585
Views
0
CrossRef citations to date
0
Altmetric
Review

A Comprehensive Review on Cobalt Bioleaching from Primary and Tailings Sources

ORCID Icon &

References

  • Abdollahi, H., R. Saneie, S. Z. Shafaei, M. Mirmohammadi, A. Mohammadzadeh, and O. H. Tuovinen. 2021. Bioleaching of cobalt from magnetite-rich cobaltite-bearing ore. Hydrometallurgy 204:105727. doi:10.1016/j.hydromet.2021.105727.
  • Abhilash, Y. Usha, K. Seetharaman, P. Meshram, K. D. Mehta, and B. D. Pandey. 2022. Application of hydrodynamics using CFD in evaluating efficacy of external loop air-lift reactor biochemical leaching of sea nodules. Mineral Processing and Extractive Metallurgy Review 43 (7):892–98. doi:10.1080/08827508.2021.1959329.
  • Ahmadi, A., M. Khezri, A. A. Abdollahzadeh, and M. Askari. 2015. Bioleaching of copper, nickel and cobalt from the low grade sulfidic tailing of Golgohar Iron Mine, Iran. Hydrometallurgy 154:1–8. doi:10.1016/j.hydromet.2015.03.006.
  • Ahn, H.-J., J.-W. Ahn, D.-K. Bang, and M.-W. Kim. 2013. A study on the bioleaching of cobalt and copper from cobalt concentrate by aspergillus niger strains. Journal of the Korean Institute of Resources Recycling 22 (2):44–52. doi:10.7844/kirr.2013.22.2.44.
  • Alibhai, K. A. K., A. W. L. Dudeney, D. J. Leak, S. Agatzini, and P. Tzeferis. 1993. Bioleaching and bioprecipitation of nickel and iron from laterites. FEMS Microbiology Reviews 11 (1–3):87–95. doi:10.1111/j.1574-6976.1993.tb00271.x.
  • Anderson, C. G. 2006. The design-of-experiment optimization and development of cobaltite ore mineral processing. JOM 58 (10):43–46. doi:10.1007/s11837-006-0200-z.
  • Anjum, F., H. N. Bhatti, M. Asgher, and M. Shahid. 2010a. Leaching of metal ions from black shale by organic acids produced by Aspergillus niger. Applied Clay Science 47 (3–4):356–61. doi:10.1016/j.clay.2009.11.052.
  • Anjum, F., H. N. Bhatti, and M. A. Ghauri. 2010b. Enhanced bioleaching of metals from black shale using ultrasonics. Hydrometallurgy 100 (3–4):122–28. doi:10.1016/j.hydromet.2009.10.016.
  • Anjum, F., H. N. Bhatti, M. A. Ghauri, I. A. Bhatti, M. Asgher, and M. R. Asi. 2009. Bioleaching of copper, cobalt and zinc from black shale by Penicillium notatum. African Journal of Biotechnology. doi:10.4314/ajb.v8i19.65211.
  • Anwani, S., R. Methekar, and V. Ramadesigan. 2020. Life cycle assessment and economic analysis of acidic leaching and baking routes for the production of cobalt oxalate from spent lithium-ion batteries. Journal of Material Cycles & Waste Management 22 (6):2092–106. doi:10.1007/s10163-020-01095-2.
  • Baldi, F., A. Bralia, F. Riccobono, and G. Sabatini. 1991. Bioleaching of cobalt and zinc from pyrite ore in relation to calcitic gangue content. World Journal of Microbiology & Biotechnology 7 (3):298–308. doi:10.1007/BF00329395.
  • Bampole, D. L., and A.-F. Mulaba-Bafubiandi. 2020. Mesophilic bioleaching performance of copper, cobalt and nickel with emphasis on complex orebodies of the Democratic Republic of Congo: A review of dynamic interactions between solids loading, microbiota activity and growth. Energy, Ecology and Environment 5 (1):61–83. doi:10.1007/s40974-019-00142-5.
  • Banza Lubaba Nkulu, C., L. Casas, V. Haufroid, T. De Putter, N. D. Saenen, T. Kayembe-Kitenge, P. Musa Obadia, D. Kyanika Wa Mukoma, J. M. Lunda Ilunga, T. S. Nawrot, et al. 2018. Sustainability of artisanal mining of cobalt in DR Congo. Nature Sustainability 1 (9):495–504. doi:10.1038/s41893-018-0139-4.
  • Bartlett, R. W. 1995. Processing of cobalt-copper-arsenic complex ore concentrate. Mineral Processing and Extractive Metallurgy Review 15 (1–4):51–59. doi:10.1080/08827509508914184.
  • Battaglia, F., D. Morin, and P. Ollivier. 1994. Dissolution of cobaltiferous pyrite by Thiobacillus ferrooxidans and Thiobacillus thiooxidans: Factors influencing bacterial leaching efficiency. Journal of Biotechnology 32 (1):11–16. doi:10.1016/0168-1656(94)90115-5.
  • Behera, S. K., M. Manjaiah, S. Sekar, S. K. Panda, V. Mavumengwana, and A. F. Mulaba-Bafubiandi. 2018. Optimization of microbial leaching of base metals from a south African sulfidic nickel ore concentrate by acidithiobacillus ferrooxidans. Geomicrobiology Journal 35 (6):447–59. doi:10.1080/01490451.2017.1326543.
  • Behera, S. K., P. P. Panda, S. Singh, N. Pradhan, L. B. Sukla, and B. K. Mishra. 2011. Study on reaction mechanism of bioleaching of nickel and cobalt from lateritic chromite overburdens. International Biodeterioration & Biodegradation 65 (7):1035–42. doi:10.1016/j.ibiod.2011.08.004.
  • Biswal, B. K., U. U. Jadhav, M. Madhaiyan, L. Ji, E.-H. Yang, and B. Cao. 2018. Biological leaching and chemical precipitation methods for recovery of Co and Li from spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering 6 (9):12343–52. doi:10.1021/acssuschemeng.8b02810.
  • Biswas, S., P. C. Banerjee, S. Mukherjee, and R. Dey. 2013a. Microbial extraction of cobalt and nickel from lateritic chromite over burden using aspergillus wentii. Research Journal of Pharmaceutical, Biological and Chemical Sciences 4 (2):739–50.
  • Biswas, S., and K. Bhattacharjee. 2014. Fungal assisted bioleaching process optimization and kinetics: Scenario for Ni and Co recovery from a lateritic chromite overburden. Separation and Purification Technology 135:100–09. doi:10.1016/j.seppur.2014.07.055.
  • Biswas, S., R. Dey, S. Mukherjee, and P. C. Banerjee. 2013b. Bioleaching of nickel and cobalt from lateritic chromite overburden using the culture filtrate of Aspergillus niger. Applied Biochemistry and Biotechnology 170 (7):1547–59. doi:10.1007/s12010-013-0289-9.
  • Biswas, S., S. Samanta, R. Dey, S. Mukherjee, and P. C. Banerjee. 2013c. Microbial leaching of chromite overburden from Sukinda mines, Orissa, India using Aspergillus niger. International Journal of Minerals, Metallurgy and Materials 20 (8):705–12. doi:10.1007/s12613-013-0787-3.
  • Borhany, S., N. Chaibakhsh, and F. Vahabzadeh. 2003. Bioleaching of cobalt from cobaltiferous ore by a mixed culture of Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Iran: Scientia Iranica.
  • Bortnikova, S., E. Bessonova, and O. Gaskova. 2012. Geochemistry of arsenic and metals in stored tailings of a Co–Ni arsenide-ore, Khovu-Aksy area, Russia. Applied Geochemistry 27 (11):2238–50. doi:10.1016/j.apgeochem.2012.02.033.
  • Botelho Junior, A. B., S. Stopic, B. Friedrich, J. A. S. Tenório, and D. C. R. Espinosa. 2021. Cobalt recovery from Li-Ion battery recycling: A critical review. Metals 11 (12):1999. doi:10.3390/MET11121999.
