308
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Recovery of Nickel and Cobalt Metal Powders from the Leaching Solution of Spent Lithium-Ion Battery by Solvent Extraction and Chemical Reduction

&

References

  • Badawy, S. M., R. A. El-Khashab, and A. A. Nayl. 2015. Synthesis, characterization and catalytic activity of Cu/Cu2O nanoparticles prepared in aqueous medium. Bulletin of Chemical Reaction Engineering and Catalysis 10 (2):169–74. doi:10.9767/bcrec.10.2.7984.169-174.
  • Badr, L., and R. Sultan. 2008. Profiles of Co(NH3)62+ and Ni(NH3)62+ complexes in two-cation Liesegang systems. Chemical Physics Letters 453 (1–3):40–44. doi:10.1016/j.cplett.2008.01.008.
  • Bard, A. J., R. Parsons, and J. Jordan. 1985. Standard potentials in aqueous solution. New York and Basel: Marcel Dekker, Inc.
  • Cardulla, F. 1983. Hydrazine. Journal of Chemical Education 60 (6):505. doi:10.1021/ed060p505.
  • Chen, J. P., and L. Lim. 2002. Key factors in chemical reduction by hydrazine for recovery of precious metals. Chemosphere 49 (4):363–70. doi:10.1016/s0045-6535(02)00305-3.
  • Dalini, E. A., G. Karimi, S. Zandevakili, and M. Goodarzi. 2020. A review on environmental, economic and hydrometallurgical processes of recycling spent lithium-ion batteries. Mineral Processing and Extractive Metallurgy Review 1–22. doi:10.1080/08827508.2020.1781628.
  • Deblonde, G. J. P., A. Chagnes, and G. Cote. 2022. Recent advances in the chemistry of hydrometallurgical methods. Separation & Purification Reviews 1–21. doi:10.1080/15422119.2022.2088389.
  • Espinosa, D. C. R., A. M. Bernardes, and J. A. S. Tenório. 2004. An overview on the current processes for the recycling of batteries. Journal of Power Sources 135 (1–2):311–19. doi:10.1016/j.jpowsour.2004.03.083.
  • Flett, D. S. 2004. Cobalt-nickel separation in hydrometallurgy: A review. Chemistry for Sustainable Development 12:81–91.
  • Guan, Q., W. Sun, G. Zhou, J. Liu, and Z. Yin. 2016. Recovery of cobalt and nickel in the presence of magnesium and calcium from sulfate solutions by Versatic 10 and mixtures of Versatic 10 and Cyanex 301. Transactions of Nonferrous Metals Society of China 26 (3):865–73. doi:10.1016/s1003-6326(16)64178-x.
  • Han, J. Y., J. C. Swarts, and A. G. Sykes. 1996. Kinetic studies on the hydrazine and phenylhydrazine reductions of the escherichia coli R2 subunit of ribonucleotide reductase. Inorganic Chemistry 35 (16):4629–34. doi:10.1021/ic9515012.
  • Huong, T. T. N., and M. S. Lee. 2022. Separation of base metals from reduction smelt-alloy of spent lithium-ion batteries by ferric sulfate leaching, cementation, solvent extraction and oxidative precipitation. Hydrometallurgy 215:105969. doi:10.1016/j.hydromet.2022.105969.
  • Jafari, M., S. Z. Shafaie, H. Abdollahi, and A. Entezari-Zarandi. 2022. A green approach for selective ionometallurgical separation of lithium from spent Li-ion batteries by deep eutectic solvent (DES): Process optimization and kinetics modeling. Mineral Processing and Extractive Metallurgy Review 1–13. doi:10.1080/08827508.2022.2042282.
  • Joo, S. H., J. S. Dong, H. Chang, J.-P. Wang, G. Senanayake, and S. M. Shin. 2016. Selective extraction and separation of nickel from cobalt, manganese and lithium in pre-treated leach liquors of ternary cathode material of spent lithium-ion batteries using synergism caused by Versatic 10 acid and LIX 84-I. Hydrometallurgy 159:65–74. doi:10.1016/j.hydromet.2015.10.012.
