369
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The Effect of Ultrasound Treatment on Oil Agglomeration of Barite

ORCID Icon

References

  • Altun, N. E., J. Y. Hwang, and C. Hicyilmaz. 2009. Enhancement of flotation performance of oil shale cleaning by ultrasonic treatment. International Journal of Mineral Processing 91 (1–2):1–13. doi:10.1016/j.minpro.2008.10.003.
  • Ananthapadmanabham, K. P., and P. Somasundaran. 1980. Interfacial phenomena in mineral processing. New York, NY: Engineering Foundation.
  • Calgaroto, S., A. Azevedo, and J. Rubio. 2015. Flotation of quartz particles assisted by nanobubbles. International Journal of Mineral Processing 137:64–70. doi:10.1016/j.minpro.2015.02.010.
  • Canselier, J. P., H. Delmas, A. M. Wilhelm, and B. Abismail. 2002. Ultrasound emulsification—An overview. Journal of Dispersion Science and Technology 23 (1–3):333–49. doi:10.1080/01932690208984209.
  • Cao, Q., J. Cheng, Q. Feng, S. Wen, and B. Luo. 2017. Surface cleaning and oxidative effects of ultrasonication on the flotation of oxidized pyrite. Powder Technology 311:390–97. doi:10.1016/j.powtec.2017.01.069.
  • Capes, C. E. 1991. Oil agglomeration process principles and commercial application for fine coal cleaning. Coal Preparation 4:1021–29.
  • Capes, C., and K. Jonasson. 1989. Application of oil–water wetting of coals in beneficiation. In Interfacial phenomena in coal technology. New York: CRC Press.
  • Cebeci, Y., and N. Eroglu. 1998. Determination of bridging liquid type in oil agglomeration of lignites. Fuel 77 (5):419–24. doi:10.1016/S0016-2361(98)80032-X.
  • Cebeci, Y., and I. Sonmez. 2004. Investigation of spherical oil agglomeration properties of celestite. Journal of journal of Colloid and Interface Science 273 (1):198–204. doi:10.1016/j.jcis.2003.12.001.
  • Cebeci, Y., and I. Sonmez. 2006. Application of the Box-Wilson experimental design method for the spherical oil agglomeration of coal. Fuel 85 (3):289–97. doi:10.1016/j.fuel.2005.07.017.
  • Celik, M. S. 1989. Effect of ultrasonic treatment on the floatability of coal and galena. Separation Science and Technology 24 (14):1159–66. doi:10.1080/01496398908049894.
  • Chen, Y., V. N. T. Truong, X. Bu, and G. Xie. 2020. A review of effects and applications of ultrasound in mineral flotation. Ultrasonics Sonochemistry 60:104739. doi:10.1016/j.ultsonch.2019.104739.
  • Chen, Y., G. Xie, J. Chang, J. Grundy, and Q. Liu. 2019. A study of coal aggregation by standing-wave ultrasound. Fuel 248:38–46. doi:10.1016/j.fuel.2019.03.030.
  • Cho, S. H., J. Y. Kim, J. H. Chun, and J. D. Kim. 2005. Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 269 (1–3):28–34. doi:10.1016/j.colsurfa.2005.06.063.
  • Cilek, E. C., and S. Ozgen. 2009. Effect of ultrasound on separation selectivity and efficiency of flotation. Minerals Engineering 22 (14):1209–17. doi:10.1016/j.mineng.2009.06.007.
  • De Castro, M. L., and F. Priego-Capote. 2007. Ultrasound-assisted crystallization (sonocrystallization). Ultrasonics Sonochemistry 14 (6):717–24. doi:10.1016/j.ultsonch.2006.12.004.
  • Farmer, A. D., A. F. Collings, and G. J. Jameson. 2000. Effect of ultrasound on surface cleaning of silica particles. International Journal of Mineral Processing 60 (2):101–13. doi:10.1016/S0301-7516(00)00009-0.
  • Gaikwad, S. G., and A. B. Pandit. 2008. Ultrasound emulsification: Effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size. Ultrasonics Sonochemistry 15 (4):554–63. doi:10.1016/j.ultsonch.2007.06.011.
  • Ghadyani, A., M. Noaparast, and S. Z. S. Tonkaboni. 2017. A study on the effects of ultrasonic irradiation as pretreatment method on high-ash coal flotation and kinetics. International Journal of Coal Preparation and Utilization 38 (7):374–91. doi:10.1080/19392699.2016.1277210.
  • Gungoren, C., Y. Baktarhan, I. Demir, and S. G. Ozkan. 2020. Enhancement of galena-potassium ethyl xanthate flotation system by low power ultrasound. Transactions of Nonferrous Metals Society of China 30 (4):1102–10. doi:10.1016/S1003-6326(20)65281-5.
  • Gungoren, C., O. Ozdemir, X. Wang, S. Ozkan, and J. Miller. 2019. Effect of ultrasound on bubble-particle interaction in quartz-amine flotation system. Ultrasonics Sonochemistry 52:446–54. doi:10.1016/j.ultsonch.2018.12.023.
