumic, Z. Petkovic, and V. Rajic. 2004. Cyanide elimination from lead-zinc flotation. European European Journal of Mineral Processing and Environmental Protection 4:30–35.
  • Mai, Q., H. Zhou, and L. Ou. 2021. Flotation separation of chalcopyrite and talc using calcium ions and calcium lignosulfonate as a combined depressant. Metals. doi:10.3390/met11040651.
  • Manono, M. S., K. C. Corin, and J. G. Wiese. 2019. Inorganic Electrolytes on the Efficacy of a Carboxymethyl Cellulose as a Coagulant for Talc: Implications for Talc Depression in Flotation. In Proceedings of the International Mine Water Association Congress. Perm, Russia 15–19.
  • Marmiroli, B., L. Rigamonti, and P. R. Brito-Parada. 2022. Life Cycle Assessment in mineral processing – a review of the role of flotation. The International Journal of Life Cycle Assessment. doi:10.1007/s11367-021-02005-w.
  • Mierczynska-Vasilev, A., and D. A. Beattie. 2010. Adsorption of tailored carboxymethyl cellulose polymers on talc and chalcopyrite: Correlation between coverage, wettability, and flotation, in. Minerals Engineering. doi:10.1016/j.mineng.2010.03.025.
  • Ming, P., Z. Xie, Y. Guan, Z. Wang, F. Li, and Q. Xing. 2020. The effect of polysaccharide depressant xanthan gum on the flotation of arsenopyrite from chlorite. Minerals Engineering 157:106551. doi:10.1016/j.mineng.2020.106551.
  • Molaei, N., M. Shoaib, J. Forster, S. Khan, O. B. Wani, and E. R. Bobicki. 2022. Surface interaction between phyllosilicate particles and sustainable polymers in flotation and flocculation. RSC Advances 12:3708–15. doi:10.1039/D1RA07928J.
  • Monyake, K. C., and L. Alagha. 2020. Depression of pyrite in polymetallic sulfide flotation using chitosan-grafted-polyacrylamide, in: 2020 SME Annual Conference and Expo Arizona, USA.
  • Monyake, K. C., and L. Alagha. 2022a. Enhanced separation of base metal sulfides in flotation systems using Chitosan-grafted-Polyacrylamides. Separation and Purification Technology 281:119818. doi:10.1016/j.seppur.2021.119818.
  • Monyake, K. C., and L. Alagha. 2022b. Evaluation of Functionalized Chitosan Polymers for Pyrite’s Depression in Pb-Cu Sulfide Flotation Using Response Surface Methodology. Mining, Metallurgy & Exploration 2022:1–14. doi:10.1007/S42461-022-00592-2.
  • Moslemi, H., and M. Gharabaghi. 2017. A review on electrochemical behavior of pyrite in the froth flotation process. Journal of Industrial and Engineering Chemistry. doi:10.1016/j.jiec.2016.12.012.
  • Mu, Y., Y. Peng, and R. A. Lauten. 2015. Electrochemistry aspects of pyrite in the presence of potassium amyl xanthate and a lignosulfonate-based biopolymer depressant. Electrochimica Acta 174:133–42. doi:10.1016/j.electacta.2015.05.150.
  • Mu, Y., Y. Peng, and R. A. Lauten. 2016a. The mechanism of pyrite depression at acidic pH by lignosulfonate-based biopolymers with different molecular compositions. Minerals Engineering. doi:10.1016/j.mineng.2016.02.007.
  • Mu, Y., Y. Peng, and R. A. Lauten. 2016b. The depression of copper-activated pyrite in flotation by biopolymers with different compositions. Minerals Engineering. doi:10.1016/j.mineng.2016.06.011.
  • Mu, Y., and Y. Peng. 2019. The role of sodium metabisulphite in depressing pyrite in chalcopyrite flotation using saline water. Minerals Engineering. doi:10.1016/j.mineng.2019.105921.
