155
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preparation of Reduced Iron Powder from High-Phosphorus Iron Ore: A Pilot-Scale Rotary-Kiln Investigation

, , , , & ORCID Icon

References

  • Cha, J. W., D. Y. Kim, and S. M. Jung. 2015. Distribution behavior of phosphorus and metallization of iron oxide in carbothermic reduction of high-phosphorus iron ore. Metallurgical and Materials Transactions B 46 (5):2165–79. doi:10.1007/s11663-015-0399-6.
  • Delvasto, P., A. Valverde, A. Ballester, J. A. Munoz, F. Gonzalez, M. L. Blazquez, J. M. Igual, and C. Garcia-Balboa. 2008. Diversity and activity of phosphate bioleaching bacteria from a high-phosphorus iron ore. Hydrometallurgy 92 (3–4):124–29. doi:10.1016/j.hydromet.2008.02.007.
  • Han, Y. X., Y. S. Sun, P. Gao, Y. J. Li, and Y. F. Mu. 2014. Particle size distribution of metallic iron during coal-based reduction of an oolitic iron ore. Mining, Metallurgy & Exploration 31 (3):169–74. doi:10.1007/BF03402274.
  • Khassen, B., N. Baltynova, and L. Dakhno. 2014. Investigation of dephosphorization of brown iron ore concentrates by sintering and magnetic beneficiation. International Journal of Mineral Processing 126:136–40. doi:10.1016/j.minpro.2013.11.013.
  • Li, G. H., S. H. Zhang, M. J. Rao, Y. B. Zhang, and T. Jiang. 2013. Effects of sodium salts on reduction roasting and Fe-P separation of high-phosphorus oolitic hematite ore. International Journal of Mineral Processing 124:26–34. doi:10.1016/j.minpro.2013.07.006.
  • Li, Y. L., T. C. Sun, J. Kou, Q. Guo, and C. Y. Xu. 2014. Study on phosphorus removal of high-phosphorus oolitic hematite by coal-based direct reduction and magnetic separation. Mineral Processing and Extractive Metallurgy Review 35 (1):66–73. doi:10.1080/08827508.2012.723648.
  • Liu, Y. Q., H. Zhang, Z. Li, A. Zhang, X. H. Zhang, and S. Qin. 2017. Impact of slag composition activity on the behavior of phosphorus in the smelting reduction process of high-phosphorus iron ores. International Journal of Hydrogen Energy 42 (38):24487–94. doi:10.1016/j.ijhydene.2017.06.119.
  • Omran, M., T. Fabritius, and R. Mattila. 2015. Thermally assisted liberation of high phosphorus oolitic iron ore: A comparison between microwave and conventional furnaces. Powder Technology 269:7–14. doi:10.1016/j.powtec.2014.08.073.
  • Peng, T. F., X. C. Gao, Q. B. Li, L. J. Xu, L. Q. Luo, and L. H. Xu. 2017. Phase transformation during roasting process and magnetic beneficiation of oolitic-iron ores. Vacuum 146:63–73. doi:10.1016/j.vacuum.2017.09.029.
  • Pownceby, M. I., S. Hapugoda, J. Manuel, N. A. S. Webstera, and C. M. MacRae. 2019. Characterisation of phosphorus and other impurities in goethite-rich iron ores–possible P incorporation mechanisms. Minerals Engineering 143:1–10. doi:10.1016/j.mineng.2019.106022.
  • Rao, M. J., C. Z. Ouyang, G. H. Li, S. H. Zhang, Y. B. Zhang, and T. Jiang. 2015. Behavior of phosphorus during the carbothermic reduction of phosphorus-rich oolitic hematite ore in the presence of Na2SO4. International Journal of Mineral Processing 143:72–79. doi:10.1016/j.minpro.2015.09.002.
  • Rath, S. S., N. Dhawan, D. S. Rao, B. Das, and B. K. Mishra. 2016. Beneficiation studies of a difficult to treat iron ore using conventional and microwave roasting. Powder Technology 301:1016–24. doi:10.1016/j.powtec.2016.07.044.
  • Roy, S. K., D. Nayak, and S. S. Rath. 2020. A review on the enrichment of iron values of low-grade Iron ore resources using reduction roasting-magnetic separation. Powder Technology 367:796–808. doi:10.1016/j.powtec.2020.04.047.
