521
Views
10
CrossRef citations to date
0
Altmetric
Review

A Review on Bioflotation of Coal and Minerals: Classification, Mechanisms, Challenges, and Future Perspectives

, , ORCID Icon & ORCID Icon

References

  • Abdallah, S., E. El-Shatoury, N. Abdel-Khalek, M. Youssef, M. K. Ibrahim, and S. Elsayed. 2018. Bio-flotation of Egyptian siliceous phosphate ore using Bacillus cereus. The 4th World Congress on Mechanical, Chemical, and Material Engineering. doi: 10.11159/mmme18.114.
  • Abdel Khalek, M., and A. El-Midany. 2013a. Application of Bacillus subtilis for reducing ash and sulfur in coal. Environmental Earth Sciences 70 (2):753–60. doi:10.1007/s12665-012-2163-4.
  • Abdel Khalek, M., and A. El-Midany. 2013b. Coal – Mycobacterium phlei interaction and its effect on coal cleaning. Tenside Surfactants Detergents 50 (6):414–19. doi:10.3139/113.110273.
  • Abdel-Khalek, N. A., K. A. Selim, M. A. Hassan, and A. M. Ramadan. 2017. The role of interaction between Paenibacillus polymyxa bacteria and pyrolusite-hematite system through bioflotation. International Research Journal of Engineering and Technology 4 (4):1121–29. Corpus ID: 212529526.
  • Abdel-Mawgoud, A. M., F. Lépine, and E. Déziel. 2010. Rhamnolipids: Diversity of structures, microbial origins and roles. Applied Microbiology and Biotechnology 86 (5):1323–36. doi:10.1007/s00253-010-2498-2.
  • Abedi Ashkavandi, R., E. Azimi, and M. R. Hosseini. 2022. Bacillus licheniformis a potential bio-collector for barite-quartz selective separation. Minerals Engineering 175. 107285. doi:10.1016/j.mineng.2021.107285.
  • Abhilash, and B. D. Pandey. 2013. Microbially assisted leaching of uranium—a review. Mineral Processing and Extractive Metallurgy Review 34 (2):81–113. doi:10.1080/08827508.2011.635731
  • Abo Nahas, H. H., G. Kibar, G. M. Khairy, S.H. Husien, H. Azmy Elkot, A. M. Abdel-Azeem, and E. M. Saied. 2022. Rhamnolipid biosurfactants production and applications. 1st ed. USA: CRC Press, 21.
  • Abouseoud, M., A. Yataghene, A. Amrane, and R. Maachi. 2008. Biosurfactant production by free and alginate entrapped cells of Pseudomonas fluorescens. Journal of Industrial Microbiology & Biotechnology 35 (11):1303–08. doi:10.1007/s10295-008-0411-0.
  • Abouseoud, M., A. Yataghene, A. Amrane, and R. Maachi. 2010. Effect of pH and salinity on the emulsifying capacity and naphthalene solubility of a biosurfactant produced by Pseudomonas fluorescens. Journal of Hazardous Materials 180 (1–3):131–36. doi:10.1016/j.jhazmat.2010.04.003.
  • Agarry, S., K. Salam, A. Olatunde, and M. Aremu. 2015. Biosurfactant production by indigeneous pseudomonas and bacillus species isolated from auto-mechanic soil environment towards microbial enhanced oil recovery. European Journal of Engineering and Technology 3 (6):27–39. Corpus ID: 52236895.
  • Akbari, S., N. H. Abdurahman, R. Yunus, F. Fayaz, and O. Alara. 2018. Biosurfactants—a new frontier for social and environmental safety: A mini review. Biotechnology Research and Innovation 2 (1):81–90. doi:10.1016/j.biori.2018.09.001.
  • Amini, E., T. R. Hosseini, M. Oliazadeh, and M. Kolahdoozan. 2009. Application of Acidithiobacillus Ferrooxidans in coal flotation. International Journal of Coal Preparation and Utilization 29 (6):279–88. doi:10.1080/19392690903558314.
  • Andrews, G. 1998. The optimal design of bioleaching processes. Mineral Processing and Extractive Metallurgy Review 19 (1):149–65. doi:10.1080/08827509608962437.
  • Anna Joice, P., and R. Parthasarathi. 2014. Optimization and production of biosurfactant from Bacillus cereus KBSB1. International Journal of Advanced Research in Biological Sciences 1 (5):120–39.
  • Assadi, A., F. Doulati, F. Ardejani, G. H. Karami, B. D. Azma, A. Dehghan, and M. Alipour. 2008. Heavy metal pollution problems in the vicinity of heap leaching No. 3 of Sarcheshmeh porphyry copper mine. Conference: 10th International Mine Water Association Congress, Karlovy Vary, Czech Republic.
  • Attia, Y. A., M. Elzeky, and M. Ismail. 1993. Enhanced separation of pyrite from oxidized coal by froth flotation using biosurface modification. International Journal of Mineral Processing 37 (1–2):61–71. doi:10.1016/0301-7516(93)90005-U.
  • Aytar Çelik, P., H. Çakmak, and D. Öz Aksoy. 2021. Green bioflotation of calcite using surfactin as a collector. Journal of Dispersion Science and Technology 1–11. doi:10.1080/01932691.2021.1979999.
  • Azizi, A., A. Hassanzadeh, and B. Fadaei. 2015. Investigating the first-order flotation kinetics models for Sarcheshmeh copper sulfide ore. International Journal of Mining Science and Technology 25 (5):849–54. doi:10.1016/j.ijmst.2015.07.022.
  • Baccile, N., F. Babonneau, J. Jestin, G. Pehau-Arnaudet, and I. Van Bogaert. 2012. Unusual, pH-induced, self-assembly of sophorolipid biosurfactants. ACS Nano 6 (6):4763–76. doi:10.1021/nn204911k.
  • Baccile, N., M. Selmane, P. Le Griel, S. Prévost, J. Perez, C. V. Stevens, E. Delbeke, S. Zibek, M. Guenther, W. Soetaert, et al. 2016. pH-driven self-assembly of acidic microbial glycolipids. Langmuir: The ACS Journal of Surfaces and Colloids 32 (25):6343. doi:10.1021/acs.langmuir.6b00488.
  • Banat, L. M., R. S. Makkar, and S. S. Cameotra. 2000. Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology 53 (5):495–508. doi:10.1007/s002530051648.
  • Bayoudh, S., A. Othmane, L. Mora, and H. Ben Ouada. 2009. Assessing bacterial adhesion using DLVO and XDLVO theories and the jet impingement technique. Colloids and Surfaces: B, Biointerfaces 73 (1):1–9. doi:10.1016/j.colsurfb.2009.04.030.
  • Behera, S. K., and A. F. Mulaba-Bafubiandi. 2017. Microbes assisted mineral flotation a future prospective for mineral processing industries: A review. Mineral Processing and Extractive Metallurgy Review 38 (2):96–105. doi:10.1080/08827508.2016.1262861.
  • Berg, B., and R. Laskowski. 2005. Decomposers: Soil microorganisms and animals. Advances in Ecological Research 38:73–100. doi:10.1016/S0065-2504(05)38003-2.
  • Bhattacharya, S., and R. D. Pascoe. 2004. Effect of temperature on coal flotation performance—a review. Mineral Processing and Extractive Metallurgy Review 26 (1):31–61. doi:10.1080/08827500490477586.
  • Bleeze, B., J. Zhao, and S. L. Harmer. 2018. Selective attachment of Leptospirillum ferrooxidans for separation of chalcopyrite and pyrite through bio-flotation. Minerals 8 (3):86. doi:10.3390/min8030086.
