1,410
Views
10
CrossRef citations to date
0
Altmetric
Review

Beneficiation of lithium bearing pegmatite rock: a review

, ORCID Icon, , , , & show all

References

  • Aghamirian, M., C. Mohs, T. Grammatikopoulos, D. Imeson, and G. Pearse 2012. An overview of spodumene beneficiation. In Canadian Mineral Processors Proceedings, 141–53. Ontario, ON.
  • Amarante, M. M., A. B. De Sousa, and M. M. Leite. 1999. Processing a spodumene ore to obtain lithium concentrates for addition to glass and ceramic bodies. Minerals Engineering 12 (4):433–36. doi:10.1016/S0892-6875(99)00023-0.
  • Asadi Dalini, E., G. Karimi, S. Zandevakili, and M. Goodarzi. 2021. A review on environmental, economic and hydrometallurgical processes of recycling spent lithium-ion batteries. Mineral Processing and Extractive Metallurgy Review 42 (7):451–72. doi:10.1080/08827508.2020.1781628.
  • Bale, M. D., and A. V. May. 1989. Processing of ores to produce tantalum and lithium. Minerals Engineering 2 (3):299–320. doi:10.1016/0892-6875(89)90001-0.
  • Banks, M. K., W. T. McDaniel, and P. N. Sales. 1953. A method for concentration oi North Carolina spodumene ores.181–86.
  • Baur, D. G., and D. Gan. 2018. Electric vehicle production and the price of lithium. SSRN 3289169. doi: 10.2139/ssrn.3289169.
  • Bhappu, B., and M. C. Fuerstenau. 1964. Recovery of valuable minerals from pegmatite ores. New Mexico Bureau of Mines and Mineral Resources 70:1–29.
  • Bhattacharyya, R., K. K. Singh, R. B. Grover, and K. Bhanja. 2022. Estimating minimum energy requirement for transitioning to a net-zero, developed India in 2070. Current Science 122 (5):517. doi:10.18520/cs/v122/i5/517-527.
  • Bhola, K. L. 1971. Atomic mineral deposits in Bihar mica belt. Proceedings of the Indian National Science Academy 2:145–68. NSA-26-012057.
  • Botula, J., P. Rucký, and V. Řepka. 2005. Extraction of zinnwaldite from mining and processing wastes. Collection of scientifical works of Technical University of Ostrava. Mining-Geological Group 51 (2):9–16.
  • Bradley, D. C., L. L. Stillings, B. W. Jaskula, L. Munk, and A. D. McCauley. 2017. Lithium, chap. K. In Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply, K. J. Schulz, J. H. DeYoungsJr, R. R. I. Seal, and D. C. Bradley, K1–K21. Reston, VA: U.S. Geological Survey.
  • Brown, T., A. Walters, N. Idoine, G. Gunn, R. Shaw, and D. Rayner. 2016. Mineral profile: Lithium. Technical Report. British Geological Survey.
  • Bulatovic, S. M. 2014. Beneficiation of lithium ores. In Handbook of flotation reagents: Chemistry, theory and practice, volume 3: Flotation of industrial minerals, ed. S. M. Bulatovic, 41–56. Amsterdam, The Netherland: Elsevier.
  • Calgaroto, S., A. Azevedo, and J. Rubio. 2016. Separation of amine-insoluble species by flotation with nano and microbubbles. Minerals Engineering 89:24–29. doi:10.1016/j.mineng.2016.01.006.
  • Cao, M., H. Bu, S. Li, Q. Meng, Y. Gao, and L. Ou. 2021. Impact of differing water hardness on the spodumene flotation. Minerals Engineering 172:107159. doi:10.1016/j.mineng.2021.107159.
  • Chelgani, S. C., T. Leißner, M. Rudolph, and U. A. Peuker. 2015. Study of the relationship between zinnwaldite chemical composition and magnetic susceptibility. Minerals Engineering 72:27–30. doi:10.1016/j.mineng.2014.12.024.
  • Choi, J., W. Kim, W. Chae, S. B. Kim, and H. Kim. 2012. Electrostatically controlled enrichment of lepidolite via flotation. Materials Transactions 53 (12):2191–94. doi:10.2320/matertrans.M2012235.
  • Das, A., and B. Sarkar. 2018. Advanced gravity concentration of fine particles: A review. Mineral Processing and Extractive Metallurgy Review 39 (6):359–94. doi:10.1080/08827508.2018.1433176.
  • Dehaine, Q., L. T. Tijsseling, H. J. Glass, T. Törmänen, and A. R. Butcher. 2021. Geometallurgy of cobalt ores: A review. Minerals Engineering 160:106656. doi:10.1016/j.mineng.2020.106656.
