171
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Process Mineralogy Assisted Iso-Floatability of Copper-Zinc-Lead Minerals from Iron Tailings at Marcona Iron Ore Mine

, , , &

References

  • Abramov, A. A., and K. S. E. Forssberg. 2005. Chemistry and optimal conditions for copper minerals flotation: Theory and practice. Mineral Processing and Extractive Metallurgy Review 26 (2):77–143. doi:10.1080/08827500590883197.
  • Ahmadi, M., M. R. Hosseini, A. Ahmadi, and A. Foroutan. 2020. Continuous bio-hydrometallurgical extraction of zinc from a bulk lead-zinc flotation concentrate on a pilot scale. Minerals Engineering 156:106529. doi:10.1016/j.mineng.2020.106529.
  • Alfonso, P., M. Ruiz, R. N. Zambrana, M. Sendrós, M. Garcia-Valles, H. Anticoi, N. Sidki-Rius, and A. Salas. 2022. Process mineralogy of the tailings from Llallagua: Towards a sustainable activity. Minerals 12 (2):214. doi:10.3390/min12020214.
  • Antoniassi, J. L., D. Uliana, R. Contessotto, H. Kahn, and C. Ulsen. 2020. Process mineralogy of rare earths from deeply weathered alkali-carbonatite deposits in Brazil. Journal of Materials Research and Technology 9 (4):8842–53. doi:10.1016/j.jmrt.2020.05.128.
  • Bahrami, A., M. Mirmohammadi, Y. Ghorbani, F. Kazemi, M. Abdollahi, and A. Danesh. 2019. Process mineralogy as a key factor affecting the flotation kinetics of copper sulfide minerals. International Journal of Minerals, Metallurgy, and Materials 26 (4):430–39. doi:10.1007/s12613-019-1733-9.
  • Bao, X., Y. Bai, J. Yan, Y. Guo, and H. Guo. 2022. Experimental study on a new process for comprehensive recovery of copper, iron, gold and silver from a high sulfur iron separation tailings in Peru. China Mining Magazine 31:153–59.
  • Bidari, E., M. Aazami, and V. Aghazadeh. 2020. Process mineralogical study of the arsenical zone from a carlin - type gold deposit. Mining, Metallurgy & Exploration 37 (4):1307–15. doi:10.1007/s42461-020-00221-w.
  • Can, N. M., I. B. Celik, O. Bicak, and O. Altun. 2013. Mass balance and quantitative mineralogy studies for circuit modification. Mineral Processing and Extractive Metallurgy Review 34 (5):348–65. doi:10.1080/08827508.2012.656779.
  • Cao, S., W. Yin, B. Yang, Z. Zhu, H. Sun, Q. Sheng, and K. Chen. 2022. Insights into the influence of temperature on the adsorption behavior of sodium oleate and its response to flotation of quartz. International Journal of Mining Science and Technology 32 (2):399–409. doi:10.1016/j.ijmst.2021.12.006.
  • Cao, Y., X. Gui, Z. Ma, X. Yu, X. Chen, and X. Zhang. 2009. Process mineralogy of copper-nickel sulphide flotation by a cyclonic-static micro-bubble flotation column. Mining Science and Technology 19 (6):784–87. doi:10.1016/S1674-5264(09)60143-5.
  • Celik, I. B., N. M. Can, and J. Sherazadishvili. 2011. Influence of process mineralogy on improving metallurgical performance of a flotation plant. Mineral Processing and Extractive Metallurgy Review 32 (1):30–46. doi:10.1080/08827508.2010.509678.
  • Chen, J., and C. Sun. 2010. Research on the differential flotation of iso-floatable lead-zinc sulfide ore. Publications of the Australasian Institute of Mining and Metallurgy 7:1763–71.
  • Dong, W., J. Liu, J. Hao, and Y. Zeng. 2021. Adsorption of DTC-CTS on sphalerite (110) and Cu-activated sphalerite (110) surfaces: A DFT study. Applied Surface Science 551:149466. doi:10.1016/j.apsusc.2021.149466.
  • Dou, Y., C. Wang, Y. Zhang, C. Li, and B. Zhao. 2019. Study on chemical phase analysis and mineralogy of lead and zinc for some smelting slags. Jinchuan Science and Technology 1:50–52.
  • Ecrola, P. I., and V. Paloaari. 1995. Developments in selective flotation of complex copper-lead-zinc. Mineral Processing and Extractive Metallurgy Review 15 (1–4):47. doi:10.1080/08827509508936950.
  • Farrokhpay, S., and D. Fornasiero. 2017. Flotation of coarse composite particles: Effect of mineral liberation and phase distribution. Advanced Powder Technology 28 (8):1849–54. doi:10.1016/j.apt.2017.03.012.
  • Gelb, B. A. 1988. Effects on the metals industries of the decrease in oil prices: A preliminary analytical survey. Mineral Processing and Extractive Metallurgy Review 3 (1–4):183–93. doi:10.1080/08827508808952621.
