974
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of Pyrite Textures Prevalence on Flotation Performance in Mount Isa Copper Orebodies

ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abraitis, P. K., R. A. D. Pattrick, and D. J. Vaughan. 2004. Variations in the compositional, textural and electrical properties of natural pyrite: A review. International Journal of Mineral Processing 74 (1–4):41–59. doi:10.1016/j.minpro.2003.09.002
  • Akop, C. 2014. Developing a bulk circuit suitable for chalcopyrite-pyrite ores with elevated pyrite content in copper-gold ore treatment. The University of Queensland.
  • Arrouvel, C., and J.-G. Eon. 2018. Understanding the surfaces and crystal growth of pyrite FeS 2. Materials Research 22 (1). doi:10.1590/1980-5373-mr-2017-1140
  • Babedi, L., M. Tadie, B. P. von der Heyden, and D. A. Chareev. 2023. A rest potential study of impurity (as, Au, Ni and Co) bearing synthetic pyrite in alkaline flotation conditions. Minerals Engineering 202:108277. doi:10.1016/j.mineng.2023.108277
  • Bakalarz, A. 2021. An analysis of copper concentrate from a kupferschiefer-type Ore from Legnica-Glogow copper basin (SW Poland). Mineral Processing and Extractive Metallurgy Review 42 (8):552–64. doi:10.1080/08827508.2021.1971663
  • Barker, G. J., A. R. Gerson, and J. F. Menuge. 2014. The impact of iron sulfide on lead recovery at the giant Navan Zn–pb orebody, Ireland. International Journal of Mineral Processing 128:16–24. doi:10.1016/j.minpro.2014.02.001
  • Basori, M. B. I., S. Gilbert, R. R. Large, and K. Zaw. 2018. Textures and trace element composition of pyrite from the bukit botol volcanic-hosted massive sulphide deposit, Peninsular Malaysia. Journal of Asian Earth Sciences 158:173–85. doi:10.1016/j.jseaes.2018.02.012
  • Belousov, I., L. Danyushevsky, K. Goemann, S. Gilbert, P. Olin, J. Thompson, E. Lounejeva, and D. Garbe-Schönberg. 2023. STDGL3, a Reference Material for Analysis of Sulfide Minerals by laser ablation ICP-MS: An Assessment of Matrix Effects and the impact of laser wavelengths and pulse widths. Geostandards and Geoanalytical Research 47 (3):493–508. doi:10.1111/ggr.12512
  • Bradshaw, D. 2014. The role of process mineralogy in improving the process performance of complex sulphide ores. pp. 1–23, Santiago, Chile.
  • Bulatovic, S. M. 2007 Handbook of flotation reagents - chemistry, theory and practice, volume 1 - flotation of sulfide ores. Ontario, Canada: Elsevier.
  • Bulut, G., F. Arslan, and S. Atak. 2004. Flotation behaviors of pyrites with different chemical compositions. Mining, Metallurgy & Exploration 21 (2):86–92. doi:10.1007/BF03403308
  • Can, İ. B., S. Özçelik, and Z. Ekmekçi. 2021. Effects of pyrite texture on flotation performance of copper sulfide ores. Minerals 11 (11):1218. doi:10.3390/min11111218
  • Chen, Y., Y. Fan, T.-F. Zhou, B. Fu, Y.-N. Liu, B. Wang, and Q. Liu. 2020. Pyrite textures and compositions in Jiangshan gold deposit, Bengbu Uplift, southeastern North China Craton: Implications for ore genesis. Ore Geology Reviews 122:103512. doi:10.1016/j.oregeorev.2020.103512
  • Commonwealth of Australia. 2016. Preventing acid and metalliferous drainage. Commonwealth of Australia.
  • Craig, J. R., and D. J. Vaughan 1990. Sulphide deposits—their origin and processing. pp. 1–16, Springer.