  • Dessemond, C., F. Lajoie-Leroux, G. Soucy, N. Laroche, and J. F. Magnan. 2019. Spodumene: The lithium market, resources, and processes. Minerals 9 (6):334. doi:10.3390/min9060334.
  • Diouf, B., and R. Pode. 2015. Potential of lithium-ion batteries in renewable energy. Renewable Energy 76:375–80. doi:10.1016/j.renene.2014.11.058.
  • Erickson, R. L. 1982. Characteristics of mineral deposit occurrences. 82-0795. U. S. Geological Survey, USA. Accessed July 1, 2022. https://pubs.usgs.gov/of/1982/ofr-82-0795/cover.pdf.
  • Evans, R. K. 2012. An overabundance of lithium? Paper presented at 4th Lithium Supply & Markets Conference, Buenos Aires, Argentina, January 23–25.
  • Evans, R. K. 2014. Lithium. In Critical metals handbook, ed. G. Gunn, 230–60. West Sussex: Wiley.
  • Faure, G. 1998. Principles and applications of geochemistry-A comprehensive textbook for geology students. 2nd ed. Upper Saddle River: Prentice Hall.
  • Filippov, L., S. Farrokhpay, L. Lyo, and I. Filippova. 2019. Spodumene flotation mechanism. Minerals 9 (6):372. doi:10.3390/min9060372.
  • Filippov, L. O., I. V. Filippova, G. Crumiere, R. Sousa, M. M. Leite, A. B. de Sousa, C. Korbel, and S. K. Tripathy. 2022. Separation of lepidolite from hard-rock pegmatite ore via dry processing and flotation. Minerals Engineering 187:107768. doi:10.1016/j.mineng.2022.107768.
  • Fowler, G., M. Utiger, B. Mackenzie, R. Duinker, M. Cronwright, A. Geldenhuys, S. Mwiya, and A. V. Wielligh. 2018. NI 43-101 technical report preliminary economic assessment for desert lion energy lithium project. Parkhurst, South Africa: Desert Lion Energy Inc.
  • Gibson, C. E., M. Aghamirian, T. Grammatikopoulos, D. L. Smith, and L. Bottomer. 2021. The recovery and concentration of spodumene using dense media separation. Minerals 11 (6):649. doi:10.3390/min11060649.
  • Greim, P., A. A. Solomon, and C. Breyer. 2020. Assessment of lithium criticality in the global energy transition and addressing policy gaps in transportation. Nature Communications 11 (1):1–11. doi:10.1038/s41467-020-18402-y.
  • Hardie, C., P. Live, and E. Palumbo. 2010. Technical report 43-101 on the pre-feasibility study for the Quebec lithium project. Montréal, Canada: Canada Lithium Corporation and BBA Inc.
  • He, G. C., J. N. Feng, M. X. Mao, and Y. P. Wu. 2013. Application of combined collectors in flotation of lepidolite. Advanced Materials Research 734:921–24. doi:10.402/8AMR.734-737.921.
  • Heyes, G. W., G. C. Allan, W. J. Bruckard, and G. J. Sparrow. 2012. Review of flotation of feldspar. Mineral Processing and Extractive Metallurgy 121 (2):72–78. doi:10.1179/1743285512Y.0000000004.
  • Hosack, S. 2020. Flotation testwork almost doubles ultra-low iron petalite recovery. Last Modified August 4 2020. Accessed July 1, 2022. https://www.miningindex.co.zw/2020/08/04/flotation-testwork-almost-doubles-ultra-low-iron-petalite-recovery-prospect-resources/.
  • Hosseini, S. H., and E. Forssberg. 2009. Smithsonite flotation using mixed anionic/cationic collector. Mineral Processing and Extractive Metallurgy 118 (3):186–90. doi:10.1179/174328509X431436.
  • Huang, Z., S. Shuai, H. Wang, R. Liu, S. Zhang, C. Cheng, Y. Hu, X. Yu, G. He, and W. Fu. 2022. Froth flotation separation of lepidolite ore using a new Gemini surfactant as the flotation collector. Separation and Purification Technology 282:119122. doi:10.1016/j.seppur.2021.119122.
  • Huang, Z., S. Zhang, C. Cheng, H. Wang, R. Liu, Y. Hu, G. He, X. Yu, and W. Fu. 2020. Recycling lepidolite from tantalum–niobium mine tailings by a combined magnetic–flotation process using a novel gemini surfactant: From tailings dams to the “bling” raw material of lithium. ACS Sustainable Chemistry & Engineering 8 (49):18206–14. doi:10.1021/acssuschemeng.0c06609.
  • Hu, Z., and C. Sun. 2019. Effects and mechanism of different grinding media on the flotation behaviors of Beryl and Spodumene. Minerals 9 (11):666. doi:10.3390/min9110666.