  • Mweene, L., G. P. Khanal, and R. J. Kashinga. 2021. Experimental and theoretical investigation on the separation of chalcopyrite from biotite using xanthan gum as a selective depressant. Separation and Purification Technology. doi:10.1016/j.seppur.2021.119012.
  • Nakhaei, F., and M. Irannajad. 2018. Reagents types in flotation of iron oxide minerals : A review. Mineral Processing and Extractive Metallurgy Review 39:89–124. doi:10.1080/08827508.2017.1391245.
  • Nasirimoghaddam, S., A. Mohebbi, M. Karimi, and M. Reza Yarahmadi. 2020. Assessment of pH-responsive nanoparticles performance on laboratory column flotation cell applying a real ore feed. International Journal of Mining Science and Technology 30:197–205. doi:10.1016/j.ijmst.2020.01.001.
  • Ning, S., G. Li, P. Shen, X. Zhang, J. Li, R. Liu, and D. Liu. 2021. Selective separation of chalcopyrite and talc using pullulan as a new depressant. Colloids and Surfaces A: Physicochemical and Engineering Aspects. doi:10.1016/j.colsurfa.2021.126764.
  • Northey, S., S. Mohr, G. M. Mudd, Z. Weng, and D. Giurco. 2014. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resources, Conservation and Recycling 83:190–201. doi:10.1016/j.resconrec.2013.10.005.
  • Nuorivaara, T., and R. Serna-Guerrero. 2020a. Amphiphilic cellulose and surfactant mixtures as green frothers in mineral flotation. 1. Characterization of interfacial and foam stabilization properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 604:125297. doi:10.1016/j.colsurfa.2020.125297.
  • Nuorivaara, T., and R. Serna-Guerrero. 2020b. Amphiphilic cellulose and surfactant mixtures as green frothers in mineral flotation. 2. Flotation of chalcopyrite and Cu-containing tailings. Colloids and Surfaces A: Physicochemical and Engineering Aspects 603:125298. doi:10.1016/j.colsurfa.2020.125298.
  • Nuorivaara, T., and R. Serna-Guerrero. 2020c. Unlocking the potential of sustainable chemicals in mineral processing: Improving sphalerite flotation using amphiphilic cellulose and frother mixtures. Journal of Cleaner Production 261:121143. doi:10.1016/j.jclepro.2020.121143.
  • O’-Connor, C., J. Wiese, K. Corin, and B. McFadzean. 2018. A review of investigations into the management of gangue in the flotation of platinum group minerals. Physicochemical Problems of Mineral Processing. doi:10.5277/ppmp18141.
  • O’-Connor, C., J. Wiese, K. Corin, and B. McFadzean. 2019. On the Management of Gangue Minerals in the Flotation of Platinum Group Minerals. Mining, Metallurgy and Exploration. doi:10.1007/s42461-018-0026-6.
  • Owusu, C., S. Brito E Abreu, W. Skinner, J. Addai-Mensah, and M. Zanin. 2014. The influence of pyrite content on the flotation of chalcopyrite/pyrite mixtures. Minerals Engineering. doi:10.1016/j.mineng.2013.09.018.
  • Pan, G., G. Zhang, Q. Shi, and W. Chen. 2019. The effect of sodium alginate on chlorite and serpentine in chalcopyrite flotation. Minerals. doi:10.3390/min9030196.
  • Prosyanikov, E. D., B. A. Tsybikova, A. A. Batoeva, and A. A. Ryazantsev. 2009. Extraction of hydrogen cyanide from waste solutions of cyaniding circuit for sulfide flotation concentrates. Journal of Mining Science. doi:10.1007/s10913-009-0010-0.
  • Pugh, R. J. 1989. Macromolecular organic depressants in sulphide flotation-A review, 1. Principles, types and applications. International Journal of Mineral Processing. doi:10.1016/0301-7516(89)90059-8.
  • Qian, G., F. Bo, Z. Danping, and G. Jujie. 2017. Flotation separation of chalcopyrite from talc using carboxymethyl chitosan as depressant. Physicochemical Problems of Mineral Processing. doi:10.5277/ppmp170244.
