197
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of the Induration Mechanism of Red Mud Pellets with Tartaric Acid Additions

, , , , , , , , & show all

References

  • Abdel-Rahman, L.H., Ismail, N.M., Ismael, M., Abu-Dief, A.M., and Ahmed, E.A. 2017. Synthesis, characterization, DFT calculations and biological studies of Mn(II), Fe(II), Co(II) and Cd(II) complexes based on a tetradentate ONNO donor Schiff base ligand. Journal of Molecular Structure 851–862. 10.1016/j.molstruc.2017.01.036
  • Akcil, A., N. Akhmadiyeva, R. Abdulvaliyev, and Abhilash. 2018. Overview on extraction and separation of rare earth elements from red mud: focus on scandium. Mineral Processing and Extractive Metallurgy Review 39 (3):145–51. doi:10.1080/08827508.2017.1288116.
  • Alp, A., and M. S. Goral. 2003. The influence of soda additive on the thermal properties of red mud. Journal of Thermal Analysis & Calorimetry 73 (1):201–07. doi:10.1023/A:1025197927673.
  • Archambo, M., and S. K. Kawatra. 2021. Red mud: fundamentals and new avenues for utilization. Mineral Processing and Extractive Metallurgy Review 42 (7):427–50. doi:10.1080/08827508.2020.1781109.
  • Archambo, M. S., and S. K. Kawatra. 2021a. Extraction of rare earths from red mud iron nugget slags with oxalic acid precipitation. Mineral Processing and Extractive Metallurgy Review. doi:10.1080/08827508.2021.1927729.
  • Archambo, M. S., and S. K. Kawatra. 2021b. Utilization of bauxite residue: recovering iron values using the iron nugget process. Mineral Processing and Extractive Metallurgy Review 42 (4):222–30. doi:10.1080/08827508.2020.1720982.
  • Atasoy, A. 2005. An investigation on characterization and thermal analysis of the Aughinish red mud. Journal of Thermal Analysis & Calorimetry 81 (2):357–61. doi:10.1007/s10973-005-0792-5.
  • Balachandran, V., and Parimala, K., 2012. Molecular structure, vibrational spectra, NBO analysis, first hyperpolarizability, and HOMO, LUMO studies of mesityl chloride by density functional methods. Journal of Molecular Structure 136–145. doi:10.1016/j.molstruc.2011.10.035
  • Beer, M. D., F. J. Doucet, J. P. Maree, and L. Liebenberg. 2015. Synthesis of high-purity precipitated calcium carbonate during the process of recovery of elemental sulphur from gypsum waste. Waste Management 46:619–27. doi:10.1016/j.wasman.2015.08.023.
  • Berta, K. M., R. Kurdi, P. Lukács, M. Penk, and V. Somogyi. 2021. Red mud with other waste materials as artificial soil substitute and its effect on Sinapis alba. Journal of Environmental Management 287:112311. doi:10.1016/j.jenvman.2021.112311.
  • Bhakta Sharma, H., S. Panigrahi, and B. K. Dubey. 2021. Food waste hydrothermal carbonization: study on the effects of reaction severities, pelletization and framework development using approaches of the circular economy. Bioresource Technology 333:125187. doi:10.1016/j.biortech.2021.125187.
  • Bobacka, J., V. Lax, T. Lindfors, and A. Ivaska. 2007. Procedure 5 titration of trimeprazine base with tartaric acid in isopropanol solution using polyaniline as indicator electrode. In Comprehensive analytical chemistry, ed. S. Alegret, A. Merkoçi, e29–e33. Amsterdam: Elsevier.
  • Chen, P., X. Lu, X. Chai, H. Mulenga, J. Gao, H. Liu, Q. Meng, W. Sun, and Y. Gao. 2021. Influence of Fe–BHA complexes on the flotation behavior of ilmenite. Colloids and Surfaces: A, Physicochemical and Engineering Aspects 612:125964. doi:10.1016/j.colsurfa.2020.125964.
  • Cheng, Y., L. Xu, Z. Jiang, C. Liu, Q. Zhang, Y. Zou, Y. Chen, J. Li, and X. Liu. 2021. Feasible low-cost conversion of red mud into magnetically separated and recycled hybrid SrFe12o19@nap1 zeolite as a novel wastewater adsorbent. Chemical Engineering Journal 417:128090. doi:10.1016/j.cej.2020.128090.
  • Dhas, S. A., M. Suresh, G. Bhagavannarayana, and S. Natarajan. 2007. Growth and characterization of L-Tartaric acid, an NLO material. Journal of Crystal Growth 309 (1):48–52. doi:10.1016/j.jcrysgro.2007.09.008.