  • Jafari, M., S. Z. Shafaie, H. Abdollahi, and A. Entezari-Zarandi. 2022. A green approach for selective ionometallurgical separation of lithium from spent Li-ion batteries by deep eutectic solvent (DES): Process optimization and kinetics modeling. Mineral Processing and Extractive Metallurgy Review 1–13. doi:10.1080/08827508.2022.2042282.
  • Jahns, R. H., and O. F. Tuttle. 1963. Layered pegmatite-aplite intrusives. Mineralogical Society of America Special Paper 1:78–92.
  • Jamasmie, C. 2020. Lithium prices to bounce after 2022. Accessed November 1, 2020. https://www.mining.com/lithium-prices-to-jump-as-pandemic-hinders-expansions/
  • Jandová, J., P. Dvořák, and H. N. Vu. 2010. Processing of zinnwaldite waste to obtain Li2CO3. Hydrometallurgy 103 (1–4):12–18. doi:10.1016/j.hydromet.2010.02.010.
  • Javad Koleini, S. M., K. Barani, and B. Rezaei. 2012. The effect of microwave treatment on dry grinding kinetics of iron ore. Mineral Processing and Extractive Metallurgy Review 33 (3):159–69. doi:10.1080/08827508.2011.562947.
  • Jie, Z., W. Weiqing, L. Jing, H. Yang, F. Qiming, and Z. Hong. 2014. Fe (III) as an activator for the flotation of spodumene, albite, and quartz minerals. Minerals Engineering 61:16–22. doi:10.1016/j.mineng.2014.03.004.
  • Karrech, A., M. R. Azadi, M. Elchalakani, M. A. Shahin, and A. C. Seibi. 2020. A review on methods for liberating lithium from pegmatities. Minerals Engineering 145:106085. doi:10.1016/j.mineng.2019.106085.
  • Kasten, V. L. 1945. A study of the separation of feldspar from Missouri granite. MSc diss., University of Missouri.
  • Kavanagh, L., J. Keohane, G. Garcia Cabellos, A. Lloyd, and J. Cleary. 2018. Global lithium sources—Industrial use and future in the electric vehicle industry: A review. Resources 7 (3):57. doi:10.3390/resources7030057.
  • Kudryavtsev, P. G. 2016. Lithium in nature, application, methods of extraction. Scientific Israel-Technological Advantages 18 (3):63–83.
  • Leißner, T., K. Bachmann, J. Gutzmer, and U. A. Peuker. 2016. MLA-Based partition curves for magnetic separation. Minerals Engineering 94:94–103. doi:10.1016/j.mineng.2016.05.015.
  • Li, H., Y. Feng, H. Li, and Z. Liu. 2022. Microbial pretreatment of microfine-grained low-grade zinnwaldite tailings for enhanced flotation to recover lithium and rubidium resources. Minerals Engineering 181:107503. doi:10.1016/j.mineng.2022.107503.
  • Li, S., D. Lu, X. Chen, X. Zheng, X. Li, H. Chu, and Y. Wang. 2017. Industrial application of a modified pilot-scale Jameson cell for the flotation of spodumene ore in high altitude area. Powder Technology 320:358–61. doi:10.1016/j.powtec.2017.07.070.
  • Liu, W., S. Zhang, W. Wang, J. Zhang, W. Yan, J. Deng, Q. Feng, and Y. Huang. 2015. The effects of Ca (II) and Mg (II) ions on the flotation of spodumene using NaOl. Minerals Engineering 79:40–46. doi:10.1016/j.mineng.2015.05.008.
  • London, D. 2008. Pegmatites. Can. Mineral 10:347. doi:10.2138/am.2009.546.
  • London, D., and D. J. Kontak. 2012. Granitic pegmatites: Scientific wonders and economic bonanzas. Elements 8 (4):257–61. doi:10.2113/gselements.8.4.257.
  • Luga, A., I. Cuglesan, A. Samuila, M. Blajan, D. Vadan, and L. Dascalescu. 2004. Electrostatic separation of muscovite mica from feldspathic pegmatites. IEEE Transactions on Industry Applications 40 (2):422–29. doi:10.1109/TIA.2004.824506.
  • Luo, L., L. Xu, X. Shi, J. Meng, and R. Liu. 2022. Microscale insights into the influence of grinding media on spodumene micro-flotation using mixed anionic/cationic collectors. International Journal of Mining Science and Technology 32 (1):171–79. doi:10.1016/j.ijmst.2021.09.009.
  • Lv, Z., M. Wei, D. Wu, C. Liu, D. Zhao, and A. Feng. 2012. A new technology for processing niobite ore found in Jiangxi province. International Journal of Mining Science and Technology 22 (4):579–83. doi:10.1016/j.ijmst.2012.01.023.
