136
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Compressive Strength Behavior of Briquettes Produced from Manganese Ore Fines and Metal Dust: Optimization Using Response Surface Methodology

ORCID Icon, &

References

  • ASTM C170/C170M – 17. 2017. Standard test method for compressive strength of dimension stone. West Conshohocken, PA: ASTM International. www.astm.org.
  • ASTM D3172-13. 2021. Standard practice for proximate analysis of coal and coke. West Conshohocken, PA: ASTM International.
  • ASTM D440-07. 2019. Standard test method of drop shatter test for coal. West Conshohocken, PA: ASTM International.
  • ASTM E279-18. 2018. Determination of abrasion resistance of iron ore pellets, lump, and sinter by the tumbler test. West Conshohocken, PA: ASTM International.
  • Ayyandurai, A., and J. Pal. 2021. Blast furnace flue dust as a potential carbon additive in hematite ore pellet. Mineral Processing & Extractive Metallurgy Review 43 (5):633–47. doi:10.1080/08827508.2021.1914607.
  • Barisetty, S., S. Kalshetty, S. Ramakrishna, S. C. Vishwanath, and G. Balachandran. 2020. Cold briquetting of DRI fines for use in steel making process. Transactions of the Indian Institute of Metals 73 (2):449–55. doi:10.1007/s12666-019-01856-0.
  • Bizhanov, A., I. Kurunov, G. Podgorodetskyi, V. Dashevskyi, and A. Pavlov. 2014. Extruded briquettes–new charge component for the manganese ferroalloys production. ISIJ International 54 (10):2206–14. doi:10.2355/isijinternational.54.2206.
  • By, T. 2017. Briquetting of manganese oxide fines with organic binders. 74f. MSc diss. Trondheim: Department of Materials Science and Engineering, Norwegian University of Science and Technology.
  • Clarke, D. E., and H. Marsh. 1989. Influence of coal/binder interactions on mechanical strength of briquettes. Fuel 68 (8):1023–30. doi:10.1016/0016-2361(89)90069-0.
  • Coetsee, T. 2019a. The role of manganese ore reduction morphology development in setting reduction mechanisms. Minerals Engineering 137:217–31. doi:10.1016/j.mineng.2019.04.006.
  • Coetsee, T. 2019b. A review of ore smelting in high carbon ferromanganese production. Mineral Processing & Extractive Metallurgy Review 41 (4):255–78. doi:10.1080/08827508.2019.1634566.
  • De Gisi, S., L. Romaniello, M. Dalessandro, F. Todaro, and M. Notarnicola. 2019. Recovery of iron rich residues from integrated steel making process by hydrated lime/molasses pressurised cold agglomeration. Journal of Cleaner Production 233:830–40. doi:10.1016/j.jclepro.2019.06.113.
  • De Jesus, L. G., and M. Tangstad. 2021. Prereduction of manganese briquettes produced with tailing dam materials from Urucum/Brazil. Proceedings of the 16th International Ferro-Alloys Congress (INFACON XVI), September. Trondheim, Norway, June 2021.
  • De Jesus, L. G. M., and M. Tangstad. 2020. CO reactivity of manganese lumps versus briquettes. ISIJ International 60 (10):2129–33. doi:10.2355/isijinternational.ISIJINT-2019-493.
  • De Moraes, S. L., and S. K. Kawatra. 2010. Laboratory study of an organic binder for pelletization of a magnetite concentrate. Mining, Metallurgy & Exploration 27 (3):148–53. doi:10.1007/BF03402238.
  • Debrincat, D. P., C. B. Solnordal, and J. S. J. Van Deventer. 2008. Influence of particle properties on the size of agglomerated metallurgical powders. International Journal of Mineral Processing 87 (1–2):17–27. doi:10.1016/j.minpro.2008.01.003.
  • Dhawan, N., M. S. Safarzadeh, J. D. Miller, M. L. Free, and M. S. Moats. 2015. Understanding the agglomeration behavior of selected copper ores using statistical design of experiments. Mineral Processing & Extractive Metallurgy Review 36 (1):13–25. doi:10.1080/08827508.2013.825613.
  • Diaz, L., N. Julia, A. Amalric, G. Nussbaum, and K. B. Bjelland. 2021. Recycling of Mn-rich ore fines, dust and sludge briquettes in Mn alloys production. In Proceedings of the 16th International Ferro-Alloys Congress (INFACON XVI), Trondheim, Norway, June 2021.
  • Dubos, J. L., B. Orberger, J. Banchet, J. M. Milazzo, S. B. Blancher, T. Wallmach, and J. Lützenkirchen. 2021. Binder-free tableting experiments on manganese oxides and industrial mineral powders. Powder Technology 377:194–211. doi:10.1016/j.powtec.2020.08.032.