  • Bousserrhine, U. G., and E. J Gasser. 1999. Bacterial and chemical reductive dissolution of Mn-, Co-, Cr-, and Al-substituted goethites. Geomicrobiology Journal 16:245–58. doi:10.1080/014904599270622.
  • Brierley, C. L., and J. A. Brierley. 2013. Progress in bioleaching: Part B: Applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology 97 (17):7543–52. doi:10.1007/s00253-013-5095-3.
  • Brochot, S., M. V. Durance, J. Villeneuve, P. D’Hugues, and M. Mugabi. 2004. Modelling of the bioleaching of sulphide ores: Application for the simulation of the bioleaching/gravity section of the Kasese Cobalt Company Ltd process plant. Minerals Engineering 17 (2):253–60. doi:10.1016/j.mineng.2003.09.016.
  • Cameron, R. A., R. Lastra, W. D. Gould, S. Mortazavi, Y. Thibault, P. L. Bedard, L. Morin, D. W. Koren, and K. J. Kennedy. 2013. Bioleaching of six nickel sulphide ores with differing mineralogies in stirred-tank reactors at 30°C. Minerals Engineering 49:172–83. doi:10.1016/j.mineng.2011.03.016.
  • Cameron, R. A., R. Lastra, Y. Thibault, L. Morin, and W. D. Gould. 2021. Stirred-tank bioleaching of nickel and cobalt from pyrrhotite-rich tailings from Sudbury, Ontario. Hydrometallurgy 204:105592. doi:10.1016/j.hydromet.2021.105592.
  • Chandra, M., D. Yu, Q. Tian, and X. Guo. 2022. Recovery of cobalt from secondary resources: A comprehensive review. Mineral Processing and Extractive Metallurgy Review 43 (6):679–700. doi:10.1080/08827508.2021.1916927.
  • Chen, B. W., L. L. Cai, B. Wu, X. Liu, and J. K. Wen. 2013. Investigation of bioleaching of a low grade nickel-cobalt-copper sulfide ore with high magnesium as olivine and serpentine from lao. Advanced Materials Research 825:396–400. doi:10.4028/AMR.825.396.
  • Chen, G., H. Yang, H. Li, and L. Tong. 2016. Recovery of cobalt as cobalt oxalate from cobalt tailings using moderately thermophilic bioleaching technology and selective sequential extraction. Minerals 6 (3):67. doi:10.3390/min6030067.
  • Chen, G. B., H. Y. Yang, and L. J. Zhou. 2013. The efficient recovery of cobalt from low grade refractory carrollite with bioleaching technology. Advanced Materials Research 825:451–54. doi:10.4028/AMR.825.451.
  • Chéron, J., C. Loubière, S. Delaunay, A. -G. Guezennec, and E. Olmos. 2020. CFD numerical simulation of particle suspension and hydromechanical stress in various designs of multi-stage bioleaching reactors. Hydrometallurgy 197:105490. doi:10.1016/j.hydromet.2020.105490.
  • Ciftci, H., and S. Atik. 2017. Microbial leaching of metals from a lateritic nickel ore by pure and mixed cultures of mesophilic acidophiles. Metallurgical Research and Technology 114 (5):508. doi:10.1051/metal/2017049.
  • Ciftci, H., S. Atik, and F. Gurbuz. 2018. Biocatalytic and chemical leaching of a low-grade nickel laterite ore. Metallurgical Research and Technology 115 (3):305. doi:10.1051/metal/2018006.
  • Çiftçi, H., S. Atik, and F. Gürbüz. 2016. Bioleaching of lateritic nickel ore with acidophilic bacteria. Pamukkale University Journal of Engineering Sciences 22 (6):546–52. doi:10.5505/pajes.2015.93764.
  • Coto, O., F. Galizia, I. Hernández, J. Marrero, and E. Donati. 2008. Cobalt and nickel recoveries from laterite tailings by organic and inorganic bio-acids. Hydrometallurgy 94 (1–4):18–22. doi:10.1016/j.hydromet.2008.05.017.
  • Crundwell, F. K., N. B. du Preez, and B. D. H. Knights. 2020. Production of cobalt from copper-cobalt ores on the African Copperbelt – an overview. Minerals Engineering 156:106450. doi:10.1016/j.mineng.2020.106450.
  • Crundwell, F. K., M. S. Moats, V. Ramachandran, T. G. Robinson, and W. G. Davenport. 2011a. Production of cobalt from the copper–Cobalt ores of the Central African copperbelt. In Extractive metallurgy of nickel, cobalt and platinum group metals, doi: 10.1016/b978-0-08-096809-4.10030-9.
  • Crundwell, F. K., M. S. Moats, V. Ramachandran, T. G. Robinson, and W. G. Davenport. 2011b. Extraction of nickel and cobalt from sulfide ores. In Extractive metallurgy of nickel, cobalt and platinum group metals, Elsevier, 147–58. doi:10.1016/B978-0-08-096809-4.10013-9.
  • Crundwell, F. K., M. S. Moats, V. Ramachandran, T. G. Robinson, and W. G. Davenport. 2011c. Extraction of cobalt from nickel laterite and sulfide ores. In Extractive metallurgy of nickel, cobalt and platinum group metals, doi: 10.1016/b978-0-08-096809-4.10029-2.
  • Cui, X., Q. Gu, X. Liu, J. Wen, A. Lu, H. Ding, F. Yang, H. Shang, B. Wu, M. Zhang, et al. 2018. Contact-bioleaching mechanism of Ni and Co from sulfide concentrate at neutral pH by heterotrophic bacteria. Minerals and Metallurgical Processing Minerals and Metallurgical Processing 35 (4):221–29. doi:10.19150/mmp.8599.
  • Cui, X., X. Wang, Y. Li, A. Lu, R. Hao, C. Wang, and H. Ding. 2016. Bioleaching of a complex Co-Ni-Cu sulfide flotation concentrate by bacillus megaterium QM B1551 at neutral pH. Geomicrobiology Journal 33 (8):734–41. doi:10.1080/01490451.2015.1085470.
  • Darvanjooghi, M. H. K., S. Magdouli, S. K. Brar, H. Abdollahi, and M. Zolfaghari. 2022. Bio-oxidation of gold from refractory sulfide ores: A journey ahead. Geomicrobiology Journal 39 (3–5):399–415. doi:10.1080/01490451.2021.1977431.
  • Deepatana, A., and M. Valix. 2006. Recovery of nickel and cobalt from organic acid complexes: Adsorption mechanisms of metal-organic complexes onto aminophosphonate chelating resin. Journal of Hazardous Materials 137 (2):925–33. doi:10.1016/j.jhazmat.2006.03.015.
  • Dehaine, Q., L. T. Tijsseling, H. J. Glass, T. Törmänen, and A. R. Butcher. 2021. Geometallurgy of cobalt ores: A review. Minerals Engineering 160:106656. doi:10.1016/j.mineng.2020.106656.
  • D’Hugues, P., P. Cezac, T. Cabral, F. Battaglia, X. M. Truong-Meyer, and D. Morin. 1997. Bioleaching of a cobaltiferous pyrite: A continuous laboratory-scale study at high solids concentration. Minerals Engineering 10 (5):507–27. doi:10.1016/s0892-6875(97)00029-0.
  • Djoudi, N., M. Le Page Mostefa, and H. Muhr. 2021. Hydrometallurgical process to recover cobalt from spent Li-Ion batteries. Resources 10 (6):58. doi:10.3390/resources10060058.
  • Dusengemungu, L., G. Kasali, C. Gwanama, and B. Mubemba. 2021. Overview of fungal bioleaching of metals. Environmental Advances 5:100083. doi:10.1016/j.envadv.2021.100083.
  • Eckelman, M. J. 2010. Facility-level energy and greenhouse gas life-cycle assessment of the global nickel industry. Resources Conservation and Recycling 54 (4):256–66. doi:10.1016/j.resconrec.2009.08.008.