  • Lyakhovich, V. V. 1965. Petrographic and mineralogical features of amblygonite-and spodumene-carrying granites. International Geology Review 7 (1):157–69. doi:10.1080/00206816509474098.
  • Majumder, A. K., and J. P. Barnwal. 2006. Modeling of enhanced gravity concentrators–present status. Mineral Processing and Extractive Metallurgy Review 27 (1):61–86. doi:10.1080/08827500500339307.
  • Mansur, M. B., A. S. Guimarães, and M. Petraniková. 2022. An overview on the recovery of cobalt from end-of-life lithium ion batteries. Mineral Processing and Extractive Metallurgy Review 43 (4):489–509. doi:10.1080/08827508.2021.1883014.
  • McLennan, S. M. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems 2 (4). doi:10.1029/2000GC000109.
  • McVay, T. L., and J. S. Browning. 1962. Flotation of spodumene from pegmatites of Cleveland Country. 1st ed. Washington, D.C.: US Department of the Interior, Bureau of Mines.
  • Menéndez, M., J. Vidal, J. Toraño, and M. Gent. 2004. Optimisation of spodumene flotation. European Journal of Mineral Processing & Environmental Protection 4 (2):130–35.
  • Meng, F., J. McNeice, S. S. Zadeh, and A. Ghahreman. 2021. Review of lithium production and recovery from minerals, brines, and lithium-ion batteries. Mineral Processing and Extractive Metallurgy Review 42 (2):123–41. doi:10.1080/08827508.2019.1668387.
  • Meng, J., L. Xu, D. Wang, K. Xue, L. Luo, and X. Shi. 2022. The activation mechanism of metal ions on spodumene flotation from the perspective of in situ ATR-FTIR and ToF-SIMS. Minerals Engineering 182:107567. doi:10.1016/j.mineng.2022.107567.
  • Mishra, B., and D. L. Olson. 2001. Corrosion of refractory alloys in molten lithium and lithium chloride. Mineral Processing and Extractive Metallurgy Review 22 (2):369–88. doi:10.1080/08827509808962507.
  • Mishra, B., and D. L. Olson. 2002. Corrosion of refractory alloys in molten lithium and lithium chloride. Mineral Processing and Extractive Metallurgy Review 22 (4–6):369–88. doi:10.1080/08827500208547421.
  • Mitchell, R., and D. Joanne. 2022. Global lithium resources. Accessed June 29, 2022. https://globallithium.com.au/our-business/lithium-market/.
  • Mohanty, A., and N. Devi. 2021. A review on green method of extraction and recovery of energy critical element cobalt from spent lithium-ion batteries (LIBs). Mineral Processing and Extractive Metallurgy Review 1–12. doi:10.1080/08827508.2021.2017925.
  • Moon, K. S., and D. W. Fuerstenau. 2003. Surface crystal chemistry in selective flotation of spodumene (LiAl [SiO3]2) from other aluminosilicates. International Journal of Mineral Processing 72 (1–4):11–24. doi:10.1016/S0301-7516(03)00084-X.
  • Munk, L. A., S. A. Hynek, D. Bradley, D. Boutt, K. Labay, and H. Jochens. 2016. Lithium brines: A global perspective. Reviews in Economic Geology 18:339–65. doi:10.5382/Rev.18.14.
  • Munson, G. A., and F. F. Clarke. 1955. Mining and concentrating spodumene in the Black Hills, South Dakota. Transactions of the AIME 202:1041–45.
  • Norman, J., and E. W. Gieseke. 1942. Beneficiation of spodumene rock by froth flotation. Transactions of the AIME 148:347–55.
  • Parsonage, P. 1988. Principles of mineral separation by selective magnetic coating. International Journal of Mineral Processing 24 (3–4):269–93. doi:10.1016/0301-7516(88)90045-2.
  • Phillips, W. R., and D. T. Griffen. 1981. Optical mineralogy: The nonopaque minerals. 1st ed. Cambridge, England: Cambridge University Press.
  • Prakash, S., B. Das, J. K. Mohanty, and R. Venugopal. 1999. The recovery of fine iron minerals from quartz and corundum mixtures using selective magnetic coating. International Journal of Mineral Processing 57 (2):87–103. doi:10.1016/S0301-7516(99)00008-3.
  • Reich, R., K. Slunitschek, R. M. Danisi, E. Eiche, and J. Kolb. 2022. Lithium extraction techniques and the application potential of different sorbents for lithium recovery from Brines. Mineral Processing and Extractive Metallurgy Review 1–20. doi:10.1080/08827508.2022.2047041.
  • Rieder, M., G. Cavazzini, Y. S. D’Yakonov, V. A. Frankkamenetskii, G. Gottardi, S. Guggenheim, G. MüLler, A. M. R. Neiva, E. W. Radoslovich, J. L. Robert, et al. 1999. Nomenclature of the micas. Mineralogical Magazine 63 (2):267–96. doi:10.1180/minmag.1999.063.2.13.