  • Craig, J. R., F. M. Vokes, and T. N. Solberg. 1998. Pyrite: Physical and chemical textures. Mineralium Deposita 34 (1):82–101. doi:10.1007/s001260050187
  • Cropp, A. F., W. R. Goodall, and D. J. Bradshaw 2013. The influence of textural variation and gangue mineralogy on recovery of copper by flotation from porphyry ore–a review. pp. 279–91, AusIMM, Brisbane, Australia.
  • Cullinan, V. J., S. R. Grano, C. J. Greet, N. W. Johnson, and J. Ralston. 1999. Investigating fine galena recovery problems in the lead circuit of Mount Isa Mines lead/Zinc concentrator part 1: Grinding media effects. Minerals Engineering 12 (2):147–63. doi:10.1016/S0892-6875(98)00128-9
  • Dold, B. 2008. Sustainability in metal mining: From exploration, over processing to mine waste management. Reviews in Environmental Science and Bio/technology 7 (4):275–85. doi:10.1007/s11157-008-9142-y
  • Dzingai, T., B. McFadzean, M. Tadie, and M. Becker. 2021. Decoupling the effects of alteration on the mineralogy and flotation performance of Great Dyke PGE ores. Journal of the South African Institute of Mining and Metallurgy 121 (121):475–86. doi:10.17159/2411-9717/1487/2021
  • Ekmekçi, Z., M. Becker, E. B. Tekes, and D. Bradshaw. 2010. The relationship between the electrochemical, mineralogical and flotation characteristics of pyrrhotite samples from different Ni ores. Journal of Electroanalytical Chemistry 647 (2):133–43. doi:10.1016/j.jelechem.2010.06.011
  • Ekmekçi, Z., and H. Demirel. 1997. Effects of galvanic interaction on collectorless flotation behaviour of chalcopyrite and pyrite. International Journal of Mineral Processing 52 (1):31–48. doi:10.1016/S0301-7516(97)00050-1
  • Engelbrecht, J., and E. Woodburn 1975. The effects of froth height, aeration rate, and gas precipitation on flotation.
  • Evans, C. 2010. Development of a methodology to estimate flotation separability from ore microtexture. The University of Queensland.
  • Finch, J. A., S. R. Rao, and J. E. Nesset 2007. Iron control in mineral processing. Canadian Institute of Mining, Metallurgy and Petroleum. Montreal, Canada.
  • Forbes, E., S. Britoe Abreu, K. Tungpalan, R. Sashigunan, K. Runge, and R. O’Donnell. 2022. Effect of residual reagents on chalcopyrite losses at Mount Isa Mines copper operation: Part I – evaluation of mineral recoveries. Minerals Engineering 185:107706. doi:10.1016/j.mineng.2022.107706
  • Forbes, E., S. B. E Abreu, K. Tungpalan, R. Sashigunan, K. Runge, and R. O’Donnell. 2022. Effect of residual reagents on chalcopyrite losses at Mount Isa Mines copper operation: Part II - evaluation of flotation mechanisms. Minerals Engineering 185:107687. doi:10.1016/j.mineng.2022.107687
  • Forbes, E., M. Jefferson, U. Yenial-Arslan, C. Curtis-Morar, and R. O’Donnell. 2024. Solving the mystery of natural pyrite flotation – a mineralogy-based approach. Minerals Engineering 207:108544. doi:10.1016/j.mineng.2023.108544
  • Forbes, E., L. Smith, and M. Vepsalainen. 2018. Effect of pyrite type on the electrochemistry of chalcopyrite/pyrite interactions. Physicochemical Problems of Mineral Processing 54 (4):1116–29.
  • Grano, S. R. 1990. The influence of pyrite and pyrrhotite on the selective flotation of Mount Isa mines copper and lead/zinc ores/by Stephen Grano. Thesis (Master of Applied Science in Chemical Technology), South Australian Institute of Technology.