  • Falagán, C., B. M. Grail, and D. B. Johnson. 2017. New approaches for extracting and recovering metals from mine tailings. Minerals Engineering 106:71–78. doi:10.1016/j.mineng.2016.10.008.
  • Faris, N., M. I. Pownceby, W. J. Bruckard, and M. Chen. 2022a. The direct leaching of nickel sulfide flotation concentrates - a historic and state-of-the-art review part II: Laboratory investigations into pressure leaching. Mineral Processing and Extractive Metallurgy Review 1–23. doi:10.1080/08827508.2022.2084735.
  • Faris, N., M. I. Pownceby, W. J. Bruckard, and M. Chen. 2022b. The direct leaching of nickel sulfide flotation Concentrates–a historic and state-of-the-art review part I: Piloted processes and commercial operations. Mineral Processing and Extractive Metallurgy Review 1–29. doi:10.1080/08827508.2022.2070617.
  • Faris, N., M. I. Pownceby, W. J. Bruckard, and M. Chen. 2022c. The direct leaching of nickel sulfide flotation concentrates–a historic and state-of-the-art review part III: Laboratory investigations into atmospheric leach processes. Mineral Processing and Extractive Metallurgy Review 1–21. doi:10.1080/08827508.2022.2098292.
  • Faris, N., J. White, F. Magazowski, A. Fischmann, L. A. Jones, J. Tardio, S. Madapusi, S. Grocott, and S. K. Bhargava. 2021. An investigation into potential pathways for nickel and cobalt loss during impurity removal from synthetic nickel laterite pressure acid leach solutions via partial neutralisation. Hydrometallurgy 202:105595. doi:10.1016/j.hydromet.2021.105595.
  • Farjana, S. H., N. Huda, and M. A. P. Mahmud. 2019. Life cycle assessment of cobalt extraction process. Journal of Sustainable Mining 18 (3):150–61. doi:10.1016/j.jsm.2019.03.002.
  • Fathollahzadeh, H., J. J. Eksteen, A. H. Kaksonen, and E. L. J. Watkin. 2019. Role of microorganisms in bioleaching of rare earth elements from primary and secondary resources. Applied Microbiology and Biotechnology 103 (3):1043–57. doi:10.1007/s00253-018-9526-z.
  • Ferrier, J., L. Csetenyi, and G. M. Gadd. 2021. Fungal transformation of natural and synthetic cobalt-bearing manganese oxides and implications for cobalt biogeochemistry. Environmental Microbiology 24 (2):667–77. doi:10.1111/1462-2920.15526.
  • Fomchenko, N., T. Uvarova, and M. Muravyov. 2019. Effect of mineral composition of sulfidic polymetallic concentrates on non-ferrous metals bioleaching. Minerals Engineering 138:1–6. doi:10.1016/j.mineng.2019.04.026.
  • Foucher, S., F. Battaglia-Brunet, P. D’hugues, M. Clarens, J. Godon, and D. Morin. 2003. Evolution of the bacterial population during the batch bioleaching of a cobaltiferous pyrite in a suspended-solids bubble column and comparison with a mechanically agitated reactor. Hydrometallurgy 71 (1–2):5–12. doi:10.1016/S0304-386X(03)00142-7.
  • Fu, X., D. N. Beatty, G. G. Gaustad, G. Ceder, R. Roth, R. E. Kirchain, M. Bustamante, C. Babbitt, and E. A. Olivetti. 2020. Perspectives on cobalt supply through 2030 in the face of changing demand. Environmental Science & Technology 54 (5):2985–93. doi:10.1021/acs.est.9b04975.
  • Gericke, M., J. W. Neale, and P. Määttä. 2023. Biomining in Finland: commercial application of heap and tank bioleaching technologies for nickel recovery. Biomining Technologies 209–28. doi:10.1007/978-3-031-05382-5_12.
  • Ghosh, S., and A. K. Paul. 2017. Heterotrophic leaching of metals from Indian chromite mining overburden. International Journal of Mining, Reclamation and Environment 31 (1):66–77. doi:10.1080/17480930.2015.1118181.
  • Giebner, F., L. Kaden, O. Wiche, J. Tischler, S. Schopf, and M. Schlömann. 2019. Bioleaching of cobalt from an arsenidic ore. Minerals Engineering 131:73–78. doi:10.1016/j.mineng.2018.10.020.
  • Giese, E. C. 2019. Inovações tecnológicas na biomineração de minérios lateríticos de níquel e cobalto. Tecnologia em Metalurgia Materiais e Mineração 16 (4):558–66. doi:10.4322/2176-1523.20191851.
  • Gilbertson, B. P. 2000. Creating value through innovation: Biotechnology in mining. Mineral Processing and Extractive Metallurgy 109 (2):61–67. doi:10.1179/mpm.2000.109.2.61.
  • Gogada, R., S. S. Singh, S. K. Lunavat, M. M. Pamarthi, A. Rodrigue, B. Vadivelu, P. -B. Phanithi, V. Gopala, and S. K. Apte. 2015. Engineered deinococcus radiodurans R1 with NiCoT genes for bioremoval of trace cobalt from spent decontamination solutions of nuclear power reactors. Applied Microbiology and Biotechnology 99 (21):9203–13. doi:10.1007/s00253-015-6761-4.
  • Grorud, H. F. 1997. Textural and compositional characteristics of cobalt ores from the Skuterud Mines of Modum, Norway. Norsk Geologisk Tidsskrift 77 (1):31–38.
  • Guezennec, A. -G., M. Delclaud, F. Savreux, and J. Jacob. 2014. The use of bioleaching methods for the recovery of metals contained in sulfidic mining wastes Hydrometallurgy 2014, Canada.
  • Habibi, A., S. Shamshiri Kourdestani, and M. Hadadi. 2020. Biohydrometallurgy as an environmentally friendly approach in metals recovery from electrical waste: A review. Waste Management and Research 38 (3):232–44. doi:10.1177/0734242X19895321.
  • Halinen, A. K., N. J. Beecroft, K. Määttä, P. Nurmi, K. Laukkanen, A. H. Kaksonen, M. Riekkola-Vanhanen, and J. A. Puhakka. 2012. Microbial community dynamics during a demonstration-scale bioheap leaching operation. Hydrometallurgy 125-126:34–41. doi:10.1016/j.hydromet.2012.05.001.
  • Hallberg, K. B., B. M. Grail, C. A. D. Plessis, and D. B. Johnson. 2011. Reductive dissolution of ferric iron minerals: A new approach for bio-processing nickel laterites. Minerals Engineering 24 (7):620–24. doi:10.1016/j.mineng.2010.09.005.
  • Horn, S., A. G. Gunn, E. Petavratzi, R. A. Shaw, P. Eilu, T. Törmänen, T. Bjerkgård, J. S. Sandstad, E. Jonsson, S. Kountourelis, et al. 2021. Cobalt resources in Europe and the potential for new discoveries. Ore Geology Reviews 130:103915. doi:10.1016/j.oregeorev.2020.103915.
  • Hosseini Nasab, M., M. Noaparast, H. Abdollahi, and M. A. Amoozegar. 2020a. Indirect bioleaching of Co and Ni from iron rich laterite ore, using metabolic carboxylic acids generated by P. putida, P. koreensis, P. bilaji and A. niger. Hydrometallurgy 193:105309. doi:10.1016/j.hydromet.2020.105309.
  • Hosseini Nasab, M., M. Noaparast, H. Abdollahi, and M. A. Amoozegar. 2020b. Kinetics of two-step bioleaching of Ni and Co from iron rich-laterite using supernatant metabolites produced by Salinivibrio kushneri as halophilic bacterium. Hydrometallurgy 195:105387. doi:10.1016/j.hydromet.2020.105387.
  • Huang, Y., Z. Zhang, Y. Cao, G. Han, W. Peng, X. Zhu, T. A. Zhang, and Z. Dou. 2020. Overview of cobalt resources and comprehensive analysis of cobalt recovery from zinc plant purification residue- a review. Hydrometallurgy 193:105327. doi:10.1016/j.hydromet.2020.105327.