  • Rioyo, J., S. Tuset, and R. Grau. 2022. Lithium extraction from spodumene by the traditional sulfuric acid process: A review. Mineral Processing and Extractive Metallurgy Review 43 (1):97–106. doi:10.1080/08827508.2020.1798234.
  • Sahoo, S. K., N. Suresh, and A. K. Varma. 2019. Kinetic studies on petrographic components of coal in batch flotation operation. International Journal of Coal Preparation and Utilization 39 (5):259–80. doi:10.1080/19392699.2017.1314966.
  • Sahoo, S. K., N. Suresh, and A. K. Varma. 2020. Flotation production of vitrinite maceral concentrate and its optimization using response surface approach. International Journal of Coal Preparation and Utilization 40 (3):155–74. doi:10.1080/19392699.2017.1356827.
  • Sahoo, S. K., N. Suresh, and A. K. Varma. 2021. Performance evaluation of batch coal flotation from the petrologic point of view. International Journal of Coal Preparation and Utilization 41 (3):159–76. doi:10.1080/19392699.2018.1455668.
  • Salakjani, N. K., P. Singh, and A. N. Nikoloski. 2020. Production of lithium–a literature review part 1: Pretreatment of spodumene. Mineral Processing and Extractive Metallurgy Review 41 (5):335–48. doi:10.1080/08827508.2019.1643343.
  • Salakjani, N. K., P. Singh, and A. N. Nikoloski. 2021. Production of lithium–a literature review. Part 2. Extraction from spodumene. Mineral Processing and Extractive Metallurgy Review 42 (4):268–83. doi:10.1080/08827508.2019.1700984.
  • Salazar, E. 2021. Research paper lithium and its role in the new energy transition. Bachelor Thesis, Geneva Business School.
  • Sandmann, D., and J. Gutzmer. 2013. Use of mineral liberation analysis (MLA) in the characterization of lithium-bearing micas. Journal of Minerals and Materials Characterization and Engineering 1 (06):285. doi:10.4236/jmmce.2013.16043.
  • Sanjuan, B., B. Gourcerol, R. Millot, D. Rettenmaier, E. Jeandel, and A. Rombaut. 2022. Lithium-Rich geothermal brines in Europe: An up-date about geochemical characteristics and implications for potential Li resources. Geothermics 101:102385. doi:10.1016/j.geothermics.2022.102385.
  • Setoudeh, N., A. Nosrati, and N. J. Welham. 2021. Lithium recovery from mechanically activated mixtures of lepidolite and sodium sulfate. Mineral Processing and Extractive Metallurgy 130 (4):354–61. doi:10.1080/25726641.2019.1649112.
  • Shi, C., and D. Ouerghi. 2020. GLOBAL LITHIUM WRAP: Chinese carbonate price continues uptrend; bullish producers target Nov rises. Accessed November 1, 2020. https://www.metalbulletin.com/Article/3958592/GLOBAL-LITHIUM-WRAP-Chinese-carbonate-price-continues-uptrend-bullish-producers-target-Nov-rises.html
  • Shu, K., L. Xu, H. Wu, Z. Tang, L. Luo, J. Yang, Y. Xu, and B. Feng. 2020. Selective flotation separation of spodumene from feldspar using sodium alginate as an organic depressant. Separation and Purification Technology 248:117122. doi:10.1016/j.seppur.2020.117122.
  • Singh, V., P. Dixit, R. Venugopal, and K. B. Venkatesh. 2019. Ore pretreatment methods for grinding: Journey and prospects. Mineral Processing and Extractive Metallurgy Review 40 (1):1–15. doi:10.1080/08827508.2018.1479697.
  • Sousa, R., V. Ramos, A.Guedes, A.B. de Sousa, F. Noronha, and M. M. Leite. 2019. Flotation of lithium ores to obtain high-grade Li2O concentrates. Are there any mineralogical limitations? International Journal of Mining, Materials, and Metallurgical Engineering 5 (1):7–18.
  • Sovacool, B. K., J. C. Rogge, C. Saleta, and E. Masterson-Cox. 2019. Transformative versus conservative automotive innovation styles: Contrasting the electric vehicle manufacturing strategies for the BMW i3 and Fiat 500e. Environmental Innovation and Societal Transitions 33:45–60. doi:10.1016/j.eist.2019.02.004.
  • Stanley, C. J., G. C. Jones, M. S. Rumsey, C. Blake, A. C. Roberts, J. A. Stirling, G. J. Carpenter, P. S. Whitfield, J. D. Grice, and Y. Lepage. 2007. Jadarite, LiNasib3o7 (OH), a new mineral species from the Jadar Basin, Serbia. European Journal of Mineralogy 19 (4):575–80. doi:10.1127/0935-1221/2007/0019-1741.