  • Grano, S., J. Ralston, and R. S. C. Smart. 1990. Influence of electrochemical environment on the flotation behaviour of Mt. Isa copper and lead-zinc ore. International Journal of Mineral Processing 30 (1):69–97. doi:10.1016/0301-7516(90)90067-9
  • Grano, S. R., L. F. Griffin, N. W. Johnson, S. T. Smart, and R. C. Ralston 1991. Treatment of naturally hydrophobic gangue minerals at the Cooper Concentrator of Mt Isa mines limited. pp. 10–14, AusIMM.
  • Gregory, D. D., R. R. Large, J. A. Halpin, E. L. Baturina, T. W. Lyons, S. Wu, L. Danyushevsky, P. J. Sack, A. Chappaz, V. V. Maslennikov, et al. 2015. Trace element content of sedimentary pyrite in black Shales*. Economic Geology 110 (6):1389–410. doi:10.2113/econgeo.110.6.1389
  • Grondijs, H. F., and C. Schouten. 1937. A study of the mount isa ores [Queensland, Australia]. Economic Geology 32 (4):407–50. doi:10.2113/gsecongeo.32.4.407
  • Huston, D. L., S. H. Sie, G. F. Suter, D. R. Cooke, and R. A. Both. 1995. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and part II, selenium levels in pyrite; comparison with delta 34 S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Economic Geology 90 (5):1167–96.
  • Jameson, G. J. 2012. The effect of surface liberation and particle size on flotation rate constants. Minerals Engineering 36-38:132–37. doi:10.1016/j.mineng.2012.03.011
  • Jefferson, M., G. Forbes, E. Brown, C. Curtis-Morar, A. Parbhakar-Fox, and E. Forbes 2023. An object-based image recognition approach methodology for pyrite texture quantification in flotation performance studies, procemin 2023, Chile.
  • Jefferson, M., U. Yenial-Arslan, C. Evans, C. Curtis-Morar, R. O’Donnell, A. Parbhakar-Fox, and E. Forbes. 2023. Effect of pyrite textures and composition on flotation performance: A review. Minerals Engineering 201:108234. doi:10.1016/j.mineng.2023.108234
  • John, J. 2017. Differential oxidation of iron sulfides to modify the Au: S ratio in the flotation concentrate product at Lihir. The University of Queensland.
  • Johnson, N. 2005. A review of the entrainment mechanism and its modelling in industrial flotation processes.
  • Kuter, N. 2013. Advances in landscape architecture. IntechOpen.
  • Lehner, S., K. Savage, M. Ciobanu, and D. E. Cliffel. 2007. The effect of As, Co, and Ni impurities on pyrite oxidation kinetics: An electrochemical study of synthetic pyrite. Geochimica et Cosmochimica Acta 71 (10):2491–509. doi:10.1016/j.gca.2007.03.005
  • Lehner, S. W., K. S. Savage, and J. C. Ayers. 2006. Vapor growth and characterization of pyrite (FeS2) doped with Co, Ni, and As: Variations in semiconducting properties. Journal of Crystal Growth 286 (2):306–17. doi:10.1016/j.jcrysgro.2005.09.062
  • Li, X.-H., H.-R. Fan, K.-F. Yang, P. Hollings, X. Liu, F.-F. Hu, and Y.-C. Cai. 2018. Pyrite textures and compositions from the Zhuangzi Au deposit, southeastern North China Craton: Implication for ore-forming processes. Contributions to Mineralogy and Petrology 173 (9):1–20. doi:10.1007/s00410-018-1501-2
  • Li, Y.-Q., J.-H. Chen, Y. Chen, and J. Guo. 2011. Density functional theory study of influence of impurity on electronic properties and reactivity of pyrite. Transactions of Nonferrous Metals Society of China 21 (8):1887–95. doi:10.1016/S1003-6326(11)60946-1
  • Lottermoser, B. 2010. Mine wastes (third edition): Characterization, treatment and environmental impacts. Springer Berlin Heidelberg, Berlin, Heidelberg.