  • Qin, W., Q. Wei, F. Jiao, C. Yang, R. Liu, P. Wang, and L. Ke. 2013. Utilization of polysaccharides as depressants for the flotation separation of copper/lead concentrate. International Journal of Mining Science and Technology. doi:10.1016/j.ijmst.2013.04.022.
  • Qiu, X. H. 2013. A non-toxic depressant for galena in differential flotation of Cu-Pb sulfides, in. Advanced Materials Research. doi:10.4028/scientific.net/AMR.734-737.1018.
  • Qiu, X., H. Yang, G. Chen, and W. Luo. 2018. An Alternative Depressant of Chalcopyrite in Cu–Mo Differential Flotation and Its Interaction Mechanism. Minerals 9:1. doi:10.3390/min9010001.
  • Rath, R. K., and S. Subramanian. 1999. Adsorption, electrokinetic and differential flotation studies on sphalerite and galena using dextrin. International Journal of Mineral Processing. doi:10.1016/S0301-7516(99)00028-9.
  • Rath, S. S., and H. Sahoo. 2022. A Review on the Application of Starch as Depressant in Iron Ore Flotation. Mineral Processing and Extractive Metallurgy Review 43:122–35. doi:10.1080/08827508.2020.1843028.
  • Saim, A. K. 2021. Recent Progress in the Application of Nanoparticles in Minerals Flotation. Chemical Science and Engineering Research 3. doi:10.36686/Ariviyal.CSER.2021.03.06.027.
  • Salarirad, M. M., and A. Behnamfard. 2010. The effect of flotation reagents on cyanidation, loading capacity and sorption kinetics of gold onto activated carbon. Hydrometallurgy. doi:10.1016/j.hydromet.2010.07.009.
  • Salarirad, M. M., and A. Behnamfard. 2011. Fouling effect of different flotation and dewatering reagents on activated carbon and sorption kinetics of gold. Hydrometallurgy 109:23–28. doi:10.1016/j.hydromet.2011.05.002.
  • Shen, Z., S. Wen, G. Han, Y. Zhou, X. Bai, and Q. Feng. 2021. Selective depression mechanism of locust bean gum in the flotation separation of chalcopyrite from pyrite in a low-alkalinity media. Minerals Engineering 170:107044. doi:10.1016/j.mineng.2021.107044.
  • Sigma-Aldrich® Brand [WWW Document]. 2022 Accessed 5.9.22. https://www.sigmaaldrich.com/GH/en/life-science/sigma-aldrich.
  • Sime, F. M., J. Jin, X. Wang, C. D. Wick, and J. D. Miller. 2022. Characterization and simulation of graphite edge surfaces for the analysis of carbonaceous material separation from sulfide ores by flotation. Minerals Engineering 182:107590. doi:10.1016/J.MINENG.2022.107590.
  • Solongo, S. K., A. Gomez-Flores, S. Ilyas, and H. Kim. 2021. Roles of solution chemistry and reagent–reagent interaction on carboxymethylcellulose adsorption onto graphite and implications on its floatability. Minerals Engineering 167:106873. doi:10.1016/j.mineng.2021.106873.
  • Soltanpour, R., M. Irannajad, and F. Nakhaei. 2018. Investigation of effective operating parameters on carrying capacity in column flotation of copper sulfide minerals. Particulate Science and Technology 0:1–8. doi:10.1080/02726351.2018.1435593.
  • Tabelin, C. B., I. Park, T. Phengsaart, S. Jeon, M. Villacorte-Tabelin, D. Alonzo, K. Yoo, M. Ito, and N. Hiroyoshi. 2021. Copper and critical metals production from porphyry ores and E-wastes: A review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resources, Conservation and Recycling 170:105610. doi:10.1016/j.resconrec.2021.105610.
  • Tan, X., Y. Zhu, C. Sun, X. Zhang, and J. Su. 2020. Adding cationic guar gum after collector: A novel investigation in flotation separation of galena from sphalerite. Minerals Engineering 157:106542. doi:10.1016/j.mineng.2020.106542.