  • Sun, C. Y., and W. Z. Yin. 2001. Flotation principles of silicate minerals. Press of Science 331.
  • Sykes, J., R. Schodde, and S. Davis. 2019. A global overview of the geology and economics of lithium production. Paper presented at AuSIMM Lithium Conference, Pert, Western Australia, July 3.
  • Tabelin, C. B., J. Dallas, S. Casanova, T. Pelech, G. Bournival, S. Saydam, and I. Canbulat. 2021. Towards a low-carbon society: A review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives. Minerals Engineering 163:106743. doi:10.1016/j.mineng.2020.106743.
  • Tadesse, B., F. Makuei, B. Albijanic, and L. Dyer. 2019. The beneficiation of lithium minerals from hard rock ores: A review. Minerals Engineering 131:170–84. doi:10.1016/j.mineng.2018.11.023.
  • Taggart, A. F. 1945. Handbook of mineral dressing, Vol. 1. New Work: Wiley.
  • Tanhua, A., M. Sinche-Gonzalez, R. Kalapudas, P. Tanskanen, and P. Lamberg. 2020. Effect of waste rock dilution on spodumene flotation. Minerals Engineering 150:106282. doi:10.1016/j.mineng.2020.106282.
  • Thomas, R., and P. Davidson. 2007. The formation of granitic pegmatites from the viewpoint of melt and fluid inclusions and new experimental work. In Granitic pegmatites: The state of the art, book of abstracts 13-16. Dep. Porto, Portugal: Geologia FCUP.
  • Tian, M., Z. Gao, S. A. Khoso, W. Sun, and Y. Hu. 2019. Understanding the activation mechanism of Pb2+ ion in benzohydroxamic acid flotation of spodumene: Experimental findings and DFT simulations. Minerals Engineering 143:106006. doi:10.1016/j.mineng.2019.106006.
  • Tian, J., L. Xu, W. Deng, H. Jiang, Z. Gao, and Y. Hu. 2017. Adsorption mechanism of new mixed anionic/cationic collectors in a spodumene-feldspar flotation system. Chemical Engineering Science 164:99–107. doi:10.1016/j.ces.2017.02.013.
  • Tian, J., L. Xu, H. Wu, S. Fang, W. Deng, T. Peng, W. Sun, and Y. Hu. 2018. A novel approach for flotation recovery of spodumene, mica and feldspar from a lithium pegmatite ore. Journal of Cleaner Production 174:625–33. doi:10.1016/j.jclepro.2017.10.331.
  • Tran, T. T., H. S. Moon, and M. S. Lee. 2021. Co, Ni, Cu, Fe, and Mn integrated recovery Process via sulfuric acid leaching from spent lithium-ion batteries smelted reduction metallic alloys. Mineral Processing and Extractive Metallurgy Review 1–15. doi:10.1080/08827508.2021.1979541.
  • Tran, T. T., H. S. Moon, and M. S. Lee. 2022. Recovery of cobalt, nickel, and copper compounds from UHT processed spent lithium-ion batteries by hydrometallurgical process. Mineral Processing and Extractive Metallurgy Review 43 (4):453–65. doi:10.1080/08827508.2021.1910508.
  • Traore, N., and S. Kelebek. 2022. Characteristics of spent lithium ion batteries and their recycling potential using flotation separation: A review. Mineral Processing and Extractive Metallurgy Review 1–29. doi:10.1080/08827508.2022.2040497.
  • Tripathy, S. K., P. K. Banerjee, N. Suresh, Y. R. Murthy, and V. Singh. 2017. Dry high-intensity magnetic separation in mineral industry—A review of present status and future prospects. Mineral Processing and Extractive Metallurgy Review 38 (6):339–65. doi:10.1080/08827508.2017.1323743.
  • Tripathy, S. K., S. K. Bhoja, C. R. Kumar, and N. Suresh. 2015. A short review on hydraulic classification and its development in mineral industry. Powder Technology 270:205–20. doi:10.1016/j.powtec.2014.09.049.
  • Tripathy, S. K., S. K. Bhoja, and Y. R. Murthy. 2017. Processing of chromite ultra-fines in a water only cyclone. International Journal of Mining Science and Technology 27 (6):1057–63. doi:10.1016/j.ijmst.2017.06.015.
  • Tripathy, S. K., M. Y. Rama, V. Tathavadkar, and B. D. Mark. 2012. Efficacy of multi gravity separator for concentrating ferruginous chromite fines. Journal of Mining and Metallurgy A: Mining 48 (1):39–49.
  • U.S. Geological Survey. 2017. Mineral commodity summaries 2017. U.S. Geological Survey. doi:10.3133/70180197.
