118
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A Review of Pretreatment Methods for Spent Lithium-Ion Batteries to Produce Black Mass – Comparison of Processes of Asia Pacific Recyclers

, , &

References

  • Al-Shammari, H., and S. Farhad. 2021. Heavy liquids for rapid separation of cathode and anode active materials from recycled lithium-ion batteries. Resources, Conservation and Recycling 174 (June):105749. doi:10.1016/j.resconrec.2021.105749.
  • Amalia, D., P. Singh, W. Zhang, and A. N. Nikoloski. 2021. Influence of alkaline pre-treatment on acid dissolution of cathode material of 18650 lithium battery. IOP Conference Series: Earth and Environmental Science 882 (1):012001. doi:10.1088/1755-1315/882/1/012001.
  • Amalia, D., P. Singh, W. Zhang, and A. N. Nikoloski. 2023a. Discharging of spent cylindrical lithium-ion batteries in sodium hydroxide and sodium chloride for a safe recycling process. JOM 75 (11):4946–57. doi:10.1007/s11837-023-06093-x.
  • Amalia, D., P. Singh, W. Zhang, and A. N. Nikoloski. 2023b. The effect of a molasses reductant on acetic acid leaching of black mass from mechanically treated spent lithium-ion cylindrical batteries. Sustainability 15 (17):1–21. doi:10.3390/su151713171.
  • Amalia, D., P. Singh, W. Zhang, and A. N. Nikoloski. 2023c. Liberation of valuable materials from spent cylindrical lithium-ion batteries via semi- autogenous attrition liberation of valuable materials from spent cylindrical lithium-ion batteries via. Mineral Processing and Extractive Metallurgy Review 1–15. doi:10.1080/08827508.2023.2259576.
  • Asadi Dalini, E., G. H. Karimi, S. Zandevakili, and M. Goodarzi. 2020. A review on environmental, economic and hydrometallurgical processes of recycling spent lithium-ion batteries. Mineral Processing and Extractive Metallurgy Review 42 (7):1–22. doi:10.1080/08827508.2020.1781628.
  • Awanis Hashim, N., Y. Liu, and K. Li. 2011. Stability of PVDF hollow fibre membranes in sodium hydroxide aqueous solution. Chemical Engineering Science 66 (8):1565–75. doi:10.1016/j.ces.2010.12.019.
  • Bae, H., and Y. Kim. 2021. Technologies of lithium recycling from waste lithium ion batteries: A review. Materials Advances 2 (10):3234–50. doi:10.1039/d1ma00216c.
  • Bai, Y., N. Muralidharan, J. Li, R. Essehli, and I. Belharouak. 2020. Sustainable direct recycling of lithium-ion batteries via solvent recovery of electrode materials. ChemSuschem 13 (21):5664–70. doi:10.1002/cssc.202001479.
  • Batx. 2023. Our process. https://batxenergies.com/our-process/.
  • Baum, Z. J., R. E. Bird, X. Yu, and J. Ma. 2022. Lithium-ion battery recycling─overview of techniques and trends. ACS Energy Letters 7 (2):712–19. doi:10.1021/acsenergylett.1c02602.
  • BBC News. 2023. Six fire engines at new Wolverhampton battery recycling factory. https://www.bbc.com/news/uk-england-birmingham-66118984.
  • Beletskii, E. V., V. V. Pakalnis, D. A. Lukyanov, D. V. Anishchenko, A. I. Volkov, and O. V. Levin. 2023. Recycling spent graphite anodes into a graphite/graphene oxide composite via plasma solution treatment for reuse in lithium-ion batteries. Journal of Environmental Chemical Engineering 11 (1):109234. doi:10.1016/j.jece.2022.109234.
  • Bi, H., H. Zhu, L. Zu, Y. Gao, S. Gao, and Z. Wu. 2019. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries. Waste Management & Research 37 (12):1217–28. doi:10.1177/0734242X19871610.