  • Dimas, D. D., I. P. Giannopoulou, and D. Panias. 2009. Utilization of alumina red mud for synthesis of inorganic polymeric materials. Mineral Processing and Extractive Metallurgy Review 30 (3):211–39. doi:10.1080/08827500802498199.
  • Ding, W., J. H. Xiao, Y. Peng, S. Y. Shen, and T. Chen. 2021. Iron extraction from red mud using roasting with sodium salt. Mineral Processing and Extractive Metallurgy Review 42 (3):153–61. doi:10.1080/08827508.2019.1706049.
  • Ding, W., S. X. Bao, Y. M. Zhang, and J. H. Xiao. 2022. Efficient selective extraction of scandium from red mud. Mineral Processing and Extractive Metallurgy Review 1–9. doi:10.1080/08827508.2022.2047044.
  • Dishwar, R. K., and O. P. Sinha. 2021. Effect of basicity on the activation energy during reduction of highly fluxed iron ore pellets. Fuel 296:120640. doi:10.1016/j.fuel.2021.120640.
  • Garanayak, L., 2021. Strength effect of alkali activated red mud slag cement in ambient condition. Materials Today: Proceedings 44, 1437–43. 10.1016/j.matpr.2020.11.630
  • Gupta, H., P. Paul, N. Kumar, S. Baxi, and D. P. Das. 2014. One pot synthesis of water-dispersible dehydroascorbic acid coated Fe3O4 nanoparticles under atmospheric air: Blood cell compatibility and enhanced magnetic resonance imaging. Journal Colloid Interface 430:221–28. doi:10.1016/j.jcis.2014.05.043.
  • Hidzir, A. H., N. B. Haladin, M. Z. M. Yusop, N. Ibrahim, and A. Supee, 2021. Influence of tartaric acid as the complexing agent on the properties of chemical bath deposited FeSxoy thin films. Materials Today: Proceedings 39, 947–50. doi:10.1016/j.matpr.2020.04.173
  • Hyeok-Jung, K., S. Kang, and G. Choe. 2018. Effect of red mud content on strength and efflorescence in pavement using alkali-activated slag cement. International Journal of Concrete Structures and Materials 12. doi:10.1186/s40069-018-0258-3.
  • Jia, S, Yang, Z, Ren, K, and Tian, Z. 2016. Removal of antibiotics from water in the coexistence of suspended particles and natural organic matters using amino-acid-modified-chitosan flocculants: A combined experimental and theoretical study. Journal of Hazardous Materials 317:593–601. doi:10.1016/j.jhazmat.2016.06.024
  • Kaliyan, N., and R. V. Morey. 2010. Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresource Technology 101 (3):1082–90. doi:10.1016/j.biortech.2009.08.064.
  • Kazak, O., Y. R. Eker, and A. Tor. 2020. In-Situ magnetization of porous carbon beads by pyrolysis of waste red mud doped polysulfone beads for efficient oil sorption. Chemical Engineering and Processing - Process Intensification 158:108190. doi:10.1016/j.cep.2020.108190.
  • Kong, X., M. Li, S. Xue, W. Hartley, C. Chen, C. Wu, X. Li, and Y. Li. 2017. Acid transformation of bauxite residue: conversion of its alkaline characteristics. Journal of Hazardous Materials 324:382–90. doi:10.1016/j.jhazmat.2016.10.073.
  • Kourti, I., and C. R. Cheeseman. 2010. Properties and microstructure of lightweight aggregate produced from lignite coal fly ash and recycled glass. Resources, Conservation and Recycling 54 (11):769–75. doi:10.1016/j.resconrec.2009.12.006.
  • Li, F., X. Li, S. Yang, and Y. Zhang. 2017. Distribution ratios of phosphorus between CaO-FeO-SiO2-Al2O3/Na2O/TiO2 slags and carbon-saturated iron. Metallurgical and Materials Transactions B 48 (5):2367–2378. doi:10.1007/s11663-017-1023-8
  • Li, Y., J. Jiang, S. Xue, G. J. Millar, X. Kong, X. Li, M. Li, and C. Li. 2018. Effect of ammonium chloride on leaching behavior of alkaline anion and sodium ion in bauxite residue. Transactions of Nonferrous Metals Society of China 28 (10):2125–34. doi:10.1016/S1003-6326(18)64857-5.
  • Li, X., P. Tang, X. Q. Zhu, P. P. Qin, and G. H. Wen. 2020. Study on Cracking Control of Cold Bonded Pellets Containing Converter Dust Based on Nonhydraulic Hardening Principle Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies. In Symposium on Recycling of Secondary, Byproduct Materials and Energy held at TMS 149th Annual Meeting and Exhibition, edited by A. Powell, Shanghai, China: Springer, 16 (1):179–87. doi:10.1007/978-3-030-36830-2_18.