  • Tian, X. (Wendy), E. Furnell, E. R. Bobicki. 2022. Predicting the fate of diethylenetriamine in pyrrhotite tailings management. Minerals Engineering 176:107335. Wendy. doi:10.1016/J.MINENG.2021.107335.
  • Tian, X. W., E. Furnell, and E. R. Bobicki. 2022. Geochemical modelling of diethylenetriamine in tailings management areas. Minerals Engineering 176. doi:10.1016/J.MINENG.2021.107334.
  • Tukel, C., S. Kelebek, and E. Yalcin. 2010. Eh-pH Stability Diagrams for Analysis of Polyamine Interaction with Chalcopyrite and Deactivation of Cu-Activated Pyrrhotite. Canadian Metallurgical Quarterly 49:411–18. doi:10.1179/000844310795937488.
  • Tussupbayev, N. K., N. N. Rulyov, and O. V. Kravtchenco. 2016. Microbubble augmented flotation of ultrafine chalcopyrite from quartz mixtures. Mineral Processing and Extractive Metallurgy 125:5–9. doi:10.1179/1743285515Y.0000000014.
  • Urbina, R. H. 2010. Recent developments and advances in formulations and applications of chemical reagents used in froth flotation. Mineral Processing and Extractive Metallurgy Review 7508. doi:10.1080/08827500306898.
  • Uribe, L., L. Gutierrez, and O. Jerez. 2016. The Depressing Effect of Clay Minerals on the Floatability of Chalcopyrite. Mineral Processing and Extractive Metallurgy Review. doi:10.1080/08827508.2016.1168419.
  • Wang, Y., R. A. Lauten, and Y. Peng. 2016. The effect of biopolymer dispersants on copper flotation in the presence of kaolinite. Minerals Engineering 96–97:123–29. doi:10.1016/j.mineng.2016.05.010.
  • Wang, D., F. Jiao, W. Qin, and X. Wang. 2018. Effect of surface oxidation on the flotation separation of chalcopyrite and galena using sodium humate as depressant. Separation Science and Technology. doi:10.1080/01496395.2017.1405042.
  • Wang, X., W. Qin, F. Jiao, R. Liu, and D. Wang. 2019. Inhibition of galena flotation by humic acid: Identification of the adsorption site for humic acid on moderately oxidized galena surface. Minerals Engineering 137:102–07. doi:10.1016/j.mineng.2019.03.029.
  • Wang, C., R. Liu, S. Ahmed Khoso, H. Lu, W. Sun, Z. Ni, and F. Lyu. 2020. Combined inhibitory effect of calcium hypochlorite and dextrin on flotation behavior of pyrite and galena sulphides. Minerals Engineering 150:106274. doi:10.1016/j.mineng.2020.106274.
  • Wang, H., L. Feng, R. Manica, and Q. Liu. 2021. Selective depression of millerite (β-NiS) by polysaccharides in alkaline solutions in Cu-Ni sulphides flotation separation. Minerals Engineering. doi:10.1016/j.mineng.2021.107139.
  • Wang, Z., J. Cao, L. Wang, J. Xiao, and J. Wang. 2021. Selective depression of arsenopyrite with in situ generated nanoparticles in pyrite flotation. Minerals Engineering. doi:10.1016/j.mineng.2021.107223.
  • Wang, X., P. Gao, J. Liu, X. Gu, and Y. Han. 2021a. Adsorption performance and mechanism of eco-friendly and efficient depressant galactomannan in flotation separation of chalcopyrite and molybdenite. Journal of Molecular Liquids 326:115257. doi:10.1016/j.molliq.2020.115257.
  • Wang, X., J. Liu, Y. Zhu, and Y. Han. 2021b. Adsorption and depression mechanism of an eco-friendly depressant PCA onto chalcopyrite and pyrite for the efficiency flotation separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 620:126574. doi:10.1016/j.colsurfa.2021.126574.