  • Shen, S. B., R. R. Rao, and J. C. Wang. 2013. Application of indigenous sulfur-oxidizing bacteria from municipal wastewater to selectively bioleach phosphorus from high phosphorus iron ore: Effect of particle size. Environmental Technology 34 (2):173–80. doi:10.1080/09593330.2012.689363.
  • Su, Z. J., Y. B. Zhang, J. Chen, B. B. Liu, G. H. Li, and T. Jiang. 2016. Selective separation and recovery of iron and tin from high calcium type tin-and iron-bearing tailings using magnetizing roasting followed by magnetic separation. Separation Science and Technology 51 (11):1900–12. doi:10.1080/01496395.2016.1178292.
  • Sun, Y. S., P. Gao, Y. X. Han, and D. Z. Ren. 2013. Reaction behavior of iron minerals and metallic iron particles growth in coal-based reduction of an oolitic iron ore. Industrial & Engineering Chemistry Research 52 (6):2323–29. doi:10.1021/ie303233k.
  • Sun, Y. S., Y. X. Han, P. Gao, and J. W. Yu. 2015. Size Distribution behavior of metallic iron particles in coal-based reduction products of an oolitic iron ore. Mineral Processing and Extractive Metallurgy Review 36 (4):249–57. doi:10.1080/08827508.2014.955611.
  • Sun, Y. S., Y. F. Li, Y. X. Han, and Y. J. Li. 2019. Migration behaviors and kinetics of phosphorus during coal-based reduction of high-phosphorus oolitic iron ore. International Journal of Minerals, Metallurgy, and Materials 26 (8):938–45. doi:10.1007/s12613-019-1810-0.
  • Sun, Y. S., W. T. Zhou, Y. X. Han, and Y. J. Li. 2019. Effect of different additives on reaction characteristics of fluorapatite during coal-based reduction of iron ore. Metals 9 (9):923. doi:10.3390/met9090923.
  • Tang, H. M., Z. W. Peng, Z. Z. Li, Y. T. Ma, J. Zhang, L. Ye, L. C. Wang, M. J. Rao, G. H. Li, and T. Jiang. 2021. Recovery of platinum-group metals from spent catalysts by microwave smelting. Journal of Cleaner Production 318:128266. doi:10.1016/j.jclepro.2021.128266.
  • Tang, H. Q., Z. C. Guo, and Z. L. Zhao. 2010. Phosphorus removal of high phosphorus iron ore by gas-based reduction and melt separation. Journal of Iron and Steel Research International 17 (9):1–6. doi:10.1016/S1006-706X(10)60133-1.
  • Tang, H. Q., L. Ma, J. W. Wang, and Z. C. Guo. 2014. Slag/Metal separation process of gas-reduced oolitic high-phosphorus iron ore fines. Journal of Iron and Steel Research International 21 (11):1009–15. doi:10.1016/S1006-706X(14)60176-X.
  • Tang, H. Q., Y. Q. Qin, and T. F. Qi. 2016. Phosphorus removal and iron recovery from high-phosphorus hematite using direct reduction followed by melting separation. Mineral Processing and Extractive Metallurgy Review 37 (4):236–45. doi:10.1080/08827508.2016.1181628.
  • Tang, H. Q., J. W. Wang, Z. C. Guo, and T. Ou. 2013. Intensifying gaseous reduction of high phosphorus iron ore fines by microwave pretreatment. Journal of Iron and Steel Research International 20 (5):17–23. doi:10.1016/S1006-706X(13)60091-6.
  • Wang, H. H., G. Q. Li, D. Zhao, J. M. Ma, and J. Yang. 2017. Dephosphorization of high phosphorus oolitic hematite by acid leaching and the leaching kinetics. Hydrometallurgy 171:61–68. doi:10.1016/j.hydromet.2017.04.015.
  • World Steel Association. 2023. World Steel in Figures 2023 now available. https://worldsteel.org/media-centre/press-releases/2022/world-steel-in-figures-2022-now-available/.
  • Wu, J., Z. J. Wen, and M. J. Cen. 2011. Development of technologies for high phosphorus oolitic hematite utilization. Steel Research International 82 (5):494–500. doi:10.1002/srin.201100040.
  • Wu, S. C., T. C. Sun, J. Kou, and H. D. Xu. 2023. A new iron recovery and dephosphorization approach from high‑phosphorus oolitic iron ore via oxidation roasting-gas-based reduction and magnetic separation process. Powder Technology 413:118043. doi:10.1016/j.powtec.2022.118043.