  • Hubau, A., A. G. Guezennec, C. Joulian, C. Falagán, D. Dew, and K. A. Hudson-Edwards. 2020. Bioleaching to reprocess sulfidic polymetallic primary mining residues: Determination of metal leaching mechanisms. Hydrometallurgy 197:105484. doi:10.1016/j.hydromet.2020.105484.
  • Hu, S., S. He, X. Jiang, M. Wu, P. Wang, and L. Li. 2021. Forecast and suggestions on the demand of lithium, cobalt, nickel and manganese resources in China’s new energy automobile industry. IOP Conference Series: Earth and Environmental Science. doi:10.1088/1755-1315/769/4/042018
  • Hunter, H. M. A., R. J. Herrington, and E. A. Oxley. 2013. Examining Ni-laterite leach mineralogy & chemistry – a holistic multi-scale approach. Minerals Engineering 54:100–09. doi:10.1016/j.mineng.2013.05.002.
  • Hu, W., K. Tian, Z. Zhang, J. Guo, X. Liu, H. Yu, and H. Wang. 2021. Flotation and tailing discarding of copper cobalt sulfide ores based on the process mineralogy characteristics. Minerals 11 (10):1078. doi:10.3390/min11101078.
  • Ilyas, S., R. Chi, H. N. Bhatti, I. A. Bhatti, and M. A. Ghauri. 2012. Column bioleaching of low-grade mining ore containing high level of smithsonite, talc, sphaerocobaltite and azurite. Bioprocess and Biosystems Engineering 35 (3):433–40. doi:10.1007/s00449-011-0582-3.
  • Ilyas, S., R. A. Chi, and J. C. Lee. 2013. Fungal bioleaching of metals from mine tailing. Mineral Processing and Extractive Metallurgy Review 34 (3):185–94. doi:10.1080/08827508.2011.623751.
  • Ilyas, S., R. R. Srivastava, H. Kim, N. Ilyas, and R. Sattar. 2020. Extraction of nickel and cobalt from a laterite ore using the carbothermic reduction roasting-ammoniacal leaching process. Separation and Purification Technology 232:115971. doi:10.1016/j.seppur.2019.115971.
  • Inaba, Y., I. Banerjee, T. Kernan, and S. Banta. 2018. Transposase-mediated chromosomal integration of exogenous genes in acidithiobacillus ferrooxidans. Applied and Environmental Microbiology 84 (21):84. doi:10.1128/AEM.01381-18.
  • Inaba, Y., A. C. West, and S. Banta. 2020. Enhanced microbial corrosion of stainless steel by acidithiobacillus ferrooxidans through the manipulation of substrate oxidation and overexpression of rus. Biotechnology and Bioengineering 117 (11):3475–85. doi:10.1002/bit.27509.
  • Inaba, Y., A. C. West, and S. Banta. 2021. Glutathione synthetase overexpression in acidithiobacillus ferrooxidans improves halotolerance of iron oxidation. Applied and Environmental Microbiology 87 (20). doi:10.1128/AEM.01518-21.
  • Issotta, F., P. A. Galleguillos, A. Moya-Beltrán, C. S. Davis-Belmar, G. Rautenbach, P. C. Covarrubias, M. Acosta, F. J. Ossandon, Y. Contador, D. S. Holmes, et al. 2016. Draft genome sequence of chloride-tolerant leptospirillum ferriphilum Sp-Cl from industrial bioleaching operations in northern Chile. Standards in Genomic Sciences 11 (1). doi:10.1186/s40793-016-0142-1.
  • Iwahori, K., F. Takeuchi, K. Kamimura, and T. Sugio. 2000. Ferrous iron-dependent volatilization of mercury by the plasma membrane of thiobacillus ferrooxidans. Applied and Environmental Microbiology 66 (9):3823–27. doi:10.1128/AEM.66.9.3823-3827.2000.
  • Jafari, M., H. Abdollahi, S. Z. Shafaei, M. Gharabaghi, H. Jafari, A. Akcil, and S. Panda. 2019. Acidophilic bioleaching: A review on the process and effect of organic–inorganic reagents and materials on its efficiency. Mineral Processing and Extractive Metallurgy Review 40 (2):87–107. doi:10.1080/08827508.2018.1481063.
  • Jana, R. K., D. S. R. Murthy, A. K. Nayak, M. S. Mahanty, S. K. Tiwary, and D. D. Akerkar. 1990. Leaching of roast-reduced polymetallic sea nodules to optimise the recoveries of copper, nickel and cobalt. International Journal of Mineral Processing 30 (1–2):127–41. doi:10.1016/0301-7516(90)90070-F.
  • Jang, H.-C., and M. Valix. 2017. Overcoming the bacteriostatic effects of heavy metals on acidithiobacillus thiooxidans for direct bioleaching of saprolitic Ni laterite ores. Hydrometallurgy 168:21–25. doi:10.1016/j.hydromet.2016.08.016.
  • Johnson, D. B., and C. A. du Plessis. 2015. Biomining in reverse gear: Using bacteria to extract metals from oxidised ores. Minerals Engineering 75:2–5. doi:10.1016/j.mineng.2014.09.024.
  • Johnson, D. B., A. Dybowska, P. F. Schofield, R. J. Herrington, S. L. Smith, and A. L. Santos. 2020. Bioleaching of arsenic-rich cobalt mineral resources, and evidence for concurrent biomineralisation of scorodite during oxidative bio-processing of skutterudite. Hydrometallurgy 195:105395. doi:10.1016/j.hydromet.2020.105395.
  • Johnson, D. B., S. L. Smith, and A. L. Santos. 2021. Bioleaching of transition metals from limonitic laterite deposits and reassessment of the multiple roles of sulfur-oxidizing acidophiles in the process. Frontiers in Microbiology 12. doi:10.3389/fmicb.2021.703177.
  • Jouini, M., M. Perrin, and L. Coudert. 2021. Chemical leaching of inactive gold mine tailings as a secondary source of cobalt and nickel—A preliminary case study. Minerals, Metals and Materials Series. doi:10.1007/978-3-030-65647-8_15
  • Jung, H., Y. Inaba, and S. Banta. 2022. Genetic engineering of the acidophilic chemolithoautotroph acidithiobacillus ferrooxidans. Trends in Biotechnology 40 (6):677–92. doi:10.1016/j.tibtech.2021.10.004.
  • Kaksonen, A. H., A. M. Lakaniemi, and O. H. Tuovinen. 2020. Acid and ferric sulfate bioleaching of uranium ores: A review. Journal of Cleaner Production 264:121586. doi:10.1016/j.jclepro.2020.121586.
  • Katwika, C. N., M. B. Kime, P. N. M. Kalenga, B. I. Mbuya, and T. R. Mwilen. 2019. Application of knelson concentrator for beneficiation of copper–cobalt ore tailings. Mineral Processing and Extractive Metallurgy Review 40 (1):35–45. doi:10.1080/08827508.2018.1481057.
  • Kernan, T., A. C. West, and S. Banta. 2017. Characterization of endogenous promoters for control of recombinant gene expression in Acidithiobacillus ferrooxidans. Biotechnology and Applied Biochemistry 64 (6):793–802. doi:10.1002/bab.1546.
  • Kumari, A., and K. Natarajan. 2002. Development of a clean bioelectrochemical process for leaching of ocean manganese nodules. Minerals Engineering 15 (1–2):103–06. doi:10.1016/S0892-6875(01)00209-6.
  • Kumar, P. S., and P. R. Yaashikaa. 2020. Recent trends and challenges in bioleaching technologies. In Biovalorisation of wastes to renewable chemicals and biofuels, doi: 10.1016/b978-0-12-817951-2.00020-1.
  • Lambiv Dzemua, G., S. A. Gleeson, and P. F. Schofield. 2013. Mineralogical characterization of the Nkamouna Co–Mn laterite ore, southeast Cameroon. Mineralium Deposita 48 (2):155–71. doi:10.1007/s00126-012-0426-3.