  • Boxall, N. J., S. King, K. Yu Cheng, Y. Gumulya, W. Bruckard, and A. H. Kaksonen. 2018. Urban mining of lithium-ion batteries in Australia: Current state and future trends. Minerals Engineering 128 (August):45–55. doi:10.1016/j.mineng.2018.08.030.
  • Brock, W. J. 1999. Hydrogen fluoride: How toxic is toxic ? In Halon Options Technical Working Conference, 559–66. USA: National Institute of Standardsand Technology. https://www.nist.gov/system/files/documents/el/fire_research/R9902753.pdf.
  • Costa, C. M., Y. Hyeok Lee, J. Hwan Kim, S. Young Lee, and S. Lanceros-Méndez. 2019. Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes. Energy Storage Materials 22 (May):346–75. doi:10.1016/j.ensm.2019.07.024.
  • Dańczak, A., R. Ruismäki, T. Rinne, L. Klemettinen, H. O’brien, P. Taskinen, A. Jokilaakso, and R. Serna‐Guerrero. 2021. Worth from waste: Utilizing a graphite‐rich fraction from spent lithium‐ion batteries as alternative reductant in nickel slag cleaning. Minerals 11 (7):784. doi:10.3390/min11070784.
  • Dang, H., Z. Chang, X. Wu, S. Ma, Y. Zhan, N. Li, W. Liu, W. Li, H. Zhou, and C. Sun. 2022. Na2SO4–NaCl binary eutectic salt roasting to enhance extraction of lithium from pyrometallurgical slag of spent lithium-ion batteries. Chinese Journal of Chemical Engineering 41:294–300. doi:10.1016/j.cjche.2021.09.008.
  • Diekmann, J., C. Hanisch, L. Froböse, G. Schälicke, T. Loellhoeffel, A.-S. Fölster, and A. Kwade. 2017. Ecological recycling of lithium-ion batteries from electric vehicles with focus on mechanical processes. Journal of the Electrochemical Society 164 (1):A6184–91. doi:10.1149/2.0271701jes.
  • Drzymala, J. 2007. Mineral processing : Foundations of theory and practice of minerallurgy. In Journal oF chemical information and modeling, ed. A. Luszczkiewicz, vol. 53. Oficyna Wydawnicza PWr. www.ig.pwr.wroc.pl/minproc.
  • EPA (U.S. Environment Protection Agency). 2023. Used lithium-ion batteries. https://www.epa.gov/recycle/used-lithium-ion-batteries.
  • Fang, Z., Q. Duan, Q. Peng, Z. Wei, H. Cao, J. Sun, and Q. Wang. 2022. Comparative study of chemical discharge strategy to pretreat spent lithium-ion batteries for safe, efficient, and environmentally friendly recycling. Journal of Cleaner Production 359 (96):132116. doi:10.1016/j.jclepro.2022.132116.
  • Fastmarkets. 2023. Anode recycling sector starts to develop ahead of expected demand boom. https://www.fastmarkets.com/insights/anode-recycling-sector-starts-to-develop-ahead-of-expected-demand-boom.
  • Feng, X., D. Ren, X. He, and M. Ouyang. 2020. Mitigating thermal runaway of lithium-ion batteries. Joule 4 (4):743–70. doi:10.1016/j.joule.2020.02.010.
  • Ferreira, D. A., L. Martins Zimmer Prados, D. Majuste, and M. Borges Mansur. 2009. Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent li-ion batteries. Journal of Power Sources 187 (1):238–46. doi:10.1016/j.jpowsour.2008.10.077.
  • Folayan, T. O., R. Zhan, K. Huang, and L. Pan. 2023. Improved separation between recycled anode and cathode materials from Li-ion batteries using coarse flake particle flotation. ACS Sustainable Chemistry and Engineering 11 (7):2917–26. doi:10.1021/acssuschemeng.2c06311.
  • Foreman, E., W. Zakri, M. H. Sanatimoghaddam, A. Modjtahedi, S. Pathak, A. G. Kashkooli, N. G. Garafolo, and S. Farhad. 2017. A review of inactive materials and components of flexible lithium-ion batteries. Advanced Sustainable Systems 1 (11):1–29. doi:10.1002/adsu.201700061.