  • Bosecker, K. 1997. Bioleaching: Metal solubilization by microorganisms. FEMS Microbiology Reviews 20 (3–4):591–604. doi:10.1016/S0168-6445(97)00036-3.
  • Bos, R., H. C. van der Mei, and H. J. Busscher. 1999. Physico-chemistry of initial microbial adhesive interactions–its mechanisms and methods for study. FEMS Microbiology Reviews 23 (2):179–230. doi:10.1111/j.1574-6976.1999.tb00396.x.
  • Botero, A. E. C., M. L. Torem, and L. M. S. de Mesquita. 2007. Fundamental studies of Rhodococcus opacus as a biocollector of calcite and magnesite. Minerals Engineering 20 (10):1026–32. doi:10.1016/j.mineng.2007.03.017.
  • Brown, E., and M. F. Jacobson. 2005. Cruel oil. Report published online by the Center for Science in the Public Interest. http://www.cspinet.org/palm/PalmOilReport.pdf.
  • Bueno, B. Y. M. 2007. Removal of Pb, Cr and Cu by a combined biosorption/bioflotation process using a Rhodococcus opacus straint. Master of science thesis. Pontifícia Universidade Católica Do Rio De Janeiro - Puc-Rio. Scholarly Publication 11676.
  • Bulatovic, S. M. 2007. Handbook of flotation reagents: Chemistry, theory and practice, vol. 1. Amsterdam: Flotation of sulfide Ores, Elsevier. doi:10.1016/C2009-0-17331-2.
  • Busalmen, J. P., and S. R. de Sánchez. 2001. Influence of pH and ionic strength on adhesion of a wild strain of Pseudomonas sp. to titanium. Journal of Industrial Microbiology & Biotechnology 26 (5):303–08. doi:10.1038/sj.jim.7000133.
  • Caicedo Pineda, G., and M. Marquez. 2019. Effect of Thiobacillus thiooxidans-cysteine interactions on pyrite biooxidation by Acidithiobacillus ferrooxidans in the presence of coal compounds. Brazilian Journal of Chemical Engineering 36 (2):681–82. doi:10.1590/0104-6632.20190362s20180294.
  • Canty, M. 1998. Overview of the sulfate-reducing bacteria demonstration project under the mine waste technology program. Mineral Processing and Extractive Metallurgy Review 19 (1):61–80. doi:10.1080/08827509608962429.
  • Carniello, V., B. W. Peterson, H. C. Van der Mei, and H. J. Busscher. 2018. Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Advances in Colloid and Interface Science 261:1–14. doi:10.1016/j.cis.2018.10.005.
  • Casas, A., M. L. Torem, and L. Mesquita. 2007. Fundamental studies of Rhodococcus opacus as a biocollector of calcite and magnesite. Minerals Engineering 20 (10):1026–32. doi:10.1016/j.mineng.2007.03.017.
  • Castañeda, O., A. Carlos, A. Merma, J. Puelles, and M. L. Torem. 2016. On the fundamentals aspects of hematite bioflotation using a gram positive strain. Minerals Engineering 106:55–63. doi:10.1016/j.mineng.2016.10.017.
  • Challener, C. 2003. Soaps and detergents – industry overview. Chem. Mark Rep 263:4.
  • Chandraprabha, M. N., and K. Natarajan. 2006. Surface chemical and flotation behaviour of chalcopyrite and pyrite in the presence of Thiobacillus thiooxidans. Hydrometallurgy 83 (1–4):146–52. doi:10.1016/j.hydromet.2006.03.021.
  • Chandraprabha, M. N., and K. A. Natarajan. 2010. Microbially induced mineral beneficiation. Mineral Processing and Extractive Metallurgy Review 31 (1):1–29. doi:10.1080/08827500903404682.
  • Chandraprabha, M. N., K. A. Natarajan, and P. Somasundaran. 2005. Selective separation of arsenopyrite from pyrite by biomodulation in the presence of Acidithiobacillus ferrooxidans. Journal of Colloid and Interface Science 276 (2):323–32. doi:10.1016/j.jcis.2004.03.047.
  • Chen, S., W. Gong, G. Mei, Q. Zhou, C. Bai, and N. Xu. 2011. Primary biodegradation of sulfide mineral flotation collectors. Minerals Engineering 24 (8):953–55. doi:10.1016/j.mineng.2011.01.003.
  • Chi, X., Y. Guo, S. Zhong, G. Li, and X. Lv. 2020. Molecular modelling and synthesis of a new collector O -butyl S -(1-chloroethyl)carbonodithioate for copper sulfide ore and its flotation behavior. RSC Advances 10 (6):3520–28. doi:10.1039/C9RA09648E.
  • Chockalingam, E., S. Subramanian, and K. A. Natarajan. 2003. Studies on biodegradation of organic flotation collectors using Bacillus polymyxa. Hydrometallurgy 71 (1–2):249–56. doi:10.1016/S0304-386X(03)00163-4.
  • Cohen, R., and D. Exerowa. 2007. Surface forces and properties of foam films from rhamnolipid biosurfactants. Advances in Colloid and Interface Science 134-135:24–34. doi:10.1016/j.cis.2007.04.018.
  • Colmer, A. R., and M. E. Hinkle. 1947. The role of microorganisms in acid mine drainage: A preliminary report. Science 106 (2751):253–56. doi:10.1126/science.106.2751.253.
  • Consuegra, G. L., S. Kutschke, M. Rudolph, and K. Pollmann. 2020. Halophilic bacteria as potential pyrite bio-depressants in Cu-Mo bioflotation. Minerals Engineering 145:106062. doi:10.1016/j.mineng.2019.106062.
  • Cuvier, A.-S., F. Babonneau, J. Berton, C. V. Stevens, G. C. Fadda, G. Péhau-Arnaudet, P. Le Griel, S. Prévost, J. Perez, and N. Baccile. 2015. Nanoscale platelet formation by monounsaturated and saturated sophorolipids under basic pH conditions. Chemistry – A European Journal 21 (52):19265–77. doi:10.1002/chem.201502933.
  • Das, K., and A. K. Mukherjee. 2005. Characterization of biochemical properties and biological activities of biosurfactants produced by Pseudomonas aeruginosa mucoid and non-mucoid strains isolated from hydrocarbon-contaminated soil samples. Applied Microbiology and Biotechnology 69 (2):192–99. doi:10.1007/s00253-005-1975-5.
  • Day, A. 2002. Mining chemicals handbook revised. Meriden: CYTEC.
  • De Almeida Darne, G., R. D. C. F. Soares Da Silva, M. Luna Juliana, D. Rufino Raquel, A. Santos Valdemir, M. Banat Ibrahim, and A. Sarubbo Leonie. 2016. Biosurfactants: Promising molecules for petroleum biotechnology advances. Frontiers in Microbiology 7. doi: 10.3389/fmicb.2016.01718.
  • Dehghan, R., and M. Dianati. 2015. The effects of Pb-Zn flotation reagents on the bioleaching process by mesophilic bacteria. International Journal of Mineral Processing 143:80–86. doi:10.1016/j.minpro.2015.09.007.
  • De Mesquita, L. M. S., F. F. Lins, and M. L. Torem. 2003. Interaction of a hydrophobic bacterium strain in a hematite–quartz flotation system. International Journal of Mineral Processing 71 (1–4):31–44. doi:10.1016/S0301-7516(03)00028-0.
  • Demirbas, A., and M. Balat. 2004. Coal desulfurization via different methods. Energy Sources 26 (6):541–50. doi:10.1080/00908310490429669.
  • Deo, N., and K. A. Natarajan. 1997. Interaction of Bacillus polymyxa with some oxide minerals with reference to mineral beneficiation and environmental control. Minerals Engineering 10 (12):1339–54. doi:10.1016/S0892-6875(97)00125-8.