  • Liao, C., L. Zeng, and K. Shih. 2015. Quantitative X-ray Diffraction (QXRD) analysis for revealing thermal transformations of red mud. Chemosphere 131:171–77. doi:10.1016/j.chemosphere.2015.03.034.
  • Liu, Y., and R. Naidu. 2014. Hidden values in bauxite residue (red mud): recovery of metals. Waste Management 34 (12):2662–73. doi:10.1016/j.wasman.2014.09.003.
  • Liu, Z., H. Li, M. Huang, D. Jia, and N. Zhang. 2017. Effects of cooling method on removal of sodium from active roasting red mud based on water leaching. Hydrometallurgy 167:92–100. doi:10.1016/j.hydromet.2016.10.021.
  • Lu, G., T. Zhang, L. Ma, Y. Wang, W. Zhang, Z. Zhang, and L. Wang. 2019. Utilization of bayer red mud by a calcification–carbonation method using calcium aluminate hydrate as a calcium source. Hydrometallurgy 188:248–55. doi:10.1016/j.hydromet.2019.05.018.
  • Lyu, F., S. Niu, L. Wang, R. Liu, W. Sun, and D. He. 2021. Efficient removal of Pb(II) ions from aqueous solution by modified red mud. Journal of Hazardous Materials 406:124678. doi:10.1016/j.jhazmat.2020.124678.
  • Meshram, P., A. Abhilash. 2020. Recovery and recycling of cerium from primary and secondary resources- a critical review. Mineral Processing and Extractive Metallurgy Review 41 (4):279–310. doi:10.1080/08827508.2019.1677647.
  • Mi, H., L. Yi, Q. Wu, J. Xia, and B. Zhang. 2021. Preparation and optimization of a low-cost adsorbent for heavy metal ions from red mud using fraction factorial design and box-behnken response methodology. Colloids and Surfaces: A, Physicochemical and Engineering Aspects 627:127198. doi:10.1016/j.colsurfa.2021.127198.
  • Pal, J., S. Ghorai, P. Venkatesh, M. C. Goswami, D. Bandyopadhyay, and S. Ghosh. 2013. Development of fluxed micropellets for sintering utilising iron oxide waste fines. Ironmaking & Steelmaking 40 (7):498–504. doi:10.1179/1743281212Y.0000000069.
  • Paramguru, R. K., P. C. Rath, and V. N. Misra. 2004. Trends in red mud utilization – a review. Mineral Processing and Extractive Metallurgy Review 26 (1):1–29. doi:10.1080/08827500490477603.
  • Paramguru, R. K., P. C. Rath, and V. N. Misra. 2005. Trends in red mud utilization – a review. Mineral Processing and Extractive Metallurgy Review 26 (1):1–29. doi:10.1080/08827500490477603.
  • Pontikes, Y., and G. N. Angelopoulos. 2013. Bauxite residue in cement and cementitious applications: Current status and a possible way forward. Resources, Conservation and Recycling 73:53–63. doi:10.1016/j.resconrec.2013.01.005.
  • Sahu, R. C., R. Patel, and B. C. Ray. 2011. Removal of hydrogen sulfide using red mud at ambient conditions. Fuel Processing Technology 92 (8):1587–92. doi:10.1016/j.fuproc.2011.04.002.
  • Sayehi, M., H. Tounsi, G. Garbarino, P. Riani, and G. Busca. 2020. Reutilization of silicon- and aluminum- containing wastes in the perspective of the preparation of SiO2-Al2O3 based porous materials for adsorbents and catalysts. Waste Management 103:146–58. doi:10.1016/j.wasman.2019.12.013.
  • Shen, P., H. Zheng, J. X. Lu, and S. P. Chi. 2021. Utilization of municipal solid waste incineration bottom ash (IBA) aggregates in high-strength pervious concrete. Resources Conservation and Recycling 174:105736. doi:10.1016/j.resconrec.2021.105736.
  • Singh, S., and A. Thakur, 2021. Red mud based binder: A sustainable material for removal of chromium (VI) from water. Materials Today: Proceedings 46, 2955–59. 10.1016/j.matpr.2020.12.421
  • Song, L., W. Liu, F. Xin, and Y. Li. 2021. Study of adhesion properties and mechanism of sodium silicate binder reinforced with silicate fume. International Journal of Adhesion and Adhesives 106:102820. doi:10.1016/j.ijadhadh.2021.102820.