  • Ganguly, S. 2023. EV startup BatX energies: Unlocking the potential of battery recycling. https://compass.letsventure.com/batx-energies-ev-startup-funding-unlocking-battery-recycling-potential/.
  • Ghassa, S., A. Farzanegan, M. Gharabaghi, and H. Abdollahi. 2020. The reductive leaching of waste lithium ion batteries in presence of iron ions: Process optimization and kinetics modelling. Journal of Cleaner Production 262 (July):121312. doi:10.1016/j.jclepro.2020.121312.
  • Grützke, M., X. Mönnighoff, F. Horsthemke, V. Kraft, M. Winter, and S. Nowak. 2015. Extraction of lithium-ion battery electrolytes with liquid and supercritical carbon dioxide and additional solvents. RSC Advances 5 (54):43209–17. doi:10.1039/c5ra04451k.
  • Guéguen, A., D. Streich, M. He, M. Mendez, F. F. Chesneau, P. Novák, and E. J. Berg. 2016. Decomposition of LiPF6 in high energy lithium-ion batteries studied with online electrochemical mass spectrometry. Journal of the Electrochemical Society 163 (6):A1095–1100. doi:10.1149/2.0981606jes.
  • Haruka, P., and Y. R. Smith. 2019. End-of-life lithium-ion battery component mechanical liberation and separation. Jom 71 (12):4447–56. doi:10.1007/s11837-019-03828-7.
  • He, K., Z. Y. Zhang, and F. S. Zhang. 2021. Synthesis of graphene and recovery of lithium from lithiated graphite of spent li-ion battery. Waste Management 124:283–92. doi:10.1016/j.wasman.2021.01.017.
  • Herrmann, M. 2014. Packaging - materials review. AIP Conference Proceedings 1597 (February):121–33. doi:10.1063/1.4878483.
  • Hill, R. M. 1986. Three types of low speed shredder design. In Proceedings of National Waste Processing Conference, 265–274. New York: American Society of Mechanical Engineers.
  • HiTech, S. 2022. Recycling. https://www.sungeelht.com/en/html/12.
  • Hu, Z., J. Liu, T. Gan, D. Lu, Y. Wang, and X. Zheng. 2022. High-intensity magnetic separation for recovery of LiFePO4 and graphite from spent lithium-ion batteries. Separation and Purification Technology 297 (May):121486. doi:10.1016/j.seppur.2022.121486.
  • Indonesia Puqing Recycling Technology. 2023. Bandung: Balai Besar Pengujian Mineral dan Batubara.
  • Jacoby, M. 2019. It’s time to recycle lithium-ion batteries. C&En Global Enterprise 97 (28):29–32. https://cen.acs.org/materials/energy-storage/time-serious-recycling-lithium/97/i28.
  • Jang, J., J. Oh, H. Jeong, W. Kang, and C. Jo. 2020. A review of functional separators for lithium metal battery applications. Materials 13 (20):1–37. doi:10.3390/ma13204625.
  • Japan Partnership for Circular Economy. 2021. Recycling of used lithium-ion batteries. https://j4ce.env.go.jp/en/casestudy/073.
  • Jegan Roy, J., M. Srinivasan, and B. Cao. 2021. Bioleaching as an eco-friendly approach for metal recovery from spent NMC-based lithium-ion batteries at a high pulp density. ACS Sustainable Chemistry and Engineering 9 (8):3060–69. doi:10.1021/acssuschemeng.0c06573.
  • Jobin, P., G. Mercier, J.-F. Blais, and V. Taillard. 2015. Understanding the effect of attrition scrubbing on the efficiency of gravity separation of six inorganic contaminants. Water, Air, & Soil Pollution 226 (5):162. doi:10.1007/s11270-015-2422-6.
  • Jordão, H., A. Jorge Sousa, and M. Teresa Carvalho. 2016. Optimization of wet shaking table process using response surface methodology applied to the separation of copper and aluminum from the fine fraction of shredder ELVs. Waste Management 48 (February):366–73. doi:10.1016/j.wasman.2015.10.006.