  • Ghorbani, Y., R. Fitzpatrick, M. Kinchington, G. Rollinson, and P. Hegarty. 2017. A process mineralogy approach to gravity concentration of tantalum bearing minerals. Minerals 7 (10):194. doi:10.3390/min7100194.
  • Guo, Y., J. Yang, Y. Bai, L. Wang, and G. Peng. 2022. Experimental study on recovery of copper, sulfur and iron from iron tailing in peru under seawater condition. Nonferrous Metals (Mineral Processing Section) 4:74–79.
  • Hu, W., K. Tian, Z. Zhang, J. Guo, X. Liu, H. Yu, and H. Wang. 2021. Flotation and tailing discarding of copper cobalt sulfide ores based on the process mineralogy characteristics. Minerals 11 (10):1078. doi:10.3390/min11101078.
  • Jamali, S., S. Javanshir, H. Arabyarmohammadi, and P. Tahmasebizadeh. 2022. Process optimization and flowsheet development for zinc and copper recycling from reverberatory furnace flue dust. Mineral Processing and Extractive Metallurgy Review 43 (3):360–72. doi:10.1080/08827508.2020.1861614.
  • Kelvin, M., E. Whiteman, J. Petrus, M. Leybourne, and V. Nkuna. 2022. Application of LA-ICP-MS to process mineralogy: Gallium and germanium recovery at Kipushi copper-zinc deposit. Minerals Engineering 176:107322. doi:10.1016/j.mineng.2021.107322.
  • Krolop, P., K. Niiranen, S. Gilbricht, and T. Seifert. 2022. Process mineralogical assessment of the grinding products of the per geijer iron oxide-apatite deposits. Mineral Processing and Extractive Metallurgy Review 43 (8):1014–20. doi:10.1080/08827508.2021.2023519.
  • Kursun, H., and U. Ulusoy. 2012. Zinc recovery from lead–zinc–copper complex ores by using column flotation. Mineral Processing and Extractive Metallurgy Review 33 (5):327–38. doi:10.1080/08827508.2011.601479.
  • Le, H. L., J. Jeong, J. C. Lee, B. D. Pandey, J. M. Yoo, and T. H. Huyunh. 2011. Hydrometallurgical process for copper recovery from waste printed circuit boards (PCBs). Mineral Processing & Extractive Metallurgy Review 32 (2):90–104. doi:10.1080/08827508.2010.530720.
  • Leonov, S. B., O. N. Belkova, and B. F. Kukharev. 1996. Oxazolidines as efficient reagents for flotation of non-ferrous and tungsten metal ores. Mineral Processing and Extractive Metallurgy Review 16 (3):175–84. doi:10.1080/08827509708914134.
  • Li, W., and Y. Li. 2019. Improved understanding of chalcopyrite flotation in seawater using sodium hexametaphosphate. Minerals Engineering 134:269–74. doi:10.1016/j.mineng.2019.02.019.
  • Li, Y., W. Duan, W. Li, X. Yang, and W. Chen. 2022. Oxidative flotation separation of chalcopyrite and pyrite using K2FeO4 in seawater. Mineral Processing & Extractive Metallurgy Review 1–13. doi:10.1080/08827508.2022.2155958.
  • Li, Y., W. Li, Z. Wei, Q. Xiao, C. Lartey, Y. Li, and S. Song. 2018. The influence of common chlorides on the adsorption of SBX on chalcopyrite surface during flotation process. Mineral Processing & Extractive Metallurgy Review 40 (2):129–40. doi:10.1080/08827508.2018.1497625.
  • Lotter, N. O. 2011. Modern process mineralogy: An integrated multi-disciplined approach to flowsheeting. Minerals Engineering 24 (12):1229–37. doi:10.1016/j.mineng.2011.03.004.
  • Lotter, N. O., and D. Fragomeni. 2010. High-confidence flotation testing at xstrata process support. Minerals and Metallurgical Processing 27 (1):47–54. doi:10.1007/BF03402316.
  • Luo, Q., Q. Shi, D. Liu, B. Li, and S. Jin. 2022. Effect of deep oxidation of chalcopyrite on surface properties and flotation performance. International Journal of Mining Science and Technology 32 (4):907–14. doi:10.1016/j.ijmst.2022.06.007.
  • Mhonde, N. P., L. S. Johansson, K. Corin, and N. Schreithofer. 2021. The effect of tetrathionate ions on the surface chemistry and flotation response of selected sulphide minerals. Mineral Processing and Extractive Metallurgy Review 43 (8):1–14. doi:10.1080/08827508.2021.1998044.
  • Nayak, A., M. S. Jena, and N. R. Mandre. 2022. Beneficiation of lead-zinc ores - A review. Mineral Processing and Extractive Metallurgy Review 43 (5):564–83. doi:10.1080/08827508.2021.1903459.