  • Kumbasar, R. A. 2009. Selective extraction and concentration of cobalt from acidic leach solution containing cobalt and nickel through emulsion liquid membrane using PC-88A as extractant. Separation and Purification Technology 64 (3):273–79. doi:10.1016/j.seppur.2008.10.011.
  • Liu, Y., H. S. Jeon, and M. S. Lee. 2015. Separation of Pr and Nd from La in chloride solution by extraction with a mixture of Cyanex 272 and Alamine 336. Metals and Materials International 21 (5):944–49. doi:10.1007/s12540-015-5113-3.
  • Liu, Y., and M. S. Lee. 2016. Separation of cobalt and nickel from chloride leach solution of nickel laterite ore by solvent extraction. Geosystem Engineering 19 (5):214–21. doi:10.1080/12269328.2016.1164091.
  • Lu, J., D. B. Dreisinger, and W. C. Cooper. 1997. Cobalt precipitation by reduction with sodium borohydride. Hydrometallurgy 45 (3):305–22. doi:10.1016/s0304-386x(96)00086-2.
  • Lv, W., Z. Wang, H. Cao, Y. Sun, Y. Zhang, and Z. Sun. 2018. A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering 6 (2):1504–21. doi:10.1021/acssuschemeng.7b03811.
  • Mansur, M. B., A. S. Guimarães, and M. Petraniková. 2021. An overview on the recovery of cobalt from end-of-life lithium ion batteries. Mineral Processing and Extractive Metallurgy Review 43 (4):1–21. doi:10.1080/08827508.2021.1883014.
  • Manukyan, K. V., A. Cross, S. Rouvimov, J. Miller, A. S. Mukasyan, and E. E. Wolf. 2014. Low temperature decomposition of hydrous hydrazine over FeNi/Cu nanoparticles. Applied Catalysis, A: General 476:47–53. doi:10.1016/j.apcata.2014.02.012.
  • Meng, F., J. McNeice, S. S. Zadeh, and A. Ghahreman. 2019. Review of lithium production and recovery from minerals, brines, and lithium-ion batteries. Mineral Processing and Extractive Metallurgy Review 42 (2):1–19. doi:10.1080/08827508.2019.1668387.
  • Mohanty, A., and N. Devi. 2021. A review on green method of extraction and recovery of energy critical element cobalt from spent lithium-ion batteries (LIBs). Mineral Processing and Extractive Metallurgy Review 44 (1):52–63. doi:10.1080/08827508.2021.2017925.
  • Rioyo, J., S. Tuset, and R. Grau. 2020. Lithium extraction from spodumene by the traditional sulfuric acid process: A review. Mineral Processing and Extractive Metallurgy Review 43 (1):1–10. doi:10.1080/08827508.2020.1798234.
  • Rodrigues, I. R., C. Deferm, K. Binnemans, and S. Riaño. 2022. Separation of cobalt and nickel via solvent extraction with Cyanex-272: Batch experiments and comparison of mixer-settlers and an agitated column as contactors for continuous counter-current extraction. Separation and Purification Technology 296:121326. doi:10.1016/j.seppur.2022.121326.
  • Rukini, A., M. A. Rhamdhani, G. A. Brooks, and D. B. A. Van. 2022. Metals production and metal oxides reduction using hydrogen: A review. Journal of Sustainable Metallurgy 8 (1):1–24. doi:10.1007/s40831-021-00486-5.
  • Sahoo, S. K., S. K. Tripathy, A. Nayak, K. C. Hembrom, S. Dey, R. K. Rath, and M. K. Mohanta. 2022. Beneficiation of lithium bearing pegmatite rock: A review. Mineral Processing and Extractive Metallurgy Review 1–27. doi:10.1080/08827508.2022.2117172.
  • Sarangi, K., B. R. Reddy, and R. P. Das. 1999. Extraction studies of cobalt (II) and nickel (II) from chloride solutions using Na-Cyanex 272: Separation of Co(II)/Ni(II) by the sodium salts of D2EHPA, PC88A and Cyanex 272 and their mixtures. Hydrometallurgy 52 (3):253–65. doi:10.1016/S0304-386X(99)00025-0.