  • Lashgarian, H. E., M. Karkhane, and A. Marzban. 2019. Biological solubilization of some metals by a new acidithiobacillus species isolated from a moderate sulfur hot spring. Journal of Microbiology, Biotechnology and Food Sciences 9 (3):585–89. doi:10.15414/jmbfs.2019/20.9.3.585-589.
  • Le, L., J. Tang, D. Ryan, and M. Valix. 2006. Bioleaching nickel laterite ores using multi-metal tolerant aspergillus foetidus organism. Minerals Engineering 19 (12):1259–65. doi:10.1016/j.mineng.2006.02.006.
  • Liu, W., J. Lin, X. Pang, S. Cui, S. Mi, and J. Lin. 2011. Overexpression of rusticyanin in acidithiobacillus ferrooxidans ATCC19859 increased Fe(II) oxidation activity. Current Microbiology 62 (1):320–24. doi:10.1007/s00284-010-9708-0.
  • Liu, W., B. Sun, S. Zhang, F. Sun, and C. Liu. 2017. Chemical composition and structure of oxidation product layer on the carrollite surface during bioleaching. Russian Journal of Non-Ferrous Metals 58 (6):568–78. doi:10.3103/S1067821217060050.
  • Liu, W., H. Y. Yang, Y. Song, and L. L. Tong. 2015a. Catalytic effects of activated carbon and surfactants on bioleaching of cobalt ore. Hydrometallurgy 152:69–75. doi:10.1016/j.hydromet.2014.12.010.
  • Liu, W., H. Y. Yang, L. L. Tong, and Z. N. Jin. 2015b. Catalytic effects of surfactants on the cobalt ore bioleaching. Dongbei Daxue Xuebao/Journal of Northeastern University. doi:10.3969/j.issn.1005-3026.2015.06.013.
  • Liu, W., H. Y. Yang, L. L. Tong, and Y. Y. Liu. 2014. Catalytic effect of activated carbon on bioleaching of cobalt mineral. Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals 24 (4) :1050–1055.
  • Liu, W., S. J. Zhang, F. Sun, and C. Liu. 2018. Catalytic effect of a combined silver and surfactant catalyst on cobalt ore bioleaching. JOM 70 (12):2819–24. doi:10.1007/s11837-018-3136-1.
  • Lorenzo-Tallafigo, J., N. Iglesias-González, A. Mazuelos, R. Romero, and F. Carranza. 2019. An alternative approach to recover lead, silver and gold from black gossan (polymetallic ore). Study of biological oxidation and lead recovery stages. Journal of Cleaner Production 207:510–21. doi:10.1016/j.jclepro.2018.10.041.
  • Lorenzo-Tallafigo, J., N. Iglesias-González, A. Romero-García, A. Mazuelos, P. Ramírez Del Amo, R. Romero, and F. Carranza. 2022. The reprocessing of hydrometallurgical sulphidic tailings by bioleaching: The extraction of metals and the use of biogenic liquors. Minerals Engineering 176:107343. doi:10.1016/j.mineng.2021.107343.
  • Lutandula, M. S., and B. Maloba. 2013. Recovery of cobalt and copper through reprocessing of tailings from flotation of oxidised ores. Journal of Environmental Chemical Engineering 1 (4):1085–90. doi:10.1016/j.jece.2013.08.025.
  • MacCarthy, J., A. Nosrati, W. Skinner, and J. Addai-Mensah. 2016. Atmospheric acid leaching mechanisms and kinetics and rheological studies of a low grade saprolitic nickel laterite ore. Hydrometallurgy 160:26–37. doi:10.1016/j.hydromet.2015.11.004.
  • Mafra Passos, F. A. C., I. Daniel dos Santos, and A. J. B. Dutra. 2022. Statistical study of the influence of some variables on cobalt electrowinning. 1–11. doi:10.1080/08827508.2022.2095561.
  • Mäkinen, J., T. Heikola, M. Salo, and P. Kinnunen. 2021. The effects of milling and ph on Co, Ni, Zn and Cu bioleaching from polymetallic sulfide concentrate. Minerals 11 (3):317. doi:10.3390/min11030317.
  • Mäkinen, J., M. Salo, M. Khoshkhoo, J.-E. Sundkvist, and P. Kinnunen. 2020. Bioleaching of cobalt from sulfide mining tailings; a mini-pilot study. Hydrometallurgy 196:105418. doi:10.1016/j.hydromet.2020.105418.
  • Malik, L., and S. Hedrich. 2022. Ferric iron reduction in extreme acidophiles. Frontiers in Microbiology 12. doi:10.3389/fmicb.2021.818414.
  • Mambwe, P., M. Shengo, T. Kidyanyama, P. Muchez, and M. Chabu. 2022. Geometallurgy of cobalt black ores in the Katanga Copperbelt (Ruashi Cu-Co Deposit): A new proposal for enhancing cobalt recovery. Minerals 12 (3):295. doi:10.3390/min12030295.
  • Mansur, M. B., A. S. Guimarães, and M. Petraniková. 2021. An overview on the recovery of cobalt from end-of-life lithium ion batteries. Mineral Processing and Extractive Metallurgy Review 43 (4):1–21. doi:10.1080/08827508.2021.1883014.
  • Markl, G., M. A. W. Marks, I. Derrey, and J. E. Gühring. 2014. Weathering of cobalt arsenides: Natural assemblages and calculated stability relations among secondary Ca-Mg-Co arsenates and carbonates. American Mineralogist 99 (1):44–56. doi:10.2138/am.2014.4540.
  • Marrero, J., O. Coto, S. Goldmann, T. Graupner, and A. Schippers. 2015. Recovery of nickel and cobalt from laterite tailings by reductive dissolution under aerobic conditions using acidithiobacillus species. Environmental Science & Technology 49 (11):6674–82. doi:10.1021/acs.est.5b00944.
  • Marrero, J., O. Coto, and A. Schippers. 2017. Anaerobic and aerobic reductive dissolutions of iron-rich nickel laterite overburden by acidithiobacillus. Hydrometallurgy 168:49–55. doi:10.1016/j.hydromet.2016.08.012.
  • Marrero, J., O. Coto, and A. Schippers. 2020. 11 metal bioleaching: Fundamentals and geobiotechnical application of aerobic and anaerobic acidophiles. In Biotechnological applications of extremophilic microorganisms, De Gruyter, 261–88. doi:10.1515/9783110424331-011.
  • Mauk, J. L., N. A. Karl, C. A. San Juan, L. Knudsen, G. Schmeda, C. Forbush, B. S. Van Gosen, M. Mullins, and P. Scott. 2021. The critical minerals initiative of the US geological survey’s mineral deposit database project: USMIN. Mining, Metallurgy & Exploration 38 (2):775–97. 38. doi:10.1007/S42461-020-00372-W.
  • Mbuya, B. I., M. Kime, and A. M. D. Tshimombo. 2017. Comparative study of approaches based on the taguchi and ANOVA for optimising the leaching of copper–cobalt flotation tailings. Chemical Engineering Communications 204:512–21. doi:10.1080/00986445.2017.1278588.
  • Mbuya, B., P. Ntakamusthi, M. B. Kime, L. Zeka, G. Nkulu, A. Mwamba, and A. F. Mulaba-Bafubiandi. 2021. Metallurgical evaluation of the leaching behavior of copper–cobalt-bearing ores by the principal component analysis approach: Case study of the DRC copperbelt ore deposits. Journal of Sustainable Metallurgy 7 (3):985–94. doi:10.1007/s40831-021-00389-5.
  • Mehta, K. D., C. Das, R. Kumar, B. D. Pandey, and S. P. Mehrotra. 2010a. Effect of mechano-chemical activation on bioleaching of Indian Ocean nodules by a fungus. Minerals Engineering 23 (15):1207–12. doi:10.1016/j.mineng.2010.08.008.
  • Mehta, K. D., C. Das, and B. D. Pandey. 2010b. Leaching of copper, nickel and cobalt from Indian Ocean manganese nodules by aspergillus niger. Hydrometallurgy 105 (1–2):89–95. doi:10.1016/j.hydromet.2010.08.002.