  • Deo, N., and K. A. Natarajan. 1998a. Studies on interaction of Paenibacillus polymyxa with iron ore minerals in relation to beneficiation. International Journal of Mineral Processing 55 (1):41–60. doi:10.1016/S0301-7516(98)00020-9.
  • Desai, J. D., and L. M. Banat. 1997. Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews : MMBR 61 (1):47–64. doi:10.1128/mmbr.61.1.47-64.1997.
  • Devi, N., and L. Behari Sukla. 2019. Studies on liquid-liquid extraction of yttrium and separation from other rare earth elements using bifunctional ionic liquids. Mineral Processing and Extractive Metallurgy Review 40 (1):46–55. doi:10.1080/08827508.2018.1481058.
  • Dhar, P., H. Havskjold, M. Thornhill, S. Roelants, W. Soetaert, H. R. Kota, and I. Chernyshova. 2020. Toward green flotation: Interaction of a Sophorolipid biosurfactant with a copper sulfide. Journal of Colloid and Interface Science 585:386–99. doi:10.1016/j.jcis.2020.11.079.
  • Diaz-Baez, M. C., and F. Roldan. 1996. Evaluation of the agar plate method for rapid toxicity assessment with some heavy metals and environmental samples. Environmental Toxicology and Water Quality 11:259–63. doi:10.1002/(SICI)1098-2256(1996)11:3<259:AID-TOX12>3.0.CO;2-6.
  • Didyk, A. M., and Z. Sadowski. 2012. Flotation of serpentinite and quartz using biosurfactants. Physicochemical Problems of Mineral Processing 48 (2):607–18. doi:10.5277/ppmp120224.
  • Dopson, M., J.-E. Sundkvist, and E. B. Lindström. 2006. Toxicity of metal extraction and flotation chemicals to Sulfolobus metallicus and chalcopyrite bioleaching. Hydrometallurgy 81 (3–4):205–13. doi:10.1016/j.hydromet.2005.12.005.
  • Dowben, M. R., and R. Weidenmüller. 1968. Adaptation of mesophilic bacteria to growth at elevated temperatures. Biochimica et Biophysica Acta (BBA) - General Subjects 158 (2):255–61. doi:10.1016/0304-4165(68)90138-4.
  • Dwyer, R., W. J. Bruckard, S. Rea, and R. J. Holmes. 2012. Bioflotation and bioflocculation review: Microorganisms relevant for mineral beneficiation. Mineral Processing and Extractive Metallurgy Review 121 (2):65–71. doi:10.1179/1743285512Y.0000000005.
  • El-Ghammaz, M. R., M. K. Hassan, and N. A. Abdel-Khalek. 2021. Proteomic profile to explain the mechanism of the Bacillus cereus-phosphate mineral interaction. Physicochemical Problems of Mineral Processing 57 (3):136–50. doi:10.37190/ppmp/136312.
  • El-Midany, A. A., and M. A. Abdel-Khalek. 2014. Reducing sulfur and ash from coal using Bacillus subtilis and Paenibacillus polymyxa. Fuel 115:589–95. doi:10.1016/j.fuel.2013.07.076.
  • El-Sayed, S., E. El-Shatoury, N. Abdel-Khalek, A. Abdel-Motelib, and M. Abdel Khalek. 2021. Influence of Bacillus cereus-Gold interaction on bio-flotation of gold in the presence of potassium butyl xanthate. Physicochemical Problems of Mineral Processing 11 (5):13005–18. doi:10.33263/BRIAC115.1300513018.
  • Fact.Mr. 2022. Microbial biosurfactants market. Report. Chemical & Materials, 170. FACT7333MR. https://www.factmr.com/report/microbial-biosurfactants-market.
  • Fagan-Endres, M., and S. Harrison. 2017. South African coal tailings bioflotation for desulphurization using Mycobacterium phlei. Solid State Phenomena 262:613–16. www.scientific.net/SSP.262.613.
  • Fazaelipoor, M. H., H. Khoshdast, and M. Ranjbar. 2010. Coal flotation using a biosurfactant from Pseudomonas aeruginosa as a frother. The Korean Journal of Chemical Engineering 27 (5):1527–31. doi:10.1007/s11814-010-0223-6.
  • Fuchida, S., A. Yokoyama, R. Fukuchi, J. Ishibashi, S. Kawagucci, M. Kawachi, and H. Koshikawa. 2017. Leaching of metals and metalloids from hydrothermal ore particulates and their effects on marine phytoplankton. ACS Omega 2 (7):3175–82. doi:10.1021/acsomega.7b00081.
  • Gawad, B., S. Dhurve, H. Vanmali, and M. Patil. 2020. Study of soil biotechnology for waste water treatment. SSRG International Journal of Civil Engineering 7 (3):8–12. doi:10.14445/23488352/IJCE-V7I3P103.
  • Ghashoghchi, R. A., M. R. Hosseini, and A. Ahmadi. 2017. Effects of microbial cells and their associated extracellular polymeric substances on the bio-flocculation of kaolin and quartz. Applied Clay Science 138:81–88. doi:10.1016/j.clay.2017.01.002.
  • Gholami, A., and H. Khoshdast. 2020. Using artificial neural networks for the intelligent estimation of selectivity index and metallurgical responses of a sample coal bioflotation by rhamnolipid biosurfactants. Energy Sources: Part A: Recovery, Utilization, and Environmental Effects 1–19. doi:10.1080/15567036.2020.1857477.
  • Gholami, A. R., H. Khoshdast, and A. Hassanzadeh. 2021. Applying hybrid genetic and artificial bee colony algorithms to simulate a bio-treatment of synthetic dye-polluted wastewater using a rhamnolipid biosurfactant. Journal of Environmental Management 1:299. 113666. doi:10.1016/j.jenvman.2021.113666.
  • Golomeov, B., M. Golomeova, B. Krstev, and A. Krstev. 2011. Some hazardous appearances in flotation tailings dumps in domestic mines. Perspectives of Innovations, Economics and Business 7. doi:10.15208/pieb.2011.19.
  • Gram, H. C. 1884. Über die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten. Fortschritte der Medizin (In German) 2:185–89.
  • Green mining initiative. 2012. http://www.nrcan.gc.ca/minerals-metals/technology/4473.
  • Gultom, T., and A. Sianipar. 2020. IOP Conference Series: Earth and Environmental Science. The 2019 International Conference on Mining and Environmental Technology, Lombok, Indonesia, 413, 012015.
  • Gupta, S. D., B. T. O. Lee, J. Camakaris, and H. C. Wu. 1995. Identification of cutC and cutF (nlpE) genes involved in copper tolerance in Escherichia coli. Journal of Bacteriology 177 (15):4207–15. doi:10.1128/jb.177.15.4207-4215.1995.
  • Hartman, H., and J. Mutmansky. 2002. Introductory mining and engineering. 2nd ed. USA: John Wiley & Sons Inc.
  • Hassanzadeh, A., A. Azizi, S. Kouachi, M. Karimi, and M. S. Celik. 2019. Estimation of flotation rate constant and particle-bubble interactions considering key hydrodynamic parameters and their interrelations. Minerals Engineering 141:105836. doi:10.1016/j.mineng.2019.105836.
  • Hermansson, M. 1999. The DLVO theory in microbial adhesion. Colloids and Surfaces: B, Biointerfaces 14 (1–4):105–19. doi:10.1016/S0927-7765(99)00029-6.
  • Heyd, M., M. Franzreb, and S. Berensmeier. 2011. Continuous rhamnolipid production with integrated product removal by foam fractionation and magnetic separation of immobilized Pseudomonas aeruginosa. Biotechnology Progress 27 (3):706–16. doi:10.1002/btpr.607.