  • Jungheinrich Profishop. 2023. Lithium-ion battery storage: What you should pay attention to. https://www.jungheinrich-profishop.co.uk/en/profi-guide/lithium-ion-battery-storage/.
  • Larouche, F., F. Tedjar, K. Amouzegar, G. Houlachi, P. Bouchard, G. P. Demopoulos, and K. Zaghib. 2020. Progress and status of hydrometallurgical and direct recycling of li-ion batteries and beyond. Materials 13 (3):3. doi:10.3390/ma13030801.
  • Lee, C. K., and K.-I. Rhee. 2002. Preparation of LiCoO 2 from spent lithium-ion batteries. Journal of Power Sources 109 (January):17–21. doi:10.1016/S0378-7753(02)00037-X.
  • Lee, H., Y. T. Kim, and S. W. Lee. 2023. Optimization of the electrochemical discharge of spent li-ion batteries from electric vehicles for direct recycling. Energies 16 (6):1–12. doi:10.3390/en16062759.
  • Lee, Y. R., A. Ra Cho, S. Kim, R. Kim, S. Wang, Y. Han, H. Nam, and D. Lee. 2023. Utilizing waste carbon residue from spent lithium-ion batteries as an adsorbent for CO2 capture: A recycling perspective. Chemistry English Journal 470 (June):1–10. doi:10.1016/j.cej.2023.144232.
  • Li, J., G. Wang, and Z. Xu. 2016. Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries. Waste Management 52:221–27. doi:10.1016/j.wasman.2016.03.011.
  • Li, J., J. Zhang, W. Zhao, D. Lu, G. Ren, and Y. Tu. 2022. Application of roasting flotation technology to enrich valuable metals from spent LiFePO4Batteries. American Chemical Society Omega 7 (29):25590–99. doi:10.1021/acsomega.2c02764.
  • Li, J. T., Z. Y. Wu, Y. Q. Lu, Y. Zhou, Q. S. Huang, L. Huang, and S. G. Sun. 2017. Water soluble binder, an electrochemical performance booster for electrode materials with high energy density. Advanced Energy Materials 7 (24):1–30. doi:10.1002/aenm.201701185.
  • Li-cycle. 2022. A unique and dependable approach to solving the global battery recycling problem. https://li-cycle.com/technology/.
  • Li-cycle. 2023. A unique and dependable approach to solving the global battery recycling problem. https://li-cycle.com/technology/.
  • Liivand, K., J. Sainio, B. P. Wilson, I. Kruusenberg, and M. Lundström. 2023. Overlooked residue of li-ion battery recycling waste as high-value bifunctional oxygen electrocatalyst for Zn-air batteries. Applied Catalysis B: Environmental 332 (March):122767. doi:10.1016/j.apcatb.2023.122767.
  • Lithium Australia. 2019. Innovation in Australian battery recycling. https://lithium-au.com/wp-content/uploads/2016/11/13122019-New-World-Metals-conference-presentation.pdf.
  • Lithium Australia. 2022. Lithium Australia now 100% owns strategic battery recycling asset. https://lithium-au.com/wp-content/uploads/2022/04/Lithium-Australia-now-100-owns-strategic.pdf.
  • Lu, Y., M. Maftouni, T. Yang, P. Zheng, D. Young, Z. James Kong, and Z. Li. 2023. A novel disassembly process of end-of-life lithium-ion batteries enhanced by online sensing and machine learning techniques. Journal of Intelligent Manufacturing 34 (5):2463–75. doi:10.1007/s10845-022-01936-x.
  • Lv, W., Z. Wang, H. Cao, Y. Sun, Y. Zhang, and Z. Sun. 2018. A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustainable Chemistry and Engineering 6 (2):1504–21. doi:10.1021/acssuschemeng.7b03811.
  • Mackenzie, A. 2020. Australian battery recycling challenges and opportunities. In ALTA 2020 Lithium & Battery Technology Conference, 10. Perth: ALTA.