  • U.S. Geological Survey. 2018. Mineral commodity summaries 2018. U.S. Geological Survey. doi:10.3133/70194932.
  • U.S. Geological Survey. 2019. Mineral commodity summaries 2019. U.S. Geological Survey. doi:10.3133/70202434.
  • U.S. Geological Survey. 2020. Mineral commodity summaries 2020. U.S. Geological Survey. doi:10.3133/mcs2020.
  • U.S. Geological Survey. 2021. Mineral commodity summaries 2021. U.S. Geological Survey. doi:10.3133/mcs2021.
  • U.S. Geological Survey. 2022. Mineral commodity summaries 2022. U.S. Geological Survey. doi:10.3133/mcs2022.
  • Van Eck, N., and L. Waltman. 2010. Software survey: VOS viewer, a computer program for bibliometric mapping. Scientometrics 84 (2):523–38. doi:10.1007/s11192-009-0146-3.
  • Vieceli, N., F. O. Durao, C. Guimarães, C. A. Nogueira, M. F. Pereira, and F. Margarido. 2016a. Grade-Recovery modelling and optimization of the froth flotation process of a lepidolite ore. International Journal of Mineral Processing 157:184–94. doi:10.1016/j.minpro.2016.11.005.
  • Vieceli, N., F. O. Durao, C. Guimarães, C. A. Nogueira, M. F. Pereira, and F. Margarido. 2016b. Kinetic approach to the study of froth flotation applied to a lepidolite ore. International Journal of Minerals, Metallurgy and Materials 23 (7):731–42. doi:10.1007/s12613-016-1287-z.
  • Vieceli, N., C. A. Nogueira, M. F. Pereira, F. O. Durão, C. Guimarães, and F. Margarido. 2017. Optimization of lithium extraction from lepidolite by roasting using sodium and calcium sulfates. Mineral Processing and Extractive Metallurgy Review 38 (1):62–72. doi:10.1080/08827508.2016.1262858.
  • Vikström, H., S. Davidsson, and M. Höök. 2013. Lithium availability and future production outlooks. Applied Energy 110:252–66. doi:10.1016/j.apenergy.2013.04.005.
  • Wang, Y., N. Sun, H. Chu, X. Zheng, D. Lu, and H. Zheng. 2021. Surface dissolution behavior and its influences on the flotation separation of spodumene from silicates. Separation Science and Technology 56 (8):1407–17. doi:10.1080/01496395.2020.1768120.
  • Wang, Y., G. Zhu, F. Yu, D. Lu, L. Wang, Y. Zhao, and H. Zheng. 2018a. Improving spodumene flotation using a mixed cationic and anionic collector. Physicochemical Problems of Mineral Processing 54 (2):567–77.
  • Wang, Y., G. Zhu, L. Zhang, D. Lu, L. Wang, Y. Zhao, and H. Zheng. 2018b. Surface dissolution of spodumene and its role in the flotation concentration of a spodumene ore. Minerals Engineering 125:120–25. doi:10.1016/j.mineng.2018.06.002.
  • Wei, Q., L. Feng, L. Dong, F. Jiao, and W. Qin. 2021. Selective co-adsorption mechanism of a new mixed collector on the flotation separation of lepidolite from quartz. Colloids and Surfaces A, Physicochemical and Engineering Aspects 612:125973. doi:10.1016/j.colsurfa.2020.125973.
  • Wietelmann, U., and M. Steinbild. 2000. Lithium and lithium compounds. Ullmann’s Encyclopedia of Industrial Chemistry 1–38. doi:10.1002/14356007.a15_393.pub2.
  • Wills, B. A., and J. Finch. 2015. Wills’ mineral processing technology: An introduction to the practical aspects of ore treatment and mineral recovery. 8th ed. Cambridge: Butterworth-Heinemann.
  • Wu, H., J. Tian, L. Xu, S. Fang, Z. Zhang, and R. Chi. 2018. Flotation and adsorption of a new mixed anionic/cationic collector in the spodumene-feldspar system. Minerals Engineering 127:42–47. doi:10.1016/j.mineng.2018.07.024.
  • Xie, R., Y. Zhu, Y. Li, and Y. Han. 2020b. Flotation behavior and mechanism of a new mixed collector on separation of spodumene from feldspar. Colloids and Surfaces A, Physicochemical and Engineering Aspects 599:124932. doi:10.1016/j.colsurfa.2020.124932.
  • Xie, R., Y. Zhu, J. Liu, and Y. Li. 2021b. The flotation behavior and adsorption mechanism of a new cationic collector on the separation of spodumene from feldspar and quartz. Separation and Purification Technology 264:118445. doi:10.1016/j.seppur.2021.118445.