  • Harris, M. J. 1988. New mexico bureau of mines and mineral resources. Open File Report 1988 #336, Barite Flotation, El Cuervo Butte, 1–17.
  • Hassanzadeh, A., S. A. Sajjady, H. Gholami, S. Amini, and S. G. Ozkan. 2020. An improvement on selective separation by applying ultrasound to rougher and re-cleaner stages of copper flotation. Minerals 10 (7):619. doi:10.3390/min10070619.
  • Keller, D., Jr, and W. Burry. 1987. An investigation of a separation process involving liquid water coal systems. Colloids and Surfaces 22 (1):37–50. doi:10.1016/0166-6622(87)80004-5.
  • Kentish, S., T. Wooster, M. Ashokkumar, S. Balachandran, R. Mawson, and L. Simons. 2008. The use of ultrasonics for nano emulsion preparation. Innovative Food Science & Emerging Technologies 9 (2):170–75. doi:10.1016/j.ifset.2007.07.005.
  • Kursun, H., and U. Ulusoy. 2015. Zinc recovery from a lead–zinc–copper ore by ultrasonically assisted column flotation. Particulate Science and Technology 33 (4):349–56. doi:10.1080/02726351.2014.970314.
  • Laskowski, J. S. 1983. Surface and colloid science. Vol. 12. New York: Plenum.
  • Mao, Y., X. Bu, Y. Peng, F. Tian, and G. Xie. 2020. Effects of simultaneous ultrasonic treatment on the separation selectivity and flotation kinetics of high-ash lignite. Fuel 259 (1):116270. doi:10.1016/j.fuel.2019.116270.
  • Mao, Y., Y. Chen, X. Bu, and G. Xie. 2019b. Effects of 20 kHz ultrasound on coal flotation: The roles of cavitation and acoustic radiation force. Fuel 256:115938. doi:10.1016/j.fuel.2019.115938.
  • Mao, Y., Y. Peng, X. Bu, G. Xie, E. Wu, and W. Xia. 2018. Effects of ultrasound on the true flotation of lignite and its entrainment behavior. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (8):940–50. doi:10.1080/15567036.2018.1466009.
  • Mao, Y., W. Xia, Y. Peng, and G. Xie. 2019a. Ultrasonic-assisted flotation of fine coal: A review. Fuel Processing Technology 195:106150. doi:10.1016/j.fuproc.2019.106150.
  • Martinez-Luevanos, A., and A. Uribe-Salas. 1995. Interfacial properties of celestite and strontianite in aqueous solutions. Minerals Engineering 8 (9):1009–22. doi:10.1016/0892-6875(95)00064-W.
  • Molaeia, N., H. Razavib, and S. Chehreh Chelgani. 2018. Designing different beneficiation techniques by Taguchi method for upgrading Mehdi-Abad white barite ore. Mineral Processing and Extractive Metallurgy Review 39 (3):198–201. doi:10.1080/08827508.2017.1399889.
  • Nakamura, Y., and T. Saito. 2011. Particle motion in a kHz-order-ultrasound-irradiated water. Proceedings of the 8th International Symposium on Cavitation, Singapore, 109.
  • Nazari, S., S. Z. Shafaei, B. Shahbazi, and S. Chehreh Chelgani. 2018. Study relationships between flotation variables and recovery of coarse particles in the absence and presence of nanobubble. Colloids and Surfaces A: Physicochemical and Engineering Aspects 559:284–89. doi:10.1016/j.colsurfa.2018.09.066.
  • Onal, G., M. Ozer, and F. Arslan. 2003. Sedimentation of clay in ultrasonic medium. Minerals Engineering 16 (2):129–34. doi:10.1016/S0892-6875(02)00309-6.
  • Ozer, M., O. M. Basha, and B. Morsi. 2017. Coal-agglomeration processes: A review. International Journal of Coal Preparation and Utilization 37 (3):31–167. doi:10.1080/19392699.2016.1142443.
  • Ozkan, S. G. 2012. Effects of simultaneous ultrasonic treatment on flotation of hard coal slimes. Fuel 93:576–80. doi:10.1016/j.fuel.2011.10.032.
  • Ozkan, S. G. 2017. Further investigations on simultaneous ultrasonic coal flotation. Minerals 7 (10):177. doi:10.3390/min7100177.
  • Ozkan, S. G., and C. Gungoren. 2012. Enhancement of colemanite flotation by ultrasonic pre-treatment. Physicochemical Problems of Mineral Processing 48:455–62. doi:10.5277/ppmp120201.
  • Ozkan, S. G., and H. Z. Kuyumcu. 2006. Investigation of mechanism of ultrasound on coal flotation. International Journal of Mineral Processing 81 (3):201–03. doi:10.1016/j.minpro.2006.07.011.