  • Makuza, B., Q. Tian, X. Guo, K. Chattopadhyay, and D. Yu. 2021. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. Journal of Power Sources 491 (November 2020):229622. doi:10.1016/j.jpowsour.2021.229622.
  • Mansur, M. B., A. S. Guimarães, and M. Petraniková. 2021. An overview on the recovery of cobalt from end-of-life lithium ion batteries. Mineral Processing and Extractive Metallurgy Review 1–21. doi:10.1080/08827508.2021.1883014.
  • Manthiram, A. 2020. A reflection on lithium-ion battery cathode chemistry. Nature Communications 11 (1):1–9. doi:10.1038/s41467-020-15355-0.
  • Marinos, D., and B. Mishra. 2015. An approach to processing of lithium-ion batteries for the zero-waste recovery of materials. Journal of Sustainable Metallurgy 1 (4):263–74. doi:10.1007/s40831-015-0024-6.
  • Marshall, J. E., A. Zhenova, S. Roberts, T. Petchey, P. Zhu, C. E. J. Dancer, C. R. McElroy, E. Kendrick, and V. Goodship. 2021. On the solubility and stability of polyvinylidene fluoride. Polymers 13 (9):1–31. doi:10.3390/polym13091354.
  • Meng, F., J. McNeice, S. S. Zadeh, and A. Ghahreman. 2019. Review of lithium production and recovery from minerals, brines, and lithium-ion batteries. Mineral Processing and Extractive Metallurgy Review 42 (2):123–41. doi:10.1080/08827508.2019.1668387.
  • Mennik, F., N. İ. Dinç, and F. Burat. 2023. Selective recovery of metals from spent mobile phone lithium-ion batteries through froth flotation followed by magnetic separation procedure. Results in Engineering 17 (November 2022):100868. doi:10.1016/j.rineng.2022.100868.
  • National Environment Agency. 2023. Where to recycle? https://www.nea.gov.sg/our-services/waste-management/3r-programmes-and-resources/e-waste-management/where-to-recycle-e-waste.
  • Northvolt. 2021. Northvolt produces first fully recycled battery cell – looks towards establishing 125,000 ton/year giga recycling plant. https://northvolt.com/articles/recycled-battery/.
  • Northvolt. 2022. Closing the loop on batteries. https://northvolt.com/articles/revolt/.
  • Ohnsman, A. 2022. Panasonic to make tesla battery cells with recycled material from JB straubel’s redwood. https://www.forbes.com/sites/alanohnsman/2022/01/04/panasonic-to-make-tesla-battery-cells-with-recycled-material-from-jb-straubels-redwood/?sh=6aa8afee6e82.
  • Pant, D., and T. Dolker. 2017. Green and facile method for the recovery of spent lithium nickel manganese cobalt oxide (NMC) based lithium ion batteries. Waste Management 60:689–95. doi:10.1016/j.wasman.2016.09.039.
  • Parsonage, D., P. Singh, and A. N. Nikoloski. 2014. Adverse effects of fluoride on hydrometallurgical operations. Mineral Processing and Extractive Metallurgy Review 35 (1):44–65. doi:10.1080/08827508.2012.695306.
  • Peng, C., J. Hamuyuni, B. P. Wilson, and M. Lundström. 2018. Selective reductive leaching of cobalt and lithium from industrially crushed waste li-ion batteries in sulfuric acid system. Waste Management 76:582–90. doi:10.1016/j.wasman.2018.02.052.
  • Perumal, P., S. M. Andersen, A. Nikoloski, S. Basu, and M. Mohapatra. 2021. Leading strategies and research advances for the restoration of graphite from expired Li+ energy storage devices. Journal of Environmental Chemical Engineering 9 (6):106455. doi:10.1016/j.jece.2021.106455.
  • Petranikova, M., P. L. Naharro, N. Vieceli, G. Lombardo, and B. Ebin. 2021. Recovery of critical metals from EV batteries via thermal treatment and leaching with sulphuric acid at ambient temperature. Waste Management 140 (November):164–72. doi:10.1016/j.wasman.2021.11.030.