  • Hołda, A., and A. Młynarczykowska. 2014. Bioflotation as an alternative method for desulphurization of fine coals - Part I. Inzynieria Mineralna 15 (2):263–68.
  • Hunter, R., F. M. Stewart, T. Oarsow, M. L. Fogelsong, D. W. Mogk, E. H. Abbott, and C. A. Young. 1998. New alternative to cyanidation: Biocatalyzed bisulfide leaching. Mineral Processing and Extractive Metallurgy Review 19 (1):183–97. doi:10.1080/08827509608962439.
  • Jain, R. K., Z. Cui, and J. Domen. 2016. Chapter 4 - environmental impacts of mining. In Environmental impact of mining and mineral processing, ed. K. J. Ravi, Z. C. Cui, and K. D. Jeremy, 53–157. Butterworth-Heinemann. doi:10.1016/B978-0-12-804040-9.00004-8.
  • Jia, C. Y., D. Z. Wei, P. J. Li, X. J. Li, P. D. Tai, W. Liu, and Z. Q. Gong. 2011. Selective adsorption of Mycobacterium Phlei on pyrite and sphalerite. Colloids and Surfaces: B, Biointerfaces 83 (2):214–19. doi:10.1016/j.colsurfb.2010.11.010.
  • Johnson, D. B., B. M. Grail, and K. B. Hallberg. 2013. A new direction for biomining: Extraction of metals by reductive dissolution of oxidized ores. Minerals: Advances in Mineral Processing 3 (1):49–58. doi:10.3390/min3010049.
  • Kamble, S. J., Y. Chakravarthy, A. Singh, C. Chubilleau, M. Starkl, and I. Bawa. 2017. A soil biotechnology system for wastewater treatment: Technical, hygiene, environmental LCA and economic aspects. Environmental Science and Pollution Research 24 (15):13315–34. doi:10.1007/s11356-017-8819-6.
  • Kanani, H., and B. Patel. 2017. Domestic wastewater treatment by soil biotechnology. International Journal of Advance Research and Innovative Ideas in Education 3:4143–47.
  • Karavaiko, G. I., Z. A. Avakyan, L. V. Ogurtsava, and O. F. Safanova. 1989. Microbiological processing of bauxite. In Biohydrometallurgy, ed. J. Salley, R. G. L. McGready, and L. Wichlacz, 93–102. Ottawa: CANMET.
  • Kargi, F., and J. M. Robinson. 1982. Removal of sulfur compounds from coal by thermofilic organism Sulfolobus acidocaldarius. Applied and Environmental Microbiology 44 (4):878–83. doi:10.1128/aem.44.4.878-883.1982.
  • Kargi, F., and J. M. Robinson. 1984. Biological removal of pyritic sulfur from coal by the thermophilic organismSulfolobus acidocaldarius. Biotechnology and Bioengineering 27 (1):41–49. doi:10.1002/bit.260270107.
  • Khopade, A., B. Ren, X.-Y. Liu, K. Mahadik, L. Zhang, and C. Kokare. 2012. Production and characterization of biosurfactant from marine Streptomyces species B3. Journal of Colloid and Interface Science 367 (1):311–18. doi:10.1016/j.jcis.2011.11.009.
  • Khoshdast, H., H. Abbasi, A. Sam, and K. Akbari Noghabi. 2012. Frothability and surface behavior of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa MA01. Biochemical Engineering Journal 60:127–34. doi:10.1016/j.bej.2011.10.015.
  • Khoshdast, H., A. R. Gholami, A. Hassanzadeh, T. Niedoba, and A. Surowiak. 2021. Advanced simulation of removing chromium from a synthetic wastewater by rhamnolipidic bioflotation using hybrid neural networks with metaheuristic algorithms. Materials 14 (11):2880. doi:10.3390/ma14112880.
  • Khoshdast, H., A. Hassanzadeh, P. B. Kowalczuk, and S. Farrokhpay. 2022. Characterization techniques of flotation frothers - a review. Mineral Processing and Extractive Metallurgy Review 1–25. doi:10.1080/08827508.2021.2024822.
  • Khoshdast, H., and A. Sam. 2012. An efficiency evaluation of iron concentrates flotation using rhamnolipid biosurfactant as a frothing reagent. Environmental Engineering Research 17 (1):9–15. doi:10.4491/eer.2012.17.1.009.
  • Khoshdast, H., A. Sam, and Z. Manafi. 2012. The use of rhamnolipid biosurfactants as a frothing agent and a sample copper ore response. Minerals Engineering 26:41–49. doi:10.1016/j.mineng.2011.10.010.
  • Khoshdast, H., A. Sam, H. Vali, and K. Noghabi. 2011. Effect of rhamnolipid biosurfactants on performance of coal and mineral flotation. International Biodeterioration & Biodegradation 65 (8):1238–43. doi:10.1016/j.ibiod.2011.10.003.
  • Khoshdast, H., and V. Shojaei. 2012. Ash removal from a sample coal by flotation using Rhamnolipid biosurfactants. Journal of Mining World Express 1 (2):39–45.
  • Kim, G., J. Choi, R. A. Silva, Y. Song, and H. Kim. 2017. Feasibility of bench-scale selective bioflotation of copper oxide minerals using Rhodococcus opacus. Hydrometallurgy 168:94–102. doi:10.1016/j.hydromet.2016.06.029.
  • Kolahdoozan, M., S. M. Tabatabaei Yazdi, W. T. Yen, R. Hosseini Tabatabaei, A. R. Shahverdi, M. Oliazadeh, M. Noaparast, A. Eslami, and Z. Manafi. 2004. Bioflotation of the low grade Sarcheshmeh copper sulfide. Transactions of the Indian Institute of Metals 57:485–90.
  • Kumar, R., and A. Jyoti Das. 2018. Rhamnolipid biosurfactant, vol. 1, 141. Singapore: Springer.
  • Kuyucak, N. 1998. Minerals bioprocessing, biorecovery and bioremediation in mining. Mineral Processing and Extractive Metallurgy Review 19 (1):1–4. doi:10.1080/08827509608962424.
  • Lang, S. 2003. Surfactants produced by microorganisms. In Novel surfactants (preparation, applications, and biodegradibility), ed. Holmberg, 2nd ed., 279–316. New York: Marcel Dekker Inc. doi:10.1201/9780203911730.
  • Liu, D., and K. Kwasniewska. 1981. An improved agar plate method for rapid assessment of chemical inhibition to microbial populations. Bulletin of Environmental Contamination and Toxicology 27 (3):289–94. doi:10.1007/BF01611022.
  • Liu, X., B. Ren, H. Gao, M. Liu, H. Dai, F. Song, Z. Yu, S. Wang, J. Jiangchun, C. Kokare, et al. 2012. Optimization for the production of surfactin with a new synergistic antifungal activity. PloS One 7 (5):e34430. doi:10.1371/journal.pone.0034430.
  • Mahmoodabadi, M., H. Khoshdast, and V. Shojaei. 2019. Efficient dye removal from aqueous solutions using rhamnolipid biosurfactants by foam flotation. Iranian Journal of Chemistry and Chemical Engineering 38 (4):60–73. doi:10.30492/IJCCE.2019.37644.
  • Manet, S., A.-S. Cuvier, C. Valotteau, G. C. Fadda, J. Perez, E. Karakas, S. Abel, and N. Baccile. 2015. Structure of bolaamphiphile sophorolipid micelles characterized with SAXS, SANS, and MD simulations. The Journal of Physical Chemistry: B 119 (41):13113–33. doi:10.1021/acs.jpcb.5b05374.