  • Ozkan, S. G., and H. Z. Kuyumcu. 2007. Design of a flotation cell equipped with ultrasound transducers to enhance coal flotation. Ultrasonics Sonochemistry 14 (5):639–45. doi:10.1016/j.ultsonch.2006.10.001.
  • Peng, Y., Y. Mao, W. Xia, and Y. Li. 2018. Ultrasonic flotation cleaning of high-ash lignite and its mechanism. Fuel 220:558–66. doi:10.1016/j.fuel.2018.02.049.
  • Sadowski, Z. 1994. Fundamental aspects of spherical agglomeration of salt-type minerals. Progress in mineral processing technology. Rotterdam, A.A. Balkema, 433–37.
  • Sadowski, Z. 1997. Spherical agglomeration of fine mineral particles. Proceedings of the XX IMPC, Aachen, Germany, 415–23.
  • Sahinoglu, E., and T. Uslu. 2013a. Increasing coal quality by oil agglomeration after ultrasonic treatment. Fuel Processing Technology 116:332–38. doi:10.1016/j.fuproc.2013.07.016.
  • Sahinoglu, E., and T. Uslu. 2013b. Use of ultrasonic emulsification in oil agglomeration for coal cleaning. Fuel 113:719–25. doi:10.1016/j.fuel.2013.06.046.
  • Shu, K., L. Xu, H. Wu, S. Fang, Z. Wang, Y. Xu, and Z. Zhang. 2019. Effects of ultrasonic pre-treatment on the flotation of ilmenite and collector adsorption. Minerals Engineering 137:124–32. doi:10.1016/j.mineng.2019.04.001.
  • Somasundaran, P. 1976. The role of ionomolecular surfactant complexes in flotation. International Journal of Mineral Processing 3 (1):35–40. doi:10.1016/0301-7516(76)90013-2.
  • Sonmez, İ., and Y. Cebeci. 2003. A study on spherical oil agglomeration of barite suspensions. International Journal of Mineral Processing 71 (1–4):219–32. doi:10.1016/S0301-7516(03)00060-7.
  • Ulusoy, U., and M. Yekeler. 2005. Correlation of the surface roughness of some industrial minerals with their wettability parameters. Chemical Engineering and Processing: Process Intensification 44 (5):557–65. doi:10.1016/j.cep.2004.08.001.
  • Vaziri Hassas, B., H. Caliskan, O. Guven, F. Karakas, M. Cinar, and M. S. Celik. 2016. Effect of roughness and shape factor on flotation characteristics of glass beads. Colloids and Surfaces A: Physicochemical and Engineering Aspects 492:88–99. doi:10.1016/j.colsurfa.2015.12.025.
  • Videla, A., D. Faúndez, J. Meneses, L. Gaete, and Y. Vargas. 2020. Enhancement of the sedimentation rate of copper tailings by application. Minerals Engineering 146:106096. doi:10.1016/j.mineng.2019.106096.
  • Videla, A. R., R. Morales, T. Saint-Jean, L. Gaete, Y. Vargas, and J. D. Miller. 2016. Ultrasound treatment on tailings to enhance copper flotation recovery. Minerals Engineering 99:89–95. doi:10.1016/j.mineng.2016.09.019.
  • Wang, H., H. Dai, W. Yang, and T. Li. 2014. Research on the flotation experiment of a low-grade barite ore in Myanmar. Applied Mechanics and Materials 644-650:5277–80.
  • Wang, H., W. Yang, X. Yan, L. Wang, Y. Wang, and H. Zhang. 2020. Regulation of bubble size in flotation: A review. Journal of Environmental Chemical Engineering 8 (5):104070. doi:10.1016/j.jece.2020.104070.
  • Xu, M., Y. Xing, X. Gui, Y. Cao, D. Wang, and L. Wang. 2017. Effect of ultrasonic pretreatment on oxidized coal flotation. Energy & Fuels 31 (12):14367–73. doi:10.1021/acs.energyfuels.7b02115.
  • Yasuda, K., H. Matsushima, and Y. Asakura. 2019. Generation and reduction of bulk nanobubbles by ultrasonic irradiation. Chemical Engineering Science 195:455–61. doi:10.1016/j.ces.2018.09.044.
  • Zbik, M. S., J. Du, R. A. Pushkarova, and R. S. C. Smart. 2009. Observation of gaseous films at solid–liquid interfaces: Removal by ultrasonic action. Journal of Colloid and Interface Science 336 (2):616–23. doi:10.1016/j.jcis.2009.04.037.
  • Zhou, W., H. Chen, L. Ou, and Q. Shi. 2016. Aggregation of ultra-fine scheelite particles induced by hydrodynamic cavitation. International Journal of Mineral Processing 157:236–40. doi:10.1016/j.minpro.2016.11.003.
  • Zhou, Z. A., Z. Xu, J. A. Finch, J. H. Masliyah, and R. S. Chow. 2009. On the role of cavitation in particle collection in flotation – a critical review. II. Minerals Engineering 22 (5):419–33. doi:10.1016/j.mineng.2008.12.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.