  • Porvali, A., M. Aaltonen, S. Ojanen, O. Velazquez-Martinez, E. Eronen, F. Liu, B. P. Wilson, R. Serna-Guerrero, and M. Lundström. 2019. Mechanical and hydrometallurgical processes in HCl media for the recycling of valuable metals from li-ion battery waste. Resources, Conservation & Recycling 142 (November 2018):257–66. doi:10.1016/j.resconrec.2018.11.023.
  • Primobius. 2022. Sustainable recycling solution for lithium-ion batteries. https://www.primobius.com/process-technology.
  • Punt, T., S. M. Bradshaw, P. van Wyk, and G. Akdogan. 2022. The efficiency of black mass preparation by discharge and alkaline leaching for LIB recycling. Minerals 12 (6):753. doi:10.3390/min12060753.
  • Raj, B., M. Kumar Sahoo, A. Nikoloski, P. Singh, S. Basu, and M. Mohapatra. 2023. Retrieving spent cathodes from lithium-ion batteries through flourishing technologies. Batteries and Supercaps 6 (1). doi: 10.1002/batt.202200418.
  • Randall, C. 2021. Posco and huayou cobalt to launch recycling joint venture. https://www.electrive.com/2021/05/28/posco-and-huayou-cobalt-to-launch-recycling-joint-venture/.
  • Recyclus Group. 2022. Recycling & repurposing. https://www.recyclusgroup.com/battery-recycling-copy.
  • Redwood Materials. 2021. Redwood materials creates the first pathways for end-of-life electric vehicles; kicks off in California. https://www.redwoodmaterials.com/press/redwood-materials-creates-the-first-pathways-for-end-of-life-electric-vehicles-kicks-off-in-california.
  • Redwood Materials. 2023. One year update: Redwood’s California EV battery recycling program. https://www.redwoodmaterials.com/news/update-california-ev-battery-recycling-program/.
  • Rouhi, H., E. Karola, R. Serna-Guerrero, and A. Santasalo-Aarnio. 2021. Voltage behavior in lithium-ion batteries after electrochemical discharge and its implications on the safety of recycling processes. Journal of Energy Storage 35:1–7. doi:10.1016/j.est.2021.102323.
  • Sahu, S., and N. Devi. 2023. Two-step leaching of spent lithium-ion batteries and effective regeneration of critical metals and graphitic carbon employing hexuronic acid. RSC Advances 13 (11):7193–205. doi:10.1039/d2ra07926g.
  • Salces, A. M., I. Bremerstein, M. Rudolph, and A. Vanderbruggen. 2022. Joint recovery of graphite and lithium metal oxides from spent lithium-ion batteries using froth flotation and investigation on process water re-use. Minerals Engineering 184:184. doi:10.1016/j.mineng.2022.107670.
  • Shaw-Stewart, J., A. Alvarez-Reguera, A. Greszta, J. Marco, M. Masood, R. Sommerville, and E. Kendrick. 2019. Aqueous solution discharge of cylindrical lithium-ion cells. Sustainable Materials and Technologies 22:e00110. doi:10.1016/j.susmat.2019.e00110.
  • Shen, K., C. Yuan, and M. Hauschild. 2023. Direct recycling of lithium ion batteries from electric vehicles for closed-loop life cycle impact mitigation. CIRP Annals 72 (1):13–16. doi:10.1016/j.cirp.2023.04.033.
  • Shin, Y., S. Kim, S. Park, J. Lee, J. Bae, D. Kim, H. Joo, S. Ban, H. Lee, Y. Kim, et al. 2023. A comprehensive review on the recovery of cathode active materials via direct recycling from spent li-ion batteries. Renewable and Sustainable Energy Reviews 187 (August):113693. doi:10.1016/j.rser.2023.113693.
  • Siekierka, A., M. Bryjak, A. Razmjou, W. Kujawski, A. N. Nikoloski, and L. F. Dumée. 2022. Electro‐driven materials and processes for lithium recovery—a review. Membranes 12 (3):1–27. doi:10.3390/membranes12030343.