  • Marajan, C., S. Alias, K. Ramasamy, and S. Abdul-Talib. 2020. The effect of incubation time, temperature and pH variations on the surface tension of biosurfactant produced by Bacillus spp. AIP Conference Proceedings 1:020047. doi:10.1063/1.5062673.
  • Mehrabani, J. V., M. Noaparast, S. M. Mousavi, R. Dehghan, E. Rasooli, and H. Hajizadeh. 2010. Depression of pyrite in the flotation of high pyrite low-grade lead–zinc ore using Acidithiobacillus ferrooxidans. Minerals Engineering 23 (1):10–16. doi:10.1016/j.mineng.2009.08.008.
  • Merma, A. G., and M. L. Torem. 2015. Bioflotation of apatite and quartz: Particle size effect on the rate constant. Revista Escola de Minas - SciElo 68 (3):343–50. doi:10.1590/0370-44672014680239.
  • Merma, A. G., M. L. Torem, J. V. Moran, and M. B. M. Monte. 2013. On the fundamental aspects of apatite and quartz flotation using a gram positive strain as a bioreagent. Minerals Engineering 48:61–67. doi:10.1016/j.mineng.2012.10.018.
  • Meruelo, A. D., S. K. Han, S. Ki, and J. U. Bowie. 2012. Structural differences between thermophilic and mesophilic membrane proteins. Protein Science: A Publication of the Protein Society 21 (11):1746–53. doi:10.1002/pro.2157.
  • Michael, J., J. R. Pelczar, E. C. S. Chan, and R. K. Noel. 2021. Microbiology: Concepts and applications. USA: McGraw-Hill Education (ISE Editions). International Ed edition. 0070492581, 0071129146, 9780070492585, 9780071129145.
  • Miettinen, R., M. Ratto, J. Leppinen, and R. W. Smith. 2003a. Biobeneficiation with bacteria, Internal report, VTT, Outokumpu, Finland.
  • Miettinen, R., M. Ratto, J. Leppinen, and R. W. Smith. 2003b. Flocculation of apatite, calcite and quartz using bacteria, Internal report, VTT, Outokumpu, Finland.
  • Mishra, M., K. Bukka, and S. Chen. 1996. The effect of growth medium of Thiobacillus ferrooxidans on pyrite flotation. Minerals Engineering 9 (2):157–68. doi:10.1016/0892-6875(96)00001-5.
  • Mohanram, I., M. Gaikwad, M. S. Rao, and C. S. Gundewar. 2014. Role of chemical reagents in mineral processing technology. Conference: Global opportunities for Latest Developments in Chemistry and Technology (Gold-CT-2014), India.
  • Mohanty, A., and N. Devi. 2021. A review on green method of extraction and recovery of energy critical element cobalt from spent lithium-ion batteries (LIBs). Mineral Processing and Extractive Metallurgy Review 1–12. doi:10.1080/08827508.2021.2017925.
  • Moosakazemi, F., S. Ghassa, M. Jafari, and S. Chehreh Chelgani. 2022. Bioleaching for recovery of metals from spent batteries – a review. Mineral Processing and Extractive Metallurgy Review 1–11. doi:10.1080/08827508.2022.2095376.
  • Morán, J. J. V., C. A. C. Olivera, A. V. Gonzalez, A. G. Merma, and M. L. Torem. 2021. Adhesion evaluation of the Rhodococcus opacus strain on an apatite surface. REM - International Engineering Journal 74 (3):369–77. doi:10.1590/0370-44672020740118.
  • Mukherjee, S., P. Das, and R. Sen. 2006. Towards commercial production of microbial surfactants. Trends in Biotechnology 24 (11):509–15. doi:10.1016/j.tibtech.2006.09.005.
  • Mu, Y., Y. Peng, and L. R. A. Auten. 2016. The depression of pyrite in selective flotation by different reagent systems: A literature review. Minerals Engineering 96-97:143–56. doi:10.1016/j.mineng.2016.06.018.
  • Nagaoka, T., N. Ohmura, and H. Saiki. 1999. A novel mineral flotation process using Thiobacillus ferrooxidans. Applied and Environmental Microbiology 65 (8):3588–93. doi:10.1128/aem.65.8.3588-3593.1999.
  • Natarajan, K. A. 1989. An integrated biotechnological approach to gold processing - an Indian experience. Mineral Processing and Extractive Metallurgy Review 19 (1):235–51. doi:10.1080/08827509608962443.
  • Natarajan, K. A. 1992. Bioprocessing for enhanced gold recovery. Mineral Processing and Extractive Metallurgy Review 8 (1–4):143–53. doi:10.1080/08827509208952683.
  • Natarajan, K. A. 1998. Microbes minerals and environment, geological survey of India. Bangalore: Allied Publishers.
  • Natarajan, K. A., and N. Deo. 2001. Role of bacterial interaction and bioreagents in iron ore flotation. International Journal of Mineral Processing 62 (1–4):143–57. doi:10.1016/S0301-7516(00)00049-1.
  • Natrajan, K. A. 2006. Biotechnology for metal extraction, mineral beneficiation and environmental control. In Proceedings of the International Seminar on Mineral Processing Technology and Indo-Korean Workshop on Resource Recycling (MPT-2006), Chennai, India, 1:68–81.
  • NCBI webpage on Archaeoglobus. Data extracted from the “NCBI taxonomy resources”. National Center for Biotechnology Information. Accessed October 19, 2007.
  • NCBI webpage on Sulfolobus. Data extracted from the “NCBI taxonomy resources”. National Center for Biotechnology Information. Accessed October 19, 2007.
  • Nies, D. H. 1999. Microbial heavy-metal resistance. Applied Microbiology and Biotechnology 51 (6):730–50. doi:10.1007/s002530051457.
  • O’Connor, C. 2021. Review of important developments since the 1st IMPC in 1952 in the understanding of the effects of chemical factors on flotation. Minerals Engineering 170:106960. doi:10.1016/j.mineng.2021.106960.
  • O’Connor, C. T., and P. J. T. Mills. 1990. The effect of temperature on the pulp and froth phases in the flotation of pyrite. Minerals Engineering 3 (6):615–24. doi:10.1016/0892-6875(90)90006-W.
  • Oediyani, S., D. Haryono, and R. Suwandana. 2019. Optimization of flotation columns to provide added value of local sphalerite ore. IOP Conference Series: Materials Science and Engineering 673 (1):012133. doi:10.1088/1757-899X/673/1/012133.
  • Okibe, N., and D. B. Johnson. 2002. Toxicity of flotation reagents to moderately thermophilic bioleaching microorganisms. Biotechnology Letters 24 (23):2011–16. doi:10.1023/A:1021118915720.
  • Olson, M. G. J. 2003. Bioleaching review part b: Progress in bioleaching: Applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology 63 (3):249–57. doi:10.1007/s00253-003-1404-6.
  • Öz Aksoy, D., S. Özdemir, S. Koca, H. Çakmak, P. Aytar Çelik, D. D. A. Çabuk, and H. Koca. 2022. Modelling of magnesite flotations with two different collectors: Biocollector and oleate. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 30 (1):106–14. doi:10.31796/ogummf.1000345.
  • Ozdemir, G., S. Peker-Basara, and S. Helvaci. 2004. Effect of pH on the surface and interfacial behavior of rhamnolipids R1 e R2. Colloids and Surfaces: A: Physicochemical and Engineering Aspects 234 (1–3):135–43. doi:10.1016/j.colsurfa.2003.10.024.
  • Pallavi, J., K. Praveen, and R. Sapna. 2021. Chapter 11 - Application of biosurfactant in the refinery of crude oil. In Green sustainable process for chemical and environmental engineering and science, ed. Inamuddin Charles Oluwaseun Adetunji and Abdullah M. Asiri, 235–54. The Netherlands: Elsevier.