  • Tamiji, T., and A. Nezamzadeh-Ejhieh. 2018. Sensitive voltammetric determination of bromate by using ion-exchange property of a Sn(II)-clinoptilolite-modified carbon paste electrode. Journal of Solid State Electrochemistry 23 (1): 143–157. doi:10.1007/s10008-018-4119-4
  • Wang, S., Y. Guo, L. Yang, G. Fu, F. Zheng, F. Chen, L. Yang, and T. Jiang. 2018. Investigation of solidification mechanism of fluorine-bearing magnetite concentrate pellets. Powder Technology 332:188–96. doi:10.1016/j.powtec.2018.03.060.
  • Wang, X., T. Sun, S. Wu, C. Chen, J. Kou, and C. Xu. 2019. A novel utilization of bayer red mud through co-reduction with a limonitic laterite ore to prepare ferronickel. Journal of Cleaner Production 216:33–41. doi:10.1016/j.jclepro.2019.01.176.
  • Wang, C., X. Zhang, R. Sun, and Y. Cao. 2020. Neutralization of red mud using bio-acid generated by hydrothermal carbonization of waste biomass for potential soil application. Journal of Cleaner Production 271:122525. doi:10.1016/j.jclepro.2020.122525.
  • Wang, M., S. Hu, Q. Wang, Y. Liang, C. Liu, H. Xu, and Q. Ye. 2021. Enhanced nitrogen and phosphorus adsorption performance and stabilization by novel panda manure biochar modified by CMC stabilized nZVZ composite in aqueous solution: mechanisms and application potential. Journal of Cleaner Production 291:125221. doi:10.1016/j.jclepro.2020.125221.
  • Wang, S., H. Jin, Y. Deng, and Y. Xiao. 2021. Comprehensive utilization status of red mud in China: A critical review. Journal of Cleaner Production 289:125136. doi:10.1016/j.jclepro.2020.125136.
  • Wei, D., X. Jun-Hui, P. Yang, S. Si-Yue, C. Tao, Z. Kai, and W. Zhen. 2022. Extraction of scandium and iron from red mud. Mineral Processing and Extractive Metallurgy Review 43 (1):61–68. doi:10.1080/08827508.2020.1833195.
  • Xiao, L., J. Li, D. F. Brougham, E. K. Fox, N. Feliu, A. Bushmelev, A. Schmidt, N. Mertens, F. Kiessling, and M. Valldor. 2011. Water-soluble superparamagnetic magnetite nanoparticles with biocompatible coating for enhanced magnetic resonance imaging. ACS Nano 5 (8):6315. doi:10.1021/nn201348s.
  • Xiao, K., R. Guan, J. Yang, H. Li, Z. Yu, S. Liang, W. Yu, J. Hu, H. Hou, and B. Liu. 2019. Effects of red mud on emission control of NOx precursors during sludge pyrolysis: A protein model compound study. Waste Management 85:452–63. doi:10.1016/j.wasman.2019.01.014.
  • Yan, J., S. Mo, J. Nie, W. Chen, X. Shen, J. Hu, G. Hao, and H. Tong. 2009. Hydrothermal synthesis of monodisperse Fe3O4 nanoparticles based on modulation of tartaric acid. Colloids & Surfaces a Physicochemical & Engineering Aspects 340 (1–3):109–14. doi:10.1016/j.colsurfa.2009.03.016.
  • Yang, Y., Zhang, W., Qiu, H., Tsang, D.C.W., Morel, J., and Qiu, R., 2016. Effect of coexisting Al(III) ions on Pb(II) sorption on biochars: Role of pH buffer and competition. Chemosphere 161:438–445. 10.1016/j.chemosphere.2016.07.007
  • Yuan, Y., An, Z., Zhang, R., Wei, X., and Lai, B., 2021. Efficiencies and mechanisms of heavy metals adsorption on waste leather-derived high-nitrogen activated carbon. Journal of Cleaner Production 293:126215. 10.1016/j.jclepro.2021.126215
  • Zhai, Y., T. Wang, Y. Zhu, C. Peng, B. Wang, X. Li, C. Li, and G. Zeng. 2018. Production of fuel pellets via hydrothermal carbonization of food waste using molasses as a binder. Waste Management 77:185–94. doi:10.1016/j.wasman.2018.05.022.
  • Zheng, F., X. Ou, Q. Pan, X. Xiong, C. Yang, and M. Liu. 2017. The effect of composite organic acid (citric acid & tartaric acid) on microstructure and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 Li-rich layered oxides. Journal of Power Sources 346:31–39. doi:10.1016/j.jpowsour.2017.02.036.
  • Zhou, R., X. Liu, L. Luo, Y. Zhou, J. Wei, A. Chen, L. Tang, H. Wu, Y. Deng, F. Zhang, et al. 2017. Remediation of Cu, Pb, Zn and Cd-contaminated agricultural soil using a combined red mud and compost amendment. International Biodeterioration & Biodegradation 118:73–81. doi:10.1016/j.ibiod.2017.01.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.