  • Sloop, S. E. 2010. System and method for removing an electrolyte from an energy storage and/or conversion device using a supercritical fluid. US 7,858.216 B2, issued 2010. https://patentimages.storage.googleapis.com/10/f4/ee/c72718422e760a/US7858216.pdf.
  • Sloop, S., L. Crandon, M. Allen, K. Koetje, L. Reed, L. Gaines, W. Sirisaksoontorn, and M. Lerner. 2020. A direct recycling case study from a lithium-ion battery recall. Sustainable Materials and Technologies 25:e00152. doi:10.1016/j.susmat.2020.e00152.
  • Stich, M., M. Göttlinger, M. Kurniawan, U. Schmidt, and A. Bund. 2018. Hydrolysis of LiPF6 in carbonate-based electrolytes for lithium-ion batteries and in aqueous media. The Journal of Physical Chemistry C 122 (16):8836–42. doi:10.1021/acs.jpcc.8b02080.
  • Sumitomo Chemicals. 2022. JERA and sumitomo chemical start a demonstration project to develop a low environmental impact recycling process for electric vehicle lithium-ion batteries. https://www.sumitomo-chem.co.jp/english/news/detail/20220419e.html.
  • Sumitomo Metal Mining. 2022a. AchiEving ‘battery to battery’ recycling. https://www.smm.co.jp/en/sustainability/activity_highlights/article_15/%0A.
  • Sumitomo Metal Mining. 2022b. Straightening of battery recycling. https://www.smm.co.jp/en/sustainability/activity_highlights/article_15/.
  • Terazono, A., M. Oguchi, H. Akiyama, H. Tomozawa, T. Hagiwara, and J. Nakayama. 2024. Resources, conservation & recycling ignition and fire-related incidents caused by lithium-ion batteries in waste treatment facilities in Japan and countermeasures. Resources, Conservation and Recycling 202 (January). doi:10.1016/j.resconrec.2023.107398.
  • Tes-AMM. 2023. Best-in-class recycling facilities. https://www.tes-amm.com/it-services/commercial-battery-recycling.
  • TESLA. 2021. Impact report 2021. https://www.tesla.com/ns_videos/2021-tesla-impact-report.pdf.
  • Theivaprakasam, S., G. Girard, P. Howlett, M. Forsyth, S. Mitra, and D. MacFarlane. 2018. Passivation behaviour of aluminium current collector in ionic liquid alkyl carbonate (hybrid) electrolytes. Npj Materials Degradation 2 (1). doi: 10.1038/s41529-018-0033-6.
  • Torabian, M. M., M. Jafari, and A. Bazargan. 2022. Discharge of lithium-ion batteries in salt solutions for safer storage, transport, and resource recovery. Waste Management and Research 40 (4):402–09. doi:10.1177/0734242X211022658.
  • Traore, N., and S. Kelebek. 2022. Characteristics of spent lithium ion batteries and their recycling potential using flotation separation: A review. Mineral Processing and Extractive Metallurgy Review 44 (3):231–59. doi:10.1080/08827508.2022.2040497.
  • Tripathy, S. K., P. K. Banerjee, N. Suresh, Y. R. Murthy, and V. Singh. 2017. Dry high-intensity magnetic separation in mineral industry—a review of present status and future prospects. Mineral Processing and Extractive Metallurgy Review 38 (6):339–65. doi:10.1080/08827508.2017.1323743.
  • Uda, T., A. Kishimoto, K. Yasuda, and Y. Ki Taninouchi. 2022. Submerged comminution of lithium-ion batteries in water in inert atmosphere for safe recycling. Energy Advances 1 (11):935–40. doi:10.1039/d2ya00202g.
  • Vanderbruggen, A., N. Hayagan, K. Bachmann, A. Ferreira, D. Werner, D. Horn, U. Peuker, R. Serna-Guerrero, and M. Rudolph. 2022. Lithium-ion battery recycling─influence of recycling processes on component liberation and flotation separation efficiency. ACS ES and T Engineering 2 (11):2130–41. doi:10.1021/acsestengg.2c00177.