  • Pansiripata, S., O. Pornsunthorntawee, R. Rujiravanita, B. Kitiyanana, P. Somboonthanatea, and S. Chavadeja. 2010. Biosurfactant production by Pseudomonas aeruginosa SP4 using sequencing batch reactors: Effect of oil-to-glucose ratio. Biochemical Engineering Journal 49 (2):185–91. doi:10.1016/j.bej.2009.12.011.
  • Pascoe, R. D. 1992. Capital and operating costs of minerals engineering plants - a review of simple estimation techniques. Minerals Engineering 5 (8):883–93. doi:10.1016/0892-6875(92)90255-8.
  • Patel, S., A. Homaei, S. Patil, and A. Daverey. 2019. Microbial biosurfactants for oil spill remediation: Pitfalls and potentials. Applied Microbiology and Biotechnology 103 (1):27–37. doi:10.1007/s00253-018-9434-2.
  • Patra, P., and K. A. Natarajan. 2003. Microbially-Induced flocculation and flotation for pyrite separation from oxide gangue minerals. Minerals Engineering 16 (10):965–73. doi:10.1016/S0892-6875(03)00268-1.
  • Patra, P., and K. A. Natarajan. 2004. Microbially enhanced removal of pyrite and chalcopyrite from oxide gangue minerals with reference to desulfurization of tailings. Minerals and Metallurgical Processing 21:169–78. doi:10.1007/BF03403180.
  • Patra, P., and K. A. Natarajan. 2004a. Microbially induced flocculation and flotation for separation of chalcopyrite from quartz and calcite. International Journal of Mineral Processing 74 (1–4):143–55. doi:10.1016/j.minpro.2003.10.006.
  • Patra, P., and K. A. Natarajan. 2004b. Microbially induced flotation and flocculation of pyrite and sphalerite. Colloids and Surfaces B: Biointerfaces 36 (2):91–99. doi:10.1016/j.colsurfb.2004.05.010.
  • Patra, P., and K. A. Natarajan. 2006. Surface chemical studies on selective separation of pyrite and galena in the presence of bacterial cells and metabolic products of Paenibacillus polymyxa. Journal of Colloid and Interface Science 298 (2):720–29. doi:10.1016/j.jcis.2006.01.017.
  • Patra, P., and K. A. Natarajan. 2008. Role of mineral specific bacterial proteins in selective flocculation and flotation. International Journal of Mineral Processing: Process 88 (1–2):53–58. doi:10.1016/j.minpro.2008.06.005.
  • Paul, J., and G. Campbell. 2011. Investigating rare earth element mine development in epa region 8 and potential environmental impacts. Accessed http://www.epa.gov.92993906
  • Peçanha, E. R., M. B. Monte, A. Gutiérrez, and M. L. Merma Torem. 2015. On the fundamental aspects of hematite bioflotation using a gram-positive bacillus subtilis strain as a bioreagent. Materials Science, Engineering. Corpus ID: 189955635.
  • Pecina, E. T., M. Rodriguez, P. Castillo, V. Diaz, and E. Orrantia. 2009. Effect of Leptospirillum ferrooxidans on the flotation kinetics of sulphide ores. Minerals Engineering 22 (5):462–68. doi:10.1016/j.mineng.2008.12.008.
  • Pecina-Treviño, E. T., G. T. Ramos-Escobedo, P. M. Gallegos-Acevedo, F. J. López-Saucedo, and E. Orrantia-Borunda. 2012. Bioflotation of sulfide minerals with Acidithiobacillus ferrooxidans in relation to copper activation and surface oxidation. Canadian Journal of Microbiology 58 (9):1073–83. doi:10.1139/w2012-072.
  • Peterson, J., and D. G. Dixon. 2006. Competitive bioleaching of pyrites and chalcopyrite. Hydrometallurgy 83 (1–4):40–49. doi:10.1016/j.hydromet.2006.03.036.
  • Peyre, J., A. Hamraoui, M. Faustini, V. Humblot, and N. Baccile. 2017. Surface-Induced assembly of sophorolipids. Physical Chemistry Chemical Physics 19 (23):15227–38. doi:10.1039/C7CP01339F.
  • Phalguni, A., J. M. Modak, and K. A. Natarajan. 1996. Biobeneficiation of bauxite using Bacillus polymyxa; calcium and iron removal. International Journal of Mineral Processing 48 (1–2):51–60. doi:10.1016/S0301-7516(96)00013-0.
  • Pollard, T. D., W. C. Earnshaw, J. Lippincott-Schwartz, and G. T. Johnson. 2017. Chapter 4 - Biophysical principles. In Cell biology. 3rd ed., 53–62. Elsevier. doi:10.1016/B978-0-323-34126-4.00004-9.
  • Poorbahaadini, M., V. Shojaei, E. Darezereshki, and H. Khoshdast. 2020. Heavy metal removal from aqueous solutions using rhamnolipid-activated fly ash. Journal of Minerals Resources 5 (3):107–26. doi:10.30479/JMRE.2020.11434.1309.
  • Poorni, S., and K. A. Natarajan. 2013. Microbially induced selective flocculation of hematite from kaolinite. International Journal of Mineral Processing 125:92–100. doi:10.1016/j.minpro.2013.10.002.
  • Pradhan, D., S. Panda, and L. Behari Sukla. 2018. Recent advances in indium metallurgy: A review. Mineral Processing and Extractive Metallurgy Review 39 (3):167–80. doi:10.1080/08827508.2017.1399887.
  • Price, N. P. J., K. J. Ray, K. Vermillion, and T.-M. Kuo. 2009. MALDI-TOF mass spectrometry of naturally occurring mixtures of monorhamnolipids and dirhamnolipids. Carbohydrate Research 344 (2):204–09. doi:10.1016/j.carres.2008.10.013.
  • Puelles, J., A. Merma, O. Castañeda, A. Carlos, and M. L. Tore. 2021. Fundamental bioflotation aspects of hematite using an extracted Rhodococcus opacus by-product. REM - International Engineering Journal 74 (3):353–62. doi:10.1590/0370-44672020740095.
  • Qin, W., Q. Wei, F. Jiao, C. Yang, R. Liu, P. Wang, and L. Ke. 2013. Utilization of polysaccharides as depressants for the flotation separation of copper/lead concentrate. International Journal of Mining Science and Technology 23 (2):179–86. doi:10.1016/j.ijmst.2013.04.022.
  • Qusheng, J., and F. K. Matthew. 2018. pH as a primary control in environmental microbiology: 1. Thermodynamic Perspective, Frontiers in Environmental Science 6. doi:10.3389/fenvs.2018.00021.
  • Ramos-Escobedo, G. T., E. T. Pecina-Treviño, A. Bueno, S. Concha-Guerrero, D. Ramos-Lico, R. Guerra-Balderrama, and E. Orrantia-Borunda. 2016. Bio-Collector alternative for the recovery of organic matter in flotation processes. Fuel 176:165–72. doi:10.1016/j.fuel.2016.02.018.
  • Ramos-Escobedo, G. T., E. Pecina-Treviño, O. Camacho, F. Luis, and E. Orrantia-Borunda. 2014. Influence of S. carnosus Bacteria as biocollector for the recovery organic matter in the flotation process. International Journal of Bioengineering and Life Sciences 8 (10):1128–32. doi:10.5281/zenodo.1096497.
  • Rao, M. K., K. A. Natarajan, and P. Somasundaran. 1992. Effect of biotreatment with thiobacillus ferrooxidans on the floatability of sphalerite and galena. Minerals and Metallurgical Processing 9:95–100. doi:10.1007/BF03402978.