  • Meshram, P., Abhilash, and B. D. Pandey. 2019. Advanced review on extraction of nickel from primary and secondary sources. Mineral Processing and Extractive Metallurgy Review 40 (3):157–93. doi:10.1080/08827508.2018.1514300.
  • Meshram, P., S. Virolainen, and T. Sainio. 2022. Solvent extraction for separation of 99.9% pure cobalt and recovery of Li, Ni, Fe, Cu, Al from spent LIBs. Metals 12:1–15. doi:10.3390/met12061056.
  • Metal Bulletin.Com: Production of Uganda’s Kasese cobalt will end in 2013 | [WWW Document]. 2013. Accessed June 22, 2022. https://www.metalbulletin.com/Article/3251115/UPDATED-Production-of-Ugandas-Kasese-cobalt-will-end-in-2013.html
  • Miller, P. C., M. K. Rhodes, R. Winby, A. Pinches, and P. J. van Staden. 1999. Commercialization of bioleaching for base-metal extraction. Mining, Metallurgy & Exploration 16 (4):42–50. doi:10.1007/BF03403233.
  • Mishra, S., S. Panda, A. Akcil, and S. Dembele. 2022. Biotechnological avenues in mineral processing: Fundamentals, applications and advances in bioleaching and bio-beneficiation. Mineral Processing and Extractive Metallurgy Review 44 (1):22–51. doi:10.1080/08827508.2021.1998043.
  • Mohanty, A., and N. Devi. 2021. A review on green method of extraction and recovery of energy critical element cobalt from spent Lithium-Ion Batteries (LIBs). Mineral Processing and Extractive Metallurgy Review. doi:10.1080/08827508.2021.2017925.
  • Mohapatra, S., C. Sengupta, B. D. Nayak, L. B. Sukla, and B. K. Mishra. 2008. Effect of thermal pretreatment on recovery of nickel and cobalt from Sukinda lateritic nickel ore using microorganisms. The Korean Journal of Chemical Engineering 25 (5):1070–75. doi:10.1007/s11814-008-0175-2.
  • Mohapatra, S., C. Sengupta, B. D. Nayak, L. B. Sukla, and B. K. Mishra. 2009. Biological leaching of nickel and cobalt from lateritic nickel ore of Sukinda mines. The Korean Journal of Chemical Engineering 26 (1):108–14. doi:10.1007/s11814-009-0017-x.
  • Mokarian, P., I. Bakhshayeshi, F. Taghikhah, Y. Boroumand, E. Erfani, and A. Razmjou. 2022. The advanced design of bioleaching process for metal recovery: A machine learning approach. Separation and Purification Technology 291:120919. doi:10.1016/J.SEPPUR.2022.120919.
  • Morin, D. H. R., and P. D’hugues. 2007. Bioleaching of a cobalt-containing pyrite in stirred reactors: A case study from laboratory scale to industrial application. In Biomining, 35–55. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-540-34911-2_2.
  • Morin, D., P. Spolaore, P. d’Hugues, A. Teczan, and Ó. Mafa. 2010. Pyrite bioleaching and slag neutralisation-two treatments in a single process for recovering valuable metals from both materials. XXV International Mineral Processing Congress 2010, IMPC 2010, Australia.
  • Mudd, G. M., Z. Weng, S. M. Jowitt, I. D. Turnbull, and T. E. Graedel. 2013. Quantifying the recoverable resources of by-product metals: The case of cobalt. Ore Geology Reviews 55:87–98. doi:10.1016/j.oregeorev.2013.04.010.
  • Nasab, M. H., M. Noaparast, H. Abdollahi, and M. A Amoozegar. 2021. Direct and indirect bioleaching of Co and Ni from iron rich laterite ore using Delftia acidovorans and acidithiobacillus ferrooxidans. Journal of Mining and Environment 12:471–89. doi:10.22044/jme.2021.10528.2002.
  • Neale, J., J. Seppälä, A. Laukka, P. Van Aswegen, S. Barnett, and M. Gericke. 2017. The mondo minerals nickel sulfide bioleach project: From test work to early plant operationSolid State Phenomena. doi:10.4028/SSP.262.28.
  • Newsome, L., A. Solano Arguedas, V. S. Coker, C. Boothman, and J. R. Lloyd. 2020. Manganese and cobalt redox cycling in laterites; Biogeochemical and bioprocessing implications. Chemical Geology 531:119330. doi:10.1016/j.chemgeo.2019.119330.
  • Nisbett, A., K. Baxter, K. Marte, and M. Urbani. 2009. Flowsheet considerations for copper cobalt projects. Journal of the Southern African Institute of Mining and Metallurgy 109 (11): 641–646.
  • Nkulu, G., S. Gaydardzhiev, and E. Mwema. 2013. Statistical analysis of bioleaching copper, cobalt and nickel from polymetalic concentrate originating from Kamoya deposit in the Democratic Republic of Congo. Minerals Engineering 48:77–85. doi:10.1016/j.mineng.2012.10.007.
  • Nkulu, G., S. Gaydardzhiev, E. Mwema, and P. Compere. 2015. SEM and EDS observations of carrollite bioleaching with a mixed culture of acidophilic bacteria. Minerals Engineering 75:70–76. doi:10.1016/j.mineng.2014.12.005.
  • Oliveira, V. D. A., M. L. M. Rodrigues, and V. A. Leão. 2021. Reduction roasting and bioleaching of a limonite ore. Hydrometallurgy 200:105554. doi:10.1016/j.hydromet.2021.105554.
  • Pakostova, E., B. M. Grail, and D. B. Johnson. 2017. Indirect oxidative bioleaching of a polymetallic black schist sulfide ore. Minerals Engineering 106:102–07. doi:10.1016/j.mineng.2016.08.028.
  • Parbhakar-Fox, A., J. Glen, and B. Raimondo. 2018. A geometallurgical approach to tailings management: An example from the savage river fe-ore mine, western Tasmania. Minerals 8 (10):454. doi:10.3390/MIN8100454.
  • Pathak, A., R. Kothari, M. Vinoba, N. Habibi, and V. V. Tyagi. 2021. Fungal bioleaching of metals from refinery spent catalysts: A critical review of current research, challenges, and future directions. Journal of Environmental Management 280:111789. doi:10.1016/j.jenvman.2020.111789.
  • Pathak, A., L. Morrison, and M. G. Healy. 2017. Catalytic potential of selected metal ions for bioleaching, and potential techno-economic and environmental issues: A critical review. Bioresource Technology 229:211–21. doi:10.1016/j.biortech.2017.01.001.
  • Pazik, P. M., T. Chmielewski, H. J. Glass, and P. B. Kowalczuk. 2016. World production and possible recovery of cobalt from the Kupferschiefer stratiform copper ore. E3S Web of Conferences 8:01063. doi:10.1051/e3sconf/20160801063
  • Qin, W., S. Zhen, Z. Yan, M. Campbell, J. Wang, K. Liu, and Y. Zhang. 2009. Heap bioleaching of a low-grade nickel-bearing sulfide ore containing high levels of magnesium as olivine, chlorite and antigorite. Hydrometallurgy 98 (1–2):58–65. doi:10.1016/j.hydromet.2009.03.017.
  • Randhawa, N. S., J. Hait, and R. K. Jana. 2016. A brief overview on manganese nodules processing signifying the detail in the Indian context highlighting the international scenario. Hydrometallurgy 165:166–81. doi:10.1016/j.hydromet.2015.09.013.
  • Rezza, I., E. Salinas, M. Elorza, M. Sanz de Tosetti, and E. Donati. 2001. Mechanisms involved in bioleaching of an aluminosilicate by heterotrophic microorganisms. Process Biochemistry 36 (6):495–500. doi:10.1016/S0032-9592(00)00164-3.
  • Ribeiro, P. P. M., L. C. M. De Souza, R. Neumann, I. D. Dos Santos, and A. J. B. Dutra. 2020. Nickel and cobalt losses from laterite ore after the sulfation-roasting-leaching processing. Journal of Materials Research and Technology 9 (6):12404–15. doi:10.1016/j.jmrt.2020.08.082.