  • Wei, G., F. Bo, P. Jinxiu, Z. Wenpu, and Z. Xianwen. 2019. Depressant behavior of tragacanth gum and its role in the flotation separation of chalcopyrite from talc. Journal of Materials Research and Technology. doi:10.1016/j.jmrt.2018.05.015.
  • Wu, S., J. Wang, L. Tao, R. Fan, C. Wang, W. Sun, and Z. Gao. 2022. Selective separation of chalcopyrite from pyrite using an acetylacetone-based lime-free process. Minerals Engineering 182:107584. doi:10.1016/J.MINENG.2022.107584.
  • Xuemin, Q., Y. Hongying, C. Guobao, Z. Shuiping, C. Chuangkai, and L. Bibo. 2020. Inhibited mechanism of carboxymethyl cellulose as a galena depressant in chalcopyrite and galena separation flotation. Minerals Engineering 150:106273. doi:10.1016/j.mineng.2020.106273.
  • Yan, H., B. Yang, M. Zeng, P. Huang, and A. Teng. 2020. Selective flotation of Cu-Mo sulfides using xanthan gum as a novel depressant. Minerals Engineering. doi:10.1016/j.mineng.2020.106486.
  • Ye, W. L., X. G. Zhang, C. L. Pan, X. Q. Hu, Y. C. Luo, and P. F. Xu. 2022. Selective flotation separation of chalcopyrite from talc by a novel depressant: N-methylene phosphonic chitosan. Minerals Engineering. doi:10.1016/j.mineng.2021.107367.
  • Yen, M. T., and J. L. Mau. 2007. Physico-Chemical characterization of fungal chitosan from shiitake stipes. LWT - Food Science and Technology. doi:10.1016/j.lwt.2006.01.002.
  • Yin, Z., W. Sun, Y. Hu, J. Zhai, and G. Qingjun. 2017. Evaluation of the replacement of NaCN with depressant mixtures in the separation of copper–molybdenum sulphide ore by flotation. Separation and Purification Technology. doi:10.1016/j.seppur.2016.09.011.
  • Yoon, R. H., C. I. Basilio, M. A. Marticorena, A. N. Kerr, and R. Stratton-Crawley. 1995. A study of the pyrrhotite depression mechanism by diethylenetriamine. Minerals Engineering 8:807–16. doi:10.1016/0892-6875(95)00041-N.
  • Yu, J., R. Liu, L. Wang, W. Sun, H. Peng, and Y. Hu. 2018. Selective depression mechanism of ferric chromium lignin sulfonate for chalcopyrite–galena flotation separation. International Journal of Minerals, Metallurgy and Materials 25:489–97. doi:10.1007/s12613-018-1595-6.
  • Yuan, D., K. Cadien, Q. Liu, and H. Zeng. 2019a. Separation of talc and molybdenite: Challenges and opportunities. Minerals Engineering 143:105923. doi:10.1016/j.mineng.2019.105923.
  • Yuan, D., K. Cadien, Q. Liu, and H. Zeng. 2019b. Flotation separation of Cu-Mo sulfides by O-Carboxymethyl chitosan. Minerals Engineering 134:202–05. doi:10.1016/j.mineng.2019.02.007.
  • Yuan, D., K. Cadien, Q. Liu, and H. Zeng. 2019c. Adsorption characteristics and mechanisms of O-Carboxymethyl chitosan on chalcopyrite and molybdenite. Journal of Colloid and Interface Science. doi:10.1016/j.jcis.2019.05.023.
  • Yuan, D., K. Cadien, Q. Liu, and H. Zeng. 2019d. Selective separation of copper-molybdenum sulfides using humic acids. Minerals Engineering 133:43–46. doi:10.1016/j.mineng.2019.01.005.
  • Yubiao, L., W. Li, Z. Wei, Q. Xiao, C. Lartey, L. Yingjie, and S. Song. 2019. The Influence of Common Chlorides on the Adsorption of SBX on Chalcopyrite Surface during Flotation Process. Mineral Processing and Extractive Metallurgy Review 40:129–40. doi:10.1080/08827508.2018.1497625.