  • Sontu, U. B., G. N. Rao, F. C. Chou, and M. V. R. Reddy. 2018. Temperature dependent and applied field strength dependent magnetic study of cobalt nickel ferrite nano particles: Synthesized by an environmentally benign method. Journal of Magnetism and Magnetic Materials 452:398–406. doi:10.1016/j.jmmm.2018.01.003.
  • Swain, B., J. K. Jeong, J. C. Lee, and G. H. Lee. 2006. Separation of cobalt and lithium from mixed sulphate solution using Na-Cyanex 272. Hydrometallurgy 84 (3–4):130–38. doi:10.1016/j.hydromet.2006.03.061.
  • Tran, T. T., and M. S. Lee. 2022. Ion exchange for the purification of Co (II) or Ni (II) from acidic and ammonia solutions in the recycling of spent lithium-ion batteries. Korean Journal of Metals and Materials 60 (12):902–11. doi:10.3365/KJMM.2022.60.12.902.
  • Tran, T. T., H. S. Moon, and M. S. Lee. 2021a. Recovery of cobalt, nickel and copper compounds from UHT Processed spent lithium-ion batteries by hydrometallurgical process. Mineral Processing and Extractive Metallurgy Review 43 (4):1–13. doi:10.1080/08827508.2021.1910508.
  • Tran, T. T., H. S. Moon, and M. S. Lee. 2021b. Recovery of valuable metals from the hydrochloric leaching solution of reduction smelted metallic alloys from spent lithium-ion batteries. Journal of Chemical Technology & Biotechnology 97 (5):1247–58. doi:10.1002/jctb.7019.
  • Tran, T. T., H. S. Moon, and M. S. Lee. 2022. Co, Ni, Cu, Fe, and Mn integrated recovery process via sulfuric acid leaching from spent lithium-ion batteries smelted reduction metallic alloys. Mineral Processing and Extractive Metallurgy Review 43 (8):954–68. doi:10.1080/08827508.2021.1979541.
  • Traore, N., and S. Kelebek. 2022. Characteristics of spent lithium ion batteries and their recycling potential using flotation separation: A review. Mineral Processing and Extractive Metallurgy Review 1–29. doi:10.1080/08827508.2022.2040497.
  • Wang, B. Y., F. Liu, F. Zhang, M. Tan, H. Q. Jiang, Y. Liu, and Y. Zhang. 2021. Efficient separation and recovery of cobalt(ii) and lithium(i) from spent lithium ion batteries (LIBs) by polymer inclusion membrane electrodialysis (PIMED). Chemical Engineering Journal 430:132924. doi:10.1016/j.cej.2021.132924.
  • Wen, J. X., and M. S. Lee. 2022. Selective extraction of Cu(II) from the hydrochloric acid leaching solution of spent lithium-ion batteries by a mixture of aliquat 336 and LIX 63. Korean Journal of Metals and Materials 60 (10):751–59. doi:10.3365/KJMM.2022.60.10.751.
  • Winjobi, O., J. C. Kelly, and Q. Dai. 2022. Life-cycle analysis, by global region, of automotive lithium-ion nickel manganese cobalt batteries of varying nickel content. Sustainable Materials and Technologies 32:e00415. doi:10.1016/j.susmat.2022.e00415.
  • Xia, Y., T. S. Rodrigues, M. Zhao, T. H. Yang, K. D. Gilroy, A. G. M. da Silva, and P. H. C. Camargo. 2018. Synthesis of colloidal metal nanocrystals: A comprehensive review on the reductants. Chemistry – A European Journal 24 (64):16944–63. doi:10.1002/chem.201802194.
  • Xue, G. F., T. B. Bai, W. G. Wang, S. J. Wang, and M. D. Ye. 2022. Recent advances in various applications of nickel cobalt sulfide-based materials. Journal of Materials Chemistry A 15 (15):10. doi:10.1039/D2TA00305H.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.