  • Ma, Y., S.-Y. Jiang, and H. E. Frimmel. 2022. Deciphering multiple ore-forming processes of the shuangqishan orogenic gold deposit, Southeast China by in situ analysis of pyrite. Ore Geology Reviews 142:104730. doi:10.1016/j.oregeorev.2022.104730
  • Maslennikov, V. V., G. Cherkashov, D. A. Artemyev, A. Firstova, R. R. Large, A. Tseluyko, and V. Kotlyarov. 2020. Pyrite varieties at Pobeda Hydrothermal Fields, Mid-Atlantic ridge 17°07′–17°08′ N: LA-ICP-MS data deciphering. Minerals 10 (7):622. doi:10.3390/min10070622
  • Maslennikov, V. V., and R. R. Large. 2021. Editorial for special issue “pyrite varieties and LA-ICP-MS geochemistry in Ore genesis and exploration”. Minerals 11 (2):131. doi:10.3390/min11020131
  • Medina, J. F. 2012. Liberation-limited grade/recovery curves for auriferous pyrite ores as determined by high resolution x-ray microtomography. University of Utah.
  • Mishra, G., K. S. Viljoen, and H. Mouri. 2013. Influence of mineralogy and ore texture on pentlandite flotation at the Nkomati nickel mine, South Africa. Minerals Engineering 54:63–78. doi:10.1016/j.mineng.2013.04.009
  • Moslemi, H., and M. Gharabaghi. 2017. A review on electrochemical behavior of pyrite in the froth flotation process. Journal of Industrial and Engineering Chemistry 47:1–18. doi:10.1016/j.jiec.2016.12.012
  • Moslemi, H., P. Shamsi, and M. Alimohammady. 2012. Electrochemical properties of pyrite, pyrrhotite, and steel: Effects on grinding and flotation processes. Journal of the Southern African Institute of Mining and Metallurgy 112 (10):883–90.
  • Mudd, G. M. 2021. Assessing the availability of Global Metals and Minerals for the Sustainable Century: From aluminium to zirconium. Sustainability 13 (19):10855. doi:10.3390/su131910855
  • Mudd, G. M. 2023. A comprehensive dataset for Australian mine production 1799 to 2021. Scientific Data 10 (1):391. doi:10.1038/s41597-023-02275-z
  • Mu, Y., Y. Peng, and R. A. Lauten. 2015. Electrochemistry aspects of pyrite in the presence of potassium amyl xanthate and a lignosulfonate-based biopolymer depressant. Electrochimica Acta 174:133–42. doi:10.1016/j.electacta.2015.05.150
  • Mu, Y., Y. Peng, and R. A. Lauten. 2016. The depression of pyrite in selective flotation by different reagent systems – a literature review. Minerals Engineering 96-97:143–56. doi:10.1016/j.mineng.2016.06.018
  • Mudd, G. M., and S. M. Jowitt. 2018. Growing global copper resources, reserves and production: Discovery is not the only control on supply. Economic Geology 113 (6):1235–67. doi:10.5382/econgeo.2018.4590
  • Napier-Munn, T. J.2014. Statistical methods for mineral engineers - how to design experiments and analyse data, 627. Queensland, Australia: Julius Kruttschnitt Mineral Research Centre.
  • Norris, A., and L. Danyushevsky 2018. Towards estimating the complete uncertainty budget of quantified results measured by LA-ICP-MS. Boston, MA, USA.
  • O’Donnell, A. R., and M. L. Muller 2018. Selectively targeting hydrophobic gangue minerals at the Mount Isa copper concentrator. pp. 413–23, AUSIMM, Brisbane, Australia.
  • Osborne, O. D. 2013. South Australia: Flinders University.