  • Zanin, M., H. Lambert, and C. A. Plessis. 2019. Lime use and functionality in sulphide mineral flotation : A review. Minerals Engineering 143:105922. doi:10.1016/j.mineng.2019.105922.
  • Zeng, G., L. Ou, W. Zhang, and Y. Zhu. 2020. Effects of Sodium Alginate on the Flotation Separation of Molybdenite from Chalcopyrite Using Kerosene as Collector. Frontiers in Chemistry 8. doi:10.3389/fchem.2020.00242.
  • Zhang, C., C. Liu, Q. Feng, and Y. Chen. 2017. Utilization of N -carboxymethyl chitosan as selective depressants for serpentine on the flotation of pyrite. International Journal of Mineral Processing 163:45–47. doi:10.1016/j.minpro.2017.04.008.
  • Zhang, W., W. Sun, Y. Hu, J. Cao, and Z. Gao. 2019. Selective Flotation of Pyrite from Galena Using Chitosan with Different Molecular Weights. Minerals 9:549. doi:10.3390/min9090549.
  • Zhang, X., Y. Han, P. Gao, X. Gu, and S. Wang. 2020. Depression Mechanism of a Novel Depressant on Serpentine Surfaces and Its Application to the Selective Separation of Chalcopyrite from Serpentine. Mineral Processing and Extractive Metallurgy Review. doi:10.1080/08827508.2020.1864363.
  • Zhang, X., X. Wang, Y. Li, Y. Han, X. Gu, and S. Wang. 2021. Adsorption mechanism of a new depressant on pyrite surfaces and its application to the selective separation of chalcopyrite from pyrite. Colloids and Surfaces A: Physicochemical and Engineering Aspects 625:126892. doi:10.1016/j.colsurfa.2021.126892.
  • Zhang, J., X. G. Zhang, X. X. Wei, S. Y. Cheng, X. Q. Hu, Y. C. Luo, and P. F. Xu. 2022. Selective depression of galena by sodium polyaspartate in chalcopyrite flotation. Minerals Engineering 180:107464. doi:10.1016/J.MINENG.2022.107464.
  • Zhang, X., Y. Han, P. Gao, X. Gu, and S. Wang. 2022. Depression Mechanism of a Novel Depressant on Serpentine Surfaces and Its Application to the Selective Separation of Chalcopyrite from Serpentine. Mineral Processing and Extractive Metallurgy Review. doi:10.1080/08827508.2020.1864363.
  • Zhao, K., G. Gu, C. Wang, X. Rao, X. Wang, and X. Xiong. 2015. The effect of a new polysaccharide on the depression of talc and the flotation of a nickel–copper sulfide ore. Minerals Engineering 77:99–106. doi:10.1016/j.mineng.2015.02.014.
  • Zhao, K. L., G. H. Gu, H. Wang, C. L. Wang, X. H. Wang, and C. Luo. 2015. Influence of depressant foenum-graecum on the flotation of a sulfide ore which contains hydrophobic gangue. International Journal of Mineral Processing 141:68–76. doi:10.1016/j.minpro.2015.06.005.
  • Zhong, C., B. Feng, H. Wang, Y. Chen, and M. Guo. 2021a. The depression behavior and mechanism of tragacanth gum on chalcopyrite during Cu-Mo flotation separation. Advanced Powder Technology 32:2712–19. doi:10.1016/j.apt.2021.05.032.
  • Zhong, C., H. Wang, L. Zhang, M. Guo, and B. Feng. 2021b. Flotation separation of molybdenite and talc by xanthan gum. Powder Technology 388:158–65. doi:10.1016/j.powtec.2021.04.080.
  • Zhou, H., Z. Zhang, L. Ou, and Q. Mai. 2020. Flotation separation of chalcopyrite from talc using a new depressant carrageenan. Colloids and Surfaces A: Physicochemical and Engineering Aspects 603:125274. doi:10.1016/j.colsurfa.2020.125274.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.