  • Nikoloski, A. N., and M. J. Nicol. 2007. Effect of cobalt ions on the performance of lead anodes used for the electrowinning of copper-A literature review. Mineral Processing and Extractive Metallurgy Review 29 (2):143–72. doi:10.1080/08827500701421870.
  • Olubambi, P. A., S. Ndlovu, J. H. Potgieter, and J. O. Borode. 2006. Influence of applied mineralogy in developing and optimal hydrometallurgical processing route for complex sulphide ores. Mineral Processing and Extractive Metallurgy Review 27 (2):143–58. doi:10.1080/08827500600563350.
  • Pokrajcic, Z. 2010. A methodology for the design of energy efficient comminution circuits. The University of Queensland.
  • Qiu, X., H. Yang, G. Chen, L. Tong, Z. Jin, and Q. Zhang. 2022. Interface behavior of chalcopyrite during flotation from cyanide tailing. International Journal of Minerals, Metallurgy and Materials 29 (3):439–45. doi:10.1007/s12613-020-2170-5.
  • Rao, S. R., J. E. Nesset, and J. A. Finch. 2011. Activation of sphalerite by Cu ions produced by cyanide action on chalcopyrite. Minerals Engineering 24 (9):1025–27. doi:10.1016/j.mineng.2011.04.018.
  • Tang, X., and Y. Chen. 2022. A review of flotation and selective separation of pyrrhotite: A perspective from crystal structures. International Journal of Mining Science and Technology 32 (4):847–63. doi:10.1016/j.ijmst.2022.06.001.
  • Tijsseling, L. T., Q. Dehaine, G. K. Rollinson, and H. J. Glass. 2020. Mineralogical prediction of flotation performance for a sediment-hosted copper - cobalt sulphide ore. Minerals 10 (5):474. doi:10.3390/min10050474.
  • Tungpalan, K., E. Wightman, and E. Manlapig. 2015. Relating mineralogical and textural characteristics to flotation behaviour. Minerals Engineering 82:136–40. doi:10.1016/j.mineng.2015.02.005.
  • Wan, L., and Y. Gao. 2018. Experiment of zn-mo flotation from an iron ore tailing. Metal Mine 11:181–84.
  • Wang, C., and T. Wang. 2017. The brief discussion on phases of chemical analysis in ni, cu and fe. Jinchuan Science and Technology 1:35–37.
  • Wang, W., and D. Fornasiero. 2010. Flotation of composite synthetic particles. In XXV International Mineral Processing Congress 2010, IMPC 2010, 2503–11. Brisbane, QLD.
  • Wightman, E. M., and C. L. Evans. 2014. Representing and interpreting the liberation spectrum in a processing context. Minerals Engineering 61:121–25. doi:10.1016/j.mineng.2013.12.012.
  • Xing, B., W. Fan, Y. Lyu, H. Sun, and J. Che. 2021. Influence of particle mineralogy and size on the morphological characteristics of mineral fillers. Journal of Materials Research and Technology 15:3995–4009. doi:10.1016/j.jmrt.2021.10.026.
  • Yarluğkal Altınışık, C., Y. Cebeci, H. Sis, and L. Kalender. 2022. A process mineralogy approach to the flotation of complex lead - zinc ores from Görgü (Malatya) region. Mining, Metallurgy & Exploration 39 (3):1219–32. doi:10.1007/s42461-022-00581-5.
  • Yingling, J. C. 1990. Circuit analysis: Optimizing mineral processing flowsheet layouts and steady state control specifications. International Journal of Mineral Processing 29 (3–4):149–74. doi:10.1016/0301-7516(90)90051-Y.
  • Yu, Y., L. Ma, M. Cao, and Q. Liu. 2017. Slime coatings in froth flotation: A review. Minerals Engineering 114:26–36. doi:10.1016/j.mineng.2017.09.002.
  • Zanin, M., H. Lambert, and D. Plessis. 2019. Lime use and functionality in sulphide mineral flotation: A review. Minerals Engineering 143:105922. doi:10.1016/j.mineng.2019.105922.
  • Zhang, J., and N. Subasinghe. 2016. Development of a flotation model incorporating liberation characteristics. Minerals Engineering 98:1–8. doi:10.1016/j.mineng.2016.05.021.
  • Zhang, L., J. Gao, S. A. Khoso, L. Wang, Y. Liu, P. Ge, M. Tian, and W. Sun. 2021. A reagent scheme for galena/sphalerite flotation separation: Insights from first-principles calculations. Minerals Engineering 167:106885. doi:10.1016/j.mineng.2021.106885.
  • Zhang, X., Y. Han, and S. K. Kawatra. 2021. Effects of grinding media on grinding products and flotation performance of sulfide ores. Mineral Processing and Extractive Metallurgy Review 42 (3):172–83. doi:10.1080/08827508.2019.1692831.
  • Zhao, Y., L. Wang, and L. Wang. 2019. Experimental study on separation of copper and sulphur from iron ore tailing with low basicity. Copper Engineering 2:43–49.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.