  • Peng, Y., S. Grano, D. Fornasiero, and J. Ralston. 2003. Control of grinding conditions in the flotation of chalcopyrite and its separation from pyrite. International Journal of Mineral Processing 69 (1–4):87–100. doi:10.1016/S0301-7516(02)00119-9
  • Peng, Y., B. Wang, and A. Gerson. 2012. The effect of electrochemical potential on the activation of pyrite by copper and lead ions during grinding. International Journal of Mineral Processing 102:141–49. doi:10.1016/j.minpro.2011.11.010
  • Pugh, C. E., L. R. Hossner, and J. B. Dixon. 1984. Oxidation rate of iron sulfides as affected by surface area, morphology, oxygen concentration, and autotrophic bacteria. Soil Science 137 (5):309–14. doi:10.1097/00010694-198405000-00003
  • Rao, S. R., and J. A. Finch. 1988. Galvanic interaction studies on sulphide minerals. Canadian Metallurgical Quarterly 27 (4):253–59. doi:10.1179/cmq.1988.27.4.253
  • Simmons, G. L. 1997. Flotation of Auriferous Pyrite Using Santa Fe Pacific Gold’s N 2TEC flotation process. Preprints-Society of Mining Engineers of AIME.
  • Steadman, J. A., R. R. Large, P. H. Olin, L. V. Danyushevsky, S. Meffre, D. Huston, A. Fabris, V. Lisitsin, and T. Wells. 2021. Pyrite trace element behavior in magmatic-hydrothermal environments: An LA-ICPMS imaging study. Ore Geology Reviews 128:103878. doi:10.1016/j.oregeorev.2020.103878
  • Sutherland, D. N. 1989. Batch flotation behaviour of composite particles. Minerals Engineering 2 (3):351–67. doi:10.1016/0892-6875(89)90004-6
  • Tayebi-Khorami, M. 2018. Arsenic in complex orebodies. AusIMM, Brisbane, QLD.
  • Tesh, D. 2020. Liberation of different pyrite types in refractory gold ores. The University of Queensland.
  • Trahar, W. J., G. D. Senior, and L. K. Shannon. 1994. Interactions between sulphide minerals—the collectorless flotation of pyrite. International Journal of Mineral Processing 40 (3–4):287–321. doi:10.1016/0301-7516(94)90049-3
  • Tungpalan, K., E. Wightman, and C. Evans 2019. Key ore textures influencing separation behaviour of ores. pp. 1524–27, Society for Geology Applied to Mineral Deposits (SGA).
  • Vaughan, D. J., and J. R. Craig 1978. Mineral chemistry of metal sulfides. Cambridge University Press, Cambridge Eng New York.
  • Vos, C. F. 2017. The effect of mineral grain textures at particle surfaces on flotation response. The University of Queensland.
  • Wang, L., Y. Peng, K. Runge, and D. Bradshaw. 2015. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Minerals Engineering 70:77–91. doi:10.1016/j.mineng.2014.09.003
  • Wang, X. H., and K. S. E. Forssberg. 1996. The solution electrochemistry of sulfide-xanthate-cyanide systems in sulfide mineral flotation. Minerals Engineering 9 (5):527–46. doi:10.1016/0892-6875(96)00041-6
  • Xian, Y.-J., S.-M. Wen, X.-M. Chen, J.-S. Deng, and J. Liu. 2012. Effect of lattice defects on the electronic structures and floatability of pyrites. International Journal of Minerals, Metallurgy, and Materials 19 (12):1069–76. doi:10.1007/s12613-012-0672-5
  • Yang, L., X. Zhou, H. Yan, H. Zhang, X. Liu, and T. Qiu. 2022. Effects of galvanic interaction between chalcopyrite and monoclinic pyrrhotite on their flotation separation. Minerals 12 (1):39. doi:10.3390/min12010039
  • Yenial-Arslan, U., M. Jefferson, C. Curtis-Morar, and E. Forbes. 2023. Pathway to prediction of pyrite floatability from Copper Ore Geological Domain Data. Minerals 13 (6):801. doi:10.3390/min13060801
  • Young, M. F., K. E. Barnes, G. S. Anderson, J. D. Pease, and X. Zinc 2006. Jameson Cell: The ‘‘comeback’’ in base metals applications using improved design and flow sheets. pp. 311–22, Ottawa, Ontario, Canada.