  • Wu, S., T. C. Sun, J. Kou, X. H. Li, C. Y. Xu, and Z. K. Chen. 2022. Influence of sodium salts on reduction roasting of high-phosphorus oolitic iron ore. Mineral Processing and Extractive Metallurgy Review 43 (8):947–53. doi:10.1080/08827508.2021.1979540.
  • Xiao, J. H., and L. L. Zhou. 2019. Increasing iron and reducing phosphorus grades of magnetic-roasted high-phosphorus oolitic iron ore by low-intensity magnetic separation–reverse flotation. Processes 7 (6):388. doi:10.3390/pr7060388.
  • Xu, C. Y., T. C. Sun, J. Kou, Y. L. Li, X. L. Mo, and L. G. Tang. 2012. Mechanism of phosphorus removal in beneficiation of high phosphorous oolitic hematite by direct reduction roasting with dephosphorization agent. Transactions of Nonferrous Metals Society of China 22 (11):2806–12. doi:10.1016/S1003-6326(11)61536-7.
  • Yang, C. C., D. Q. Zhu, J. Pan, and L. M. Lu. 2017. Simultaneous recovery of iron and phosphorus from a high-phosphorus oolitic iron ore to prepare Fe-P alloy for high-phosphorus steel production. JOM 69 (9):1663–68. doi:10.1007/s11837-017-2385-8.
  • Yehia, A., S. A. El-Halim, H. Sharada, M. Fadel, and M. Ammar. 2021. Application of a fungal cellulase as a green depressant of hematite in the reverse anionic flotation of a high-phosphorus iron ore. Minerals Engineering 167:106903. doi:10.1016/j.mineng.2021.106903.
  • Yu, J. T., Z. C. Guo, and H. Q. Tang. 2013. Dephosphorization treatment of high phosphorus oolitic iron ore by hydrometallurgical process and leaching kinetics. Isij International 53 (12):2056–64. doi:10.2355/isijinternational.53.2056.
  • Yu, J. W., Y. X. Han, Y. J. Li, and P. Gao. 2020. Recent advances in magnetization roasting of refractory iron ores: A technological review in the past decade. Mineral Processing and Extractive Metallurgy Review 41 (5):349–59. doi:10.1080/08827508.2019.1634565.
  • Yu, W., Q. Y. Tang, J. A. Chen, and T. C. Sun. 2016. Thermodynamic analysis of the carbothermic reduction of a high-phosphorus oolitic iron ore by FactSage. International Journal of Minerals, Metallurgy, and Materials 23 (10):1126–32. doi:10.1007/s12613-016-1331-z.
  • Yu, Y. F., and C. Y. Qi. 2011. Magnetizing roasting mechanism and effective ore dressing process for oolitic hematite ore. Journal of Wuhan University of Technology 26 (2):176–81. doi:10.1007/s11595-011-0192-6.
  • Zhang, L., R. Machiela, P. Das, M. M. Zhang, and T. Eisele. 2019. Dephosphorization of unroasted oolitic ores through alkaline leaching at low temperature. Hydrometallurgy 184:95–102. doi:10.1016/j.hydromet.2018.12.023.
  • Zhang, G. Y., H. W. Ni, Y. Li, T. Liu, A. Wang, and H. Zhang. 2022. Fe-based amorphous alloys with superior soft-magnetic properties prepared via smelting reduction of high-phosphorus oolitic iron ore. Intermetallics 141:107441. doi:10.1016/j.intermet.2021.107441.
  • Zhou, W. T., Y. S. Sun, Y. X. Han, P. Gao, and Y. J. Li. 2021. An innovative technology for utilization of oolitic hematite via microwave fluidization roasting: Phase, structure and reaction kinetics analyses. Mineral Processing and Extractive Metallurgy Review 43 (6):757–70. doi:10.1080/08827508.2021.1938567.
  • Zhu, D. Q., J. W. Xu, Z. Q. Guo, J. Pan, S. W. Li, L. T. Pan, and C. C. Yang. 2020. Synergetic utilization of copper slag and ferruginous manganese ore via co-reduction followed by magnetic separation process. Journal of Cleaner Production 250:119462. doi:10.1016/j.jclepro.2019.119462.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.