  • Rao, D., S. Subramanian, K. A. Natarajan, K. H. Rao, and K. S. E. Forssberg. 1999. Selective bioflotation of sphalerite from galena using Thiobacillus thiooxidans. Oral Seminar, Stockholm, Sweden.
  • Rawlings, D. E. 2002. Heavy metal mining using microbes. Annual Review of Microbiology 56 (1):65–91. doi:10.1146/annurev.micro.56.012302.161052.
  • Rawlings, D. E., and D. B. Johnson. 2019. The microbiology of biomining: Development and optimization of mineral-oxidizing microbial consortia. Microbiology (Reading) 153 (2):315–24. doi:10.1099/mic.0.2006/001206-0.
  • Rendell, N., G. Taylor, M. Somerville, H. Todd, R. Wilson, and P. Cole. 1990. Characterisation of Pseudomonas rhamnolipids. Biochimica Et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 1045 (2):189–93. doi:10.1016/0005-2760(90)90150-V.
  • Rittmann, B. E. 2010. Environmental biotechnology in water and wastewater treatment. Journal of Environmental Engineering 136 (4):348–53. doi:10.1061/(ASCE)EE.1943-7870.0000140.
  • Rodriguez-Montelongo, L., L. C. de la Cruz-Rodriguez, R. N. Farias, and E. M. Massa. 1993. Membrane-Associated redox cycling of copper mediates hydroperoxide toxicity in Escherichia coli. Biochimica Et Biophysica Acta 1144 (1):77–84. doi:10.1016/0005-2728(93)90033-c.
  • Rohwerder, M. T. 2003. Bioleaching review part a : Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation. Applied Microbiology and Biotechnology 63 (3):239–48. doi:10.1007/s00253-003-1448-7.
  • Sáenz-Marta, C. I., M. de Lourdes Ballinas-Casarrubias, B. E. Rivera-Chavira, and G. V. Nevárez-Moorillón. 2015. Biosurfactants as useful tools in bioremediation. In Advances in bioremediation of wastewater and polluted soil. IntechOpen. doi:10.5772/60751.
  • Saini, G. 2010. Bacterial hydrophobicity: Assessment techniques, applications and extension to colloids. PhD Dissertation, Oregon State University, USA. 3421600.
  • Samah, S. A., N. A. Abdel-Khalek, M. G. Farghaly, K. A. Selim, and M. A. Abdel-Khalek. 2021. Role of Pseudomonas songnenensis-Apatite interaction on bio-flotation of calcareous phosphate ore. Biointerface Research in Applied Chemistry 11 (6):14451–62. doi:10.33263/BRIAC116.1445114462.
  • Santhiya, D., S. Subramanian, and K. A. Natarajan. 2000. Surface chemical studies on galena and sphalerite in the presence of Thiobacillus thiooxidans with reference to mineral beneficiation. Minerals Engineering 13 (7):747–63. doi:10.1016/S0892-6875(00)00059-5.
  • Santhiya, D., S. Subramanian, and K. A. Natarajan. 2001. Surface chemical studies on sphalerite and galena using Bacillus polymyxa. Journal of Colloid and Interface Science 235 (2):289–97. doi:10.1006/jcis.2002.8681.
  • Santhiya, D., S. Subramanian, and K. A. Natarajan. 2002. Surface chemical studies on sphalerite and galena using extracellular polysaccharides isolated from Bacillus polymyxa. Journal of Colloid and Interface Science 256 (2):237–48. doi:10.1006/jcis.2002.8681.
  • Santhiya, D., S. Subramanian, K. A. Natarajan, M. K. Rao, and K. S. E. Forssberg. 2001. Bio-modulation of galena and sphalerite surfaces using Thiobacillus thiooxidans. International Journal of Mineral Processing 62 (1–4):121–41. doi:10.1016/S0301-7516(00)00048-X.
  • Sanwani, E., S. K. Chaerun, H. Husni, T. Pamungkas, and M. A. Rasyid. 2021. A biosurfactant-producing and iron-oxidizing mixotrophic bacterium as an environmentally friendly reagent for eco-green flotation of Indonesian complex Pb-Zn ores. Minerals Engineering 170:106824. doi:10.1016/j.mineng.2021.106824.
  • Sarvamangala, H., K. A. Natarajan, and S. T. Girisha. 2013. Microbially-Induced pyrite removal from galena using Bacillus subtilis. International Journal of Mineral Processing 120:15–21. doi:10.1016/j.minpro.2013.02.005.
  • Shahbazi, B., B. Bahram, S. Koelini, and M. Noparat. 2013. The effect of bubble surface area flux on flotation efficiency of pyrite particles. Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 32 (2):109–18.
  • Shami, R. B., V. Shojaei, and H. Khoshdast. 2019. Efficient cadmium removal from aqueous solutions using a sample coal waste activated by rhamnolipid biosurfactant. Journal of Environmental Management 231:1182–92. doi:10.1016/j.jenvman.2018.03.126.
  • Sharma, P. K. 2001. Surface studies relevant to microbial adhesion and bioflotation of sulphide minerals. Ph.D. Thesis, Luleå University of Technology, Sweden.
  • Sharma, P. K., A. B. Das, K. H. Rao, and E. Forssberg. 1999. Thiobacillus ferrooxidans interaction with sulfide minerals and selective chalcopyrite flotation from pyrite. In Advances in flotation technology, ed. Parekh BK and Miller JD, 147–65. USA: SME/AIME.
  • Sharma, P.K., and K. H. Rao. 1999. Role of a heterotrophic Paenibacillus polymyxa bacteria in the bioflotation of some sulfide minerals. Mining, Metallurgy & Exploration 16 (4):35–41. doi:10.1007/BF03403232.
  • Sharma, P. K., and K. H. Rao. 2003. Adhesion of Paenibacillus polymyxa on chalcopyrite and pyrite: Surface thermodynamics and extended DLVO theory. Colloids and Surfaces: B, Biointerfaces 29 (1):21–38. doi:10.1016/S0927-7765(02)00180-7.
  • Sharma, P. K., H. Rao, K. A. Natarajan, and K. S. E. Forssberg. 2000. Bioflotation of sulfide minerals in the presence of heterotrophic and chemolothotrophic bacteria. Proceedings of the XXI International Mineral Processing Congress B8a, 94–103. doi:10.1139/w2012-072.
  • Shojaei, V., and H. Khoshdast. 2018. Efficient chromium removal from aqueous solutions by precipitate flotation using rhamnolipid biosurfactants. Physicochemical Problems of Mineral Processing 54 (3):1014–25. doi:10.5277/ppmp18103.
  • Simões, C. R., R. R. Hacha, A. G. Merma, and M. L. Torem. 2020. On the recovery of hematite from an iron ore fine fraction by electroflotation using a biosurfactant. Minerals 10 (12):1057. doi:10.3390/min10121057.
  • Sim, L., O. P. Ward, and Z.-Y. Li. 1997. Production and characterization of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. Journal of Industrial Microbiology & Biotechnology 19 (4):232–38. doi:10.1038/sj.jim.2900450.
  • Sis, H., and S. Chander. 2003. Reagents used in the flotation of phosphate ores: A critical review. Minerals Engineering 16 (7):577–85. doi:10.1016/S0892-6875(03)00131-6.
  • Smith, R. W., and M. Misra. 1993. Recent developments in the bioprocessing of minerals. Mineral Processing and Extractive Metallurgy Review 12 (1):37–60. doi:10.1080/08827509308935252.
  • Soberón-Chávez, G., F. Lépine, and E. Déziel. 2005. Production of rhamnolipids by Pseudomonas aeruginosa. Applied Microbiology and Biotechnology 68 (6):718–25. doi:10.1007/s00253-005-0150-3.