  • Riekkola-Vanhanen, M. 2013. Talvivaara mining company – from a project to a mine. Minerals Engineering 48:2–9. doi:10.1016/j.mineng.2013.04.018.
  • Riekkola-Vanhanen, M. 2021. Talvivaara Sotkamo Mine – Bioleaching of a polymetallic nickel ore in subarctic climate. Nova Biotechnologica et Chimica 10 (1):7–14. doi:10.36547/nbc.1058.
  • Riekkola-Vanhanen, M., and S. Heimala. 1999. Study of the bioleaching of a nickel containing black-schist ore. Process Metallurgy. doi:10.1016/S1572-4409(99)80054-6.
  • Roberto, F. F., and A. Schippers. 2022. Progress in bioleaching: Part B, applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology 1–16. doi:10.1007/S00253-022-12085-9.
  • Roy, J. J., B. Cao, and S. Madhavi. 2021. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach. Chemosphere 282:130944. doi:10.1016/j.chemosphere.2021.130944.
  • Sadeghieh, S. M., A. Ahmadi, and M. R. Hosseini. 2020. Effect of water salinity on the bioleaching of copper, nickel and cobalt from the sulphidic tailing of Golgohar Iron Mine, Iran. Hydrometallurgy 198:105503. doi:10.1016/j.hydromet.2020.105503.
  • Saim, A. K., G. Ofori-Sarpong, and R. K. Amankwah. 2022. Oxidation behaviour and bio-oxidation of gold-bearing sulphide ores: Oxygen capabilities and challenges. Ghana Mining Journal 22:15–25. doi:10.4314/gm.v22i2.3.
  • Sajjad, W., Z. Guodong, M. Rafiq, M. Xiangxian, S. Khan, A. Haq, B. Ali, and S. Zada. 2019a. Evaluation of the biotechnological potential of pure and mixture of indigenous iron-oxidizing bacteria to dissolve trace metals from Cu bearing ore. Geomicrobiology Journal 36 (8):715–26. doi:10.1080/01490451.2019.1611974.
  • Sajjad, W., G. Zheng, G. Din, X. Ma, M. Rafiq, and W. Xu. 2019b. Metals extraction from sulfide ores with microorganisms: The bioleaching technology and recent developments. Transactions of the Indian Institute of Metals 72 (3):559–79. doi:10.1007/s12666-018-1516-4.
  • Santos, A. L., A. Dybowska, P. F. Schofield, R. J. Herrington, G. Cibin, and D. B. Johnson. 2022. Chromium (VI) inhibition of low pH bioleaching of limonitic nickel-cobalt ore. Frontiers in Microbiology 12. doi:10.3389/fmicb.2021.802991.
  • Santos, A. L., A. Dybowska, P. F. Schofield, R. J. Herrington, and D. B. Johnson. 2020. Sulfur-enhanced reductive bioprocessing of cobalt-bearing materials for base metals recovery. Hydrometallurgy 195:105396. doi:10.1016/j.hydromet.2020.105396.
  • Seyrankaya, A., and M. Canbazoǧlu. 2021. Recovery of cobalt, copper and zinc from küre-kastamonu historical copper slag by high pressure oxidative acid leaching. Russian Journal of Non-Ferrous Metals 62 (4):390–402. doi:10.3103/S1067821221040131.
  • Shengo, M. L., M. B. Kime, M. P. Mambwe, and T. K. Nyembo. 2019. A review of the beneficiation of copper-cobalt-bearing minerals in the Democratic Republic of Congo. Journal of Sustainable Mining 18 (4):226–46. doi:10.1016/j.jsm.2019.08.001.
  • Shetty, R. S., S. K. Deo, Y. Liu, and S. Daunert. 2004. Fluorescence-based sensing system for copper using genetically engineered living yeast cells. Biotechnology and Bioengineering 88 (5):664–70. doi:10.1002/bit.20331.
  • Smith, S. L., B. M. Grail, and D. B. Johnson. 2017. Reductive bioprocessing of cobalt-bearing limonitic laterites. Minerals Engineering 106:86–90. doi:10.1016/j.mineng.2016.09.009.
  • Sole, K. C., J. Parker, P. M. Cole, and M. B. Mooiman. 2019. Flowsheet options for cobalt recovery in African Copper–cobalt Hydrometallurgy Circuits. Mineral Processing and Extractive Metallurgy Review 40 (3):194–206. doi:10.1080/08827508.2018.1514301.
  • Sracek, O., F. Veselovský, B. Kříbek, J. Malec, and J. Jehlička. 2010. Geochemistry, mineralogy and environmental impact of precipitated efflorescent salts at the Kabwe Cu–Co chemical leaching plant in Zambia. Applied Geochemistry 25 (12):1815–24. doi:10.1016/j.apgeochem.2010.09.008.
  • Srichandan, H., R. K. Mohapatra, P. K. Parhi, and S. Mishra. 2019. Bioleaching approach for extraction of metal values from secondary solid wastes: A critical review. Hydrometallurgy 189:105122. doi:10.1016/j.hydromet.2019.105122.
  • Stanković, S., M. Martin, S. Goldmann, H. E. Gäbler, K. Ufer, F. Haubrich, V. F. Moutinho, E. C. Giese, R. Neumann, J. L. Stropper, et al. 2022. Effect of mineralogy on Co and Ni extraction from Brazilian limonitic laterites via bioleaching and chemical leaching. Minerals Engineering 184:107604. doi:10.1016/J.MINENG.2022.107604.
  • Stanković, S., S. Stopić, M. Sokić, B. Marković, and B. Friedrich. 2020. Review of the past, present, and future of the hydrometallurgical production of nickel and cobalt from lateritic ores. Metallurgical and Materials Engineering 26 (2):199–208. doi:10.30544/513.
  • Sukla, L. B., and V. Panchanadikar. 1993. Bioleaching of lateritic nickel ore using a heterotrophic micro-organism. Hydrometallurgy 32 (3):373–79. doi:10.1016/0304-386X(93)90048-I.
  • Sun, X., H. Hao, Z. Liu, F. Zhao, and J. Song. 2019. Tracing global cobalt flow: 1995–2015. Resources Conservation and Recycling 149:45–55. doi:10.1016/j.resconrec.2019.05.009.
  • Swartz, B., S. Donegan, and S. R. Amos. 2009. Processing considerations for cobalt recovery from Congolese copperbelt ores. Hydrometallurgy Conference, South Africa, 385–400.
  • Tang, J. A., and M. Valix. 2006. Leaching of low grade limonite and nontronite ores by fungi metabolic acids. Minerals Engineering 19 (12):1274–79. doi:10.1016/j.mineng.2006.04.009.
  • Thompson, D. L., K. S. Noah, P. L. Wichlacz, and A. E. Torma. 1993. Bioextraction of cobalt from complex metal sulfides. International Biohydrometallurgy Symposium, United States.
  • Tkaczyk, A. H., A. Bartl, A. Amato, V. Lapkovskis, and M. Petranikova. 2018. Sustainability evaluation of essential critical raw materials: Cobalt, niobium, tungsten and rare earth elements. Journal of Physics D: Applied Physics 51 (20):203001. doi:10.1088/1361-6463/aaba99.
  • Torma, A. E., J. E. Wey, and B. Pesic. 1993. Bioextraction of cobalt from cobaltite. Metall 47 (7): 648–651.
  • Toro, N., R. I. Jeldres, J. A. Órdenes, P. Robles, and A. Navarra. 2020. Manganese nodules in Chile, an alternative for the production of Co and Mn in the future—A review. Minerals 10 (8):674. doi:10.3390/min10080674.
  • Tuovinen, H., M. Pelkonen, J. Lempinen, E. Pohjolainen, D. Read, D. Solatie, and J. Lehto. 2018. Behaviour of metals during bioheap leaching at the Talvivaara mine, Finland. Geosciences (Switzerland) 8 (2):66. doi:10.3390/geosciences8020066.