  • Dubos, J. L., B. Orberger, J. M. Milazzo, S. B. Blancher, T. Wallmach, J. Lützenkirchen, and J. Banchet. 2020. Agglomeration potential evaluation of industrial Mn dusts and sludges based on physico-chemical characterization. Powder Technology 360:1079–91. doi:10.1016/j.powtec.2019.10.101.
  • Eisele, T. C., and S. K. Kawatra. 2003. A review of binders in iron ore pelletization. Mineral Processing & Extractive Metallurgy Review 24 (1):1–90. doi:10.1080/08827500306896.
  • Fagerberg, B., and N. Sandberg. 1973. Degradation of lump ores in transport. Proceedings of the Second International Symposium on Transport and Handling of Materials, vol. 2, 1–5. Rotterdam, The Netherlands: Luossavaara-Kiirunavaara AB, October.
  • Faria, G. L. D., J. A. S. Tenório, N. Jannotti, Jr, and F. D. S. Araújo. 2013. Disintegration on heating of a Brazilian manganese lump ore. International Journal of Mineral Processing 124:132–37. doi:10.1016/j.minpro.2013.06.008.
  • Halt, J. A., and S. K. Kawatra. 2014. Review of organic binders for iron ore concentrate agglomeration. Mining, Metallurgy & Exploration 31 (2):73–94. doi:10.1007/BF03402417.
  • Halt, J. A., and S. K. Kawatra. 2017. Can modified starch be used as a binder for iron ore pellets? Mineral Processing & Extractive Metallurgy Review 38 (2):73–82. doi:10.1080/08827508.2016.1262857.
  • Howe, P., H. Malcolm, and S. Dobson. 2004. Manganese and its compounds: Environmental aspects. No. 63, Geneva, Switzerland: World Health Organization.
  • Hu, Q., J. Shao, H. Yang, D. Yao, X. Wang, and H. Chen. 2015. Effects of binders on the properties of bio-char pellets. Applied Energy 157:508–16. doi:10.1016/j.apenergy.2015.05.019.
  • Khudyakov, A., S. Vashchenko, K. Baiul, Y. Semenov, and P. Krot. 2022. Optimization of briquetting technology of fine-grained metallurgical materials based on statistical models of compressibility. Powder Technology 412:118025. doi:10.1016/j.powtec.2022.118025.
  • Lanzerstorfer, C., and C. Brunner. 2020. Agglomeration of iron-BEARING fines: Selection of the binder for optimal briquette strength under various environments. Proceedings of the 29th International Conference on Metallurgy and Materials, 31–36. Brno, Czech Republic, May.
  • Lemos, L. R., S. H. Rocha, L. F. A. D. Castro, G. B. M. Assunção, and G. L. R. D. Silva. 2019. Mechanical strength of briquettes for use in blast furnaces. REM-International Engineering Journal 72 (1):63–69. doi:10.1590/0370-44672017720156.
  • Li, Y., H. Chen, A. Hammam, H. Wei, H. Nie, W. Ding, M. Omran, L. Yan, and Y. Yu. 2021. Study of an organic binder of cold-bonded briquettes with two different iron bearing materials. Materials 14 (11):2952. doi:10.3390/ma14112952.
  • Lohmeier, L., C. Thaler, C. Harris, R. Wollenberg, and H. W. Schröder. 2020. Briquetting of fine‐grained residues from iron and steel production using organic and inorganic binders. Steel Research International 91 (12):2000238. doi:10.1002/srin.202000238.
  • Lu, Y. C., L. Brabie, A. V. Karasev, and C. Wang. 2022. Applications of hydrochar and charcoal in the iron and steelmaking industry—Part 2: Carburization of liquid iron by addition of Iron–Carbon briquettes. Sustainability 14 (9):5383. doi:10.3390/su14095383.
  • Lucay, F. A., M. Sales-Cruz, E. D. Gálvez, and L. A. Cisternas. 2020. Modeling of the complex behavior through an improved response surface methodology. Mineral Processing & Extractive Metallurgy Review 42 (5):285–311. doi:10.1080/08827508.2020.1728265.
  • Lundstedt, T., E. Seifert, L. Abramo, B. Thelin, Å. Nyströma, J. Pettersen, and R. Bergman. 1998. Experimental design and optimization chemometrics and intelligent laboratory systems. 42 (1–2):3–40. doi:10.1016/S0169-7439(98)00065-3.
  • Magdziarz, A., M. Kuźnia, M. Bembenek, P. Gara, and M. Hryniewicz. 2015. Briquetting of EAF dust for its utilisation in metallurgical processes. Chemical and Process Engineering 36 (2):263–71. doi:10.1515/cpe-2015-0018.
  • Mousa, E., M. Kazemi, M. Larsson, G. Karlsson, and E. Persson. 2019. Potential for developing biocarbon briquettes for foundry industry. Applied Sciences 9 (24):5288. doi:10.3390/app9245288.
  • Myers, R. H., D. C. Montgomery, and C. M. Anderson-Cook. 2016. Response surface methodology: Process and product optimization using designed experiments. 3rd ed. Hoboken, New Jersey: John Wiley & Sons.