  • Xie, R., Y. Zhu, J. Liu, and Y. Li. 2021c. Flotation behavior and mechanism of α-bromododecanoic acid as collector on the flotation separation of spodumene from feldspar and quartz. Journal of Molecular Liquids 336:116303. doi:10.1016/j.molliq.2021.116303.
  • Xie, R., Y. Zhu, J. Liu, and Y. Li. 2021d. Effects of metal ions on the flotation separation of spodumene from feldspar and quartz. Minerals Engineering 168:106931. doi:10.1016/j.mineng.2021.106931.
  • Xie, R., Y. Zhu, J. Liu, Y. Li, X. Wang, and Z. Shumin. 2021a. Research status of spodumene flotation: A review. Mineral Processing and Extractive Metallurgy Review 42 (5):321–34. doi:10.1080/08827508.2020.1776278.
  • Xie, R., Y. Zhu, J. Liu, X. Wang, and Y. Li. 2020a. Differential collecting performance of a new complex of decyloxy-propyl-amine and α-bromododecanoic acid on flotation of spodumene and feldspar. Minerals Engineering 153:106377. doi:10.1016/j.mineng.2020.106377.
  • Xu, L., Y. Hu, J. Tian, H. Wu, Y. Yang, X. Zeng, Z. Wang, and J. Wang. 2016a. Selective flotation separation of spodumene from feldspar using new mixed anionic/cationic collectors. Minerals Engineering 89:84–92. doi:10.1016/j.mineng.2016.01.013.
  • Xu, L., Y. Hu, H. Wu, J. Tian, J. Liu, Z. Gao, and L. Wang. 2016b. Surface crystal chemistry of spodumene with different size fractions and implications for flotation. Separation and Purification Technology 169:33–42. doi:10.1016/j.seppur.2016.06.005.
  • Xu, L., T. Peng, J. Tian, Z. Lu, Y. Hu, and W. Sun. 2017. Anisotropic surface physicochemical properties of spodumene and albite crystals: Implications for flotation separation. Applied Surface Science 426:1005–22. doi:10.1016/j.apsusc.2017.07.295.
  • Xu, L., H. Wu, F. Dong, L. Wang, Z. Wang, and J. Xiao. 2013. Flotation and adsorption of mixed cationic/anionic collectors on muscovite mica. Minerals Engineering 41:41–45. doi:10.1016/j.mineng.2012.10.015.
  • Yuga, A., L. Dascalescu, R. Morar, A. Samuila, and I. Cuglesan. 1995. Electrostatic shape separation of flake mica from pegmatites. Magnetic and Electrical Separation 6 (3):135–49. doi:10.1155/1995/67456.
  • Yu, F. S., Y. H. Wang, J. M. Wang, Z. F. Xie, and L. Zhang. 2014. First-Principle investigation on mechanism of Ca ion activating flotation of spodumene. Rare Metals 33 (3):358–62. doi:10.1007/s12598-014-0304-5.
  • Yu, F., Y. Wang, L. Zhang, and G. Zhu. 2015. Role of oleic acid ionic− molecular complexes in the flotation of spodumene. Minerals Engineering 71:7–12. doi:10.1016/j.mineng.2014.10.001.
  • Zhu, G., Y. Cao, Y. Wang, X. Wang, J. D. Miller, D. Lu, and X. Zheng. 2020a. Surface chemistry features of spodumene with isomorphous substitution. Minerals Engineering 146:106139. doi:10.1016/j.mineng.2019.106139.
  • Zhu, G., Y. Wang, X. Liu, F. Yu, and D. Lu. 2015. The cleavage and surface properties of wet and dry ground spodumene and their flotation behavior. Applied Surface Science 357:333–39. doi:10.1016/j.apsusc.2015.08.257.
  • Zhu, G., X. Wang, E. Li, Y. Wang, and J. D. Miller. 2019a. Wetting characteristics of spodumene surfaces as influenced by collector adsorption. Minerals Engineering 130:117–28. doi:10.1016/j.mineng.2018.10.010.
  • Zhu, G. L., Y. H. Wang, X. M. Wang, J. D. Miller, D. F. Lu, X. Y. Zheng, Y. H. Zhao, and H. T. Zheng. 2019b. Effects of grinding environment and lattice impurities on spodumene flotation. Transactions of Nonferrous Metals Society of China 29 (7):1527–37. doi:10.1016/S1003-6326(19)65060-0.
  • Zhu, G., Y. Zhao, X. Zheng, Y. Wang, H. Zheng, and D. Lu. 2020b. Surface features and flotation behaviors of spodumene as influenced by acid and alkali treatments. Applied Surface Science 507:145058. doi:10.1016/j.apsusc.2019.145058.
  • Zientek, M. L., and G. J. Orris. 2005. Geology and nonfuel mineral deposits of the United States. 2005-1294A. Reston, VA: U.S. Geological Survey.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.