  • Tzeferis, P. G. 1994a. Leaching of a low grade hematitic laterite ore using fungi and biologically produced acid metabolites. International Journal of Mineral Processing 42 (3–4):267–83. doi:10.1016/0301-7516(94)00032-8.
  • Tzeferis, P. G. 1994b. Mineral leaching of low-grade laterite ores using `bioacids’ by molasses fungal metabolism. Minerals & Metallurgical Processing 42 (3–4):267–83. doi:10.1007/bf03403052.
  • Uryga, A., Z. Sadowski, and A. Grotowski. 2004. Bioleaching of cobalt from mineral products. Physicochemical Problems of Mineral Processing 38:291–299.
  • USGS. 2019. Cobalt: “Mineral Commodity Summaries”. United States: U.S. Geological Survey.
  • Valix, M., F. Usai, and R. Malik. 2001. Fungal bio-leaching of low grade laterite ores. Minerals Engineering 14 (2):197–203. doi:10.1016/S0892-6875(00)00175-8.
  • van den Brink, S., R. Kleijn, B. Sprecher, and A. Tukker. 2020. Identifying supply risks by mapping the cobalt supply chain. Resources Conservation and Recycling 156:104743. doi:10.1016/j.resconrec.2020.104743.
  • van der Meide, M., C. Harpprecht, S. Northey, Y. Yang, and B. Steubing. 2022. Effects of the energy transition on environmental impacts of cobalt supply: A prospective life cycle assessment study on future supply of cobalt. Journal of Industrial Ecology 26 (5):1631–45. doi:10.1111/JIEC.13258.
  • Van der Voet, E., L. Van Oers, M. Verboon, and K. Kuipers. 2019. Environmental implications of future demand scenarios for metals: Methodology and application to the case of seven major metals. Journal of Industrial Ecology 23 (1):141–55. doi:10.1111/jiec.12722.
  • Viera, M., C. Pogliani, and E. Donati. 2007. Recovery of zinc, nickel, cobalt and other metals by bioleaching. In Microbial processing of metal sulfides, 103–19. Netherlands, Dordrecht: Springer. doi:10.1007/1-4020-5589-7_5.
  • Wakeman, K., H. Auvinen, and D. B. Johnson. 2008. Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore. Biotechnology and Bioengineering 101 (4):739–50. doi:10.1002/bit.21951.
  • Wakeman, K. D., P. Honkavirta, and J. A. Puhakka. 2011. Bioleaching of flotation by-products of talc production permits the separation of nickel and cobalt from iron and arsenic. Process Biochemistry 46 (8):1589–98. doi:10.1016/j.procbio.2011.04.016.
  • Warner, A. E. M., C. M. Díaz, A. D. Dalvi, P. J. Mackey, and A. V. Tarasov. 2006. JOM world nonferrous smelter survey, part III: Nickel: Laterite. JOM 58 (4):11–20. doi:10.1007/s11837-006-0209-3.
  • Warner, A. E. M., C. M. Díaz, A. D. Dalvi, P. J. Mackey, A. V. Tarasov, and R. T. Jones. 2007. JOM world nonferrous smelter survey part IV: Nickel: Sulfide. JOM 59 (4):58–72. doi:10.1007/s11837-007-0056-x.
  • Watling, H. R. 2008. The bioleaching of nickel-copper sulfides. Hydrometallurgy 91 (1–4):70–88. doi:10.1016/j.hydromet.2007.11.012.
  • Witt, W. K., S. G. Hagemann, M. Roberts, and A. Davies. 2020. Cobalt enrichment at the Juomasuo and Hangaslampi polymetallic deposits, Kuusamo Schist Belt, Finland: A role for an orogenic gold fluid? Mineralium Deposita 55 (2):381–88. doi:10.1007/s00126-019-00943-y.
  • Yaashikaa, P. R., B. Priyanka, P. Senthil Kumar, S. Karishma, S. Jeevanantham, and S. Indraganti. 2022. A review on recent advancements in recovery of valuable and toxic metals from e-waste using bioleaching approach. Chemosphere 287:132230. doi:10.1016/j.chemosphere.2021.132230.
  • Yang, Y., J. Ferrier, L. Csetenyi, and G. M. Gadd. 2019. Direct and indirect bioleaching of cobalt from low grade laterite and pyritic ores by aspergillus niger. Geomicrobiology Journal 36 (10):940–49. doi:10.1080/01490451.2019.1654045.
  • Yang, C., W. Qin, S. Lai, J. Wang, Y. Zhang, F. Jiao, L. Ren, T. Zhuang, and Z. Chang. 2011. Bioleaching of a low grade nickel–copper–cobalt sulfide ore. Hydrometallurgy 106 (1–2):32–37. doi:10.1016/j.hydromet.2010.11.013.
  • Yin, S., L. Wang, E. Kabwe, X. Chen, R. Yan, K. An, L. Zhang, and A. Wu. 2018. Copper bioleaching in China: Review and prospect. Minerals 8 (2):32. doi:10.3390/min8020032.
  • Zeka, L., F. Lambert, J. Frenay, S. Gaydardzhiev, and A. Ilungandala. 2015. Possibilities for Co(III) dissolution from an oxidized ore through simultaneous bioleaching of pyrite. Minerals Engineering 75:54–62. doi:10.1016/j.mineng.2014.12.023.
  • Zeng, A., W. Chen, K. D. Rasmussen, X. Zhu, M. Lundhaug, D. B. Müller, J. Tan, J. K. Keiding, L. Liu, T. Dai, et al. 2022. Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages. Nature Communications 13 (1). doi:10.1038/s41467-022-29022-z.
  • Zhang, T., Y. Bai, X. Shen, Y. Zhai, C. Ji, X. Ma, and J. Hong. 2021. Cradle-to-gate life cycle assessment of cobalt sulfate production derived from a nickel–copper–cobalt mine in China. The International Journal of Life Cycle Assessment 26 (6):1198–210. doi:10.1007/s11367-021-01925-x.
  • Zhang, R., S. Hedrich, F. Römer, D. Goldmann, and A. Schippers. 2020. Bioleaching of cobalt from Cu/Co-rich sulfidic mine tailings from the polymetallic Rammelsberg mine, Germany. Hydrometallurgy 197:105443. doi:10.1016/j.hydromet.2020.105443.
  • Zhang, R., and A. Schippers. 2022. Stirred-tank bioleaching of copper and cobalt from mine tailings in Chile. Minerals Engineering 180:107514. doi:10.1016/j.mineng.2022.107514.
  • Zhang, P., L. Sun, H. Wang, J. Cui, and J. Hao. 2019. Surfactant-assistant atmospheric acid leaching of laterite ore for the improvement of leaching efficiency of nickel and cobalt. Journal of Cleaner Production 228:1–7. doi:10.1016/j.jclepro.2019.04.305.
  • Zhao, Q., X. Liu, Y. Zhan, J. Lin, W. Yan, J. Bian, and Y. Liu. 2005. [Construction of an engineered acidithiobacillus caldus with high-efficiency arsenic resistance]. Wei Sheng Wu Xue Bao = Acta Microbiologica Sinica 45 (5):675–79.
  • Zhen, S., Z. Yan, Y. Zhang, J. Wang, M. Campbell, and W. Qin. 2009. Column bioleaching of a low grade nickel-bearing sulfide ore containing high magnesium as olivine, chlorite and antigorite. Hydrometallurgy 96 (4):337–41. doi:10.1016/j.hydromet.2008.11.007.
  • Zhu, T. 2000. Solvent extraction of cobalt and nickel—The chemistry and its application*. Mineral Processing and Extractive Metallurgy Review 21 (1–5):1–24. doi:10.1080/08827500008914163.
  • Ziwa, G., R. Crane, and K. A. Hudson-Edwards. 2021. Geochemistry, mineralogy and microbiology of cobalt in mining-affected environments. Minerals 11 (1):22. doi:10.3390/min11010022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.