  • Solaiman, D., R. Ashby, J. Zerkowski, and T. Foglia. 2007. Simplified soy molasses-based medium for reduced-cost production of sophorolipids by Candida bombicola. Biotechnology Letters 29 (9):1341–47. doi:10.1007/s10529-007-9407-5.
  • Subramanian, S., H. Ravishankar, and B. Vasanthakumar. 2016. Enhancement of flotation selectivity of sphalerite using mineral-stressed Paenibacillus polymyxa and its cellular components. Transactions of the Indian Institute of Metals 69 (1):67–74. doi:10.1007/s12666-015-0644-3.
  • Subramanian, S., D. Santhiya, and K. A. Natarajan. 2003. Surface modification studies on sulphide minerals using bioreagents. International Journal of Mineral Processing 72 (1–4):175–88. doi:10.1016/S0301-7516(03)00097-8.
  • Szymanska, A., and Z. Sadowski. 2010. Effects of biosurfactants on surface properties of hematite. Adsorption 16 (4–5):233–39. doi:10.1007/s10450-010-9251-0.
  • Taylor, S. R., K. J. Miller, and A. W. Deurbrouck. 1981. Surface chemical problems in coal flotation. AIP Conference Proceedings 70:344–56. doi:10.1063/1.32948.
  • Techaoei, S., S. Lumyong, W. Prathumpai, D. Santiarwarn, and P. Leelapornpisid. 2011. Screening characterization and stability of biosurfactant produced by Pseudomonas aeruginosa SCMU106 isolated from soil in Northern Thailand. Asian Journal of Biological Sciences 4 (4):340–51. doi:10.3923/ajbs.2011.340.351.
  • Théatre, A., C. Cano-Prieto, M. Bartolini, Y. Laurin, M. Deleu, J. Niehren, T. Fida, S. Gerbinet, M. Alanjary, M. H. Medema, et al. 2021. The surfactin-like lipopeptides from Bacillus spp.: Natural biodiversity and synthetic biology for a broader application range. Frontiers in Bioengineering and Biotechnology 9. doi: 10.3389/fbioe.2021.623701.
  • Totsingan, F., F. Liu, and R. A. Gross. 2021. Structure–activity relationship assessment of sophorolipid ester derivatives against model bacteria strains. Molecules 26 (10):3021. doi:10.3390/molecules26103021.
  • Van der Mei, H. C., M. Rosenberg, and H. J. Busscher. 1991. Chapter 10. In Micribial cell surface analysis: Structural and physicochemical methods, In eds. Mozes, N., Handley, P.S., Busscher, H.J., and Rouxhet, P.G., 263–87. VCH publishers. doi:10.1080/01932699208943299.
  • Vardanyan, A., N. Vardanyan, A. Khachatryan, R. Zhang, and W. Sand. 2019. Adhesion to mineral surfaces by cells of leptospirillum, acidithiobacillus and sulfobacillus from armenian sulfide ores. Minerals 9 (2):69. doi:10.3390/min9020069.
  • Vasanthakumar, B., H. Ravishankar, and S. Subramanian. 2017. Selective bio-flotation of sphalerite from galena using mineral – adapted strains of Bacillus subtilis. Minerals Engineering 110:179–84. doi:10.1016/j.mineng.2017.05.002.
  • Vieille, C., and G. J. Zeikus. 2001. Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiology and Molecular Biology Reviews: MMBR 65 (1):1–43. doi:10.1128/MMBR.65.1.1-43.2001.
  • Vilinska, A., and K. H. Rao. 2008. Leptosririllum ferrooxidans-sulfide mineral interactions with reference to bioflotation nad bioflocculation. Transactions of Nonferrous Metals Society of China 18 (6):1403–09. doi:10.1016/S1003-6326(09)60016-9.
  • Vilinska, A., and K. H. Rao. 2011. Surface thermodynamics and extended DLVO theory of Leptospirillum ferrooxidans cells’ adhesion on sulfide minerals. Mining, Metallurgy & Exploration 28 (3):151–58. doi:10.1007/BF03402248.
  • Vilinska, A., and M. K. Rao. 2011. Surface characterization of Acidithiobacillus ferrooxidans adapted to high copper and zinc ions concentration. Geomicrobiology Journal 28 (3):221–28. doi:10.1080/01490451.2010.489920.
  • Vilinska, A., K. H. Rao, and K. S. E. Forssberg. 2008. Microorganisms in flotation and flocculation of minerals–an overview. XXIVth International Mineral Processing Congress IMPC, Beijing, China, 22–39. doi: 10.1016/j.mineng.2005.09.007.
  • Wackett, L. 2019. Microbial biotechnology for water treatment. Microbial Biotechnology 12 (3):574–75. doi:10.1111/1751-7915.13413.
  • Wahyuningsih, T., S. Khodijah Chaerun, and E. Sanwani. 2020. Characterization of interaction of biosurfactant-producing bacteria with pyrite minerals as an alternative to depressant reagents in the bioflotation process of copper sulfide minerals that are more environmentally friendly. AIP Conference Proceedings 2245:080005. doi:10.1063/5.0007195.
  • Wang, X.-H., and K. E. Forssberg. 1991. Mechanisms of pyrite flotation with xanthates. International Journal of Mineral Processing 33 (1–4):275–90. doi:10.1016/0301-7516(91)90058-Q.
  • Wang, L., N. Kamennaya, M. F. Cohen, and X. Li. 2022. Editorial: Highlighting the role of microbes in greener wastewater treatment. Frontiers in Environmental Science 10. doi:10.3389/fenvs.2022.891761.
  • Webb, M., H. Ruber, and G. Leduc. 1976. The toxicity of various mining flotation reagents to rainbow trout (Salmo gairdneri). Water Research 10 (4):303–06. doi:10.1016/0043-1354(76)90171-8.
  • Wood, T. L., T. Gong, L. Zhu, J. Miller, D. S. Miller, B. Yin, and T. K. Wood. 2018. Rhamnolipids from Pseudomonas aeruginosa disperse the biofilms of sulfate-reducing bacteria. NPJ Biofilms and Microbiomes 4 (1):22. doi:10.1038/s41522-018-0066-1.
  • Yang, H., Q. Zhang, and Z. Jiang. 2007. Adsorbability of Mycobacterium phlei on hematite surface. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material 14 (2):103–06. doi:10.1016/S1005-8850(07)60021-8.
  • Yelloji Rao, M. K., P. Somasundaran, K. M. Schilling, B. Carson, and K. P. Ananthapadmanabhan. 1993. Bacterial adhesion onto apatite minerals — electrokinetic aspects. Colloids and Surfaces: A, Physicochemical and Engineering Aspects 79 (2–3):293–300. doi:10.1016/0927-7757(93)80182-E.
  • Zhao, J., W. Wu, Z. Jivio, M. Zhu, and W. Tan. 2017. Characteristics of bio-desilication and bio-flotation of Paenibacillus mucilaginosus BM-4 on aluminosilicate minerals. International Journal of Mineral Processing 168:40–47. doi:10.1016/j.minpro.2017.09.002.
  • Zheng, X., P. Arps, and R. Smith. 2001. Adhesion of two bacteria onto dolomite and apatite: Their effect on dolomite depression in anionic flotation. International Journal of Mineral Processing 62 (1–4):159–72. doi:10.1016/S0301-7516(00)00050-8.
  • Zheng, X., R. W. Smith, R. K. Mehta, M. Misra, and A. MInteraction of ahydrophobic bacterium strain in a hematite–quartz flotation system. Raichur. 1998. Anionic flotation of apatite from dolomite modified by the presence of bacteria. Minerals and Metallurgical Processing 15:52–56. doi:10.1007/BF03402799.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.