  • Nikai, I., and A. M. Garbers-Craig. 2016. Use of iron ore fines in cold-bonded self-reducing composite pellets. Mineral Processing & Extractive Metallurgy Review 37 (1):42–48. doi:10.1080/08827508.2015.1104506.
  • Olsen, S. E., M. Tangstad, and T. Lindstad. 2007. Production of ferromanganese alloys in the submerged arc furnace. Trondheim, Norway 247.
  • Özbayoğlu, G., and K. R. Tabari. 2003. Briquetting of Iran-angouran smithsonite fines. Physicochemical Problems of Mineral Processing 37:115–22.
  • Pal, J. 2018. Innovative development on agglomeration of iron ore fines and iron oxide wastes. Mineral Processing & Extractive Metallurgy Review 40 (4):248–64. doi:10.1080/08827508.2018.1518222.
  • Pan, J., B. Shi, D. Zhu, and Y. Mo. 2016. Improving sintering performance of specularite concentrates by pre-briquetting process. ISIJ International 56 (5):777–85. doi:10.2355/isijinternational.ISIJINT-2015-578.
  • Pereira, M. M., F. O. Costa, R. F. Gomes, M. L. M. Rodrigues, G. A. da Silva, and V. A. Leão. 2020. Multivariate study of a novel hydrometallurgical route employing chloride/hypochlorite for leaching silver from printed circuit boards. Chemical Engineering Research & Design 163:115–24. doi:10.1016/j.cherd.2020.08.028.
  • Pietsch, W. B. 2002. Agglomeration processes: Phenomena, technologies, equipment, 622. Weinheim: John Wiley & Sons.
  • Qiu, G., T. Jiang, H. Li, and D. Wang. 2003. Functions and molecular structure of organic binders for iron ore pelletization. Colloids and Surfaces A: Physicochemical and Engineering Aspects 224 (1–3):11–22. doi:10.1016/S0927-7757(03)00264-4.
  • Rahmati, S., A. Ahmadi, M. R. Hosseini, and M. M. Nasab. 2019. Optimization of continuous air-assisted solvent extraction for treating dilute Cu leach solutions using response surface methodology. Minerals Engineering 131:154–63. doi:10.1016/j.mineng.2018.11.018.
  • Raman, G. S. S., and M. S. Klima. 2022. Evaluation of pressure filtration of coal refuse slurry: Effects of pH, filtration, and air-blow times. Mineral Processing & Extractive Metallurgy Review 43 (1):13–21. doi:10.1080/08827508.2020.1804384.
  • Riva, L., G. R. Surup, T. V. Buø, and H. K. Nielsen. 2019. A study of densified biochar as carbon source in the silicon and ferrosilicon production. Energy 181:985–96. doi:10.1016/j.energy.2019.06.013.
  • Sah, R., and S. K. Dutta. 2010. Effects of binder on the properties of iron ore-coal composite pellets. Mineral Processing & Extractive Metallurgy Review 31 (2):73–85. doi:10.1080/08827500903404732.
  • Silva, B. B., E. R. da Cunha, R. M. de Carvalho, and L. M. Tavares. 2019. Improvement in roller screening of green iron ore pellets by statistical analysis and discrete element simulations. Mineral Processing & Extractive Metallurgy Review 41 (5):323–34. doi:10.1080/08827508.2019.1635473.
  • Singh, V., T. K. Ghosh, Y. Ramamurthy, and V. Tathavadkar. 2011. Beneficiation and agglomeration process to utilize low-grade ferruginous manganese ore fines. International Journal of Mineral Processing 99 (1–4):84–86. doi:10.1016/j.minpro.2011.03.003.
  • Singh, V., and V. Tathavadker. 2011. Development of agglomeration process to utilize the ferromanganese fines in steel making process. ISIJ International 51 (1):59–62. doi:10.2355/isijinternational.51.59.
  • Somerville, M. A. 2016. The strength and density of green and reduced briquettes made with iron ore and charcoal. Journal of Sustainable Metallurgy 2 (3):228–38. doi:10.1007/s40831-016-0057-5.
  • Wen, J., T. Jiang, Y. Liu, and X. Xue. 2018. Extraction behavior of vanadium and chromium by calcification roasting-acid leaching from high chromium vanadium slag: Optimization using response surface methodology. Mineral Processing & Extractive Metallurgy Review 40 (1):56–66. doi:10.1080/08827508.2018.1481059.
  • World Health Organization. 2021. Manganese in drinking water: Background document for development of WHO guidelines for drinking-water quality. No. WHO/HEP/ECH/WSH/2021.5, Geneva: World Health Organization.
  • Yang, H., and G. Qiu. 1998. Fabrication and industrial application of ferromanganese composite briquette. Journal of Central South University of Technology 5 (1):7–10.
  • Young, B. 2015. Using binders to briquette carbonaceous materials and steel wastes. CSC Publ. www.powderbulk.com

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.