  • Vanderbruggen, A., A. Salces, A. Ferreira, M. Rudolph, and R. Serna-Guerrero. 2022. Improving separation efficiency in end-of-life lithium-ion batteries flotation using attrition pre-treatment. Minerals 12 (1):1. doi:10.3390/min12010072.
  • Vanderbruggen, A., J. Sygusch, M. Rudolph, and R. Serna-Guerrero. 2021. A contribution to understanding the flotation behavior of lithium metal oxides and spheroidized graphite for lithium-ion battery recycling. Colloids and Surfaces A: Physicochemical and Engineering Aspects 626:127111, May. doi:10.1016/j.colsurfa.2021.127111.
  • Velázquez-Martínez, O., J. Valio, A. Santasalo-Aarnio, M. Reuter, and R. Serna-Guerrero. 2019. A critical review of lithium-ion battery recycling processes from a circular economy perspective. Batteries 5 (4):5–7. doi:10.3390/batteries5040068.
  • Wang, L., S. Yin, Z. Yu, Y. Wang, T. X. Yu, J. Zhao, Z. Xie, Y. Li, and J. Xu. 2018. Unlocking the significant role of shell material for lithium-ion battery safety. Materials & Design 160 (December):601–10. doi:10.1016/j.matdes.2018.10.002.
  • Wang, M., Q. Tan, L. Liu, and J. Li. 2019. A facile, environmentally friendly, and low-temperature approach for decomposition of polyvinylidene fluoride from the cathode electrode of spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering 7 (15):12799–806. doi:10.1021/acssuschemeng.9b01546.
  • Wang, R., L. Feng, W. Yang, Y. Zhang, Y. Zhang, W. Bai, B. Liu, W. Zhang, Y. Chuan, Z. Zheng, et al. 2017. Effect of different binders on the electrochemical performance of metal oxide anode for lithium-ion batteries. Nanoscale Research Letters 12 (1):1–11. doi:10.1186/s11671-017-2348-6.
  • Wang, X., G. Gaustad, and C. W. Babbitt. 2016. Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation. Waste Management 51 (May):204–13. doi:10.1016/j.wasman.2015.10.026.
  • Widijatmoko, S. D., G. Fu, Z. Wang, and P. Hall. 2020. Recovering lithium cobalt oxide, aluminium, and copper from spent lithium-ion battery via attrition scrubbing. Journal of Cleaner Production 260:120869. doi:10.1016/j.jclepro.2020.120869.
  • Widijatmoko, S. D., F. Gu, Z. Wang, and P. Hall. 2020. Selective liberation in dry milled spent lithium-ion batteries. Sustainable Materials and Technologies 23:e00134. doi:10.1016/j.susmat.2019.e00134.
  • Wilken, S., M. Treskow, J. Scheers, P. Johansson, and P. Jacobsson. 2013. Initial stages of thermal decomposition of LiPF6-based lithium ion battery electrolytes by detailed Raman and NMR spectroscopy. RSC Advances 3 (37):16359–64. doi:10.1039/c3ra42611d.
  • Woldt, D., G. Schubert, and H. G. Jäckel. 2004. Size reduction by means of low-speed rotary shears. International Journal of Mineral Processing 74 (SUPPL.):405–15. doi:10.1016/j.minpro.2004.07.008.
  • Wuschke, L., H. G. Jäckel, T. Leißner, and U. A. Peuker. 2019. Crushing of large li-ion battery cells. Waste Management 85:317–26. doi:10.1016/j.wasman.2018.12.042.
  • Xiamen WinAck Battery Technology Co. Ltd. 2023. Battery cell sorting machine. https://www.winackbattery.com/products/Battery-Sorting-Machine.html.
  • Xiao, J., J. Guo, L. Zhan, and Z. Xu. 2020. A cleaner approach to the discharge process of spent lithium ion batteries in different solutions. Journal of Cleaner Production 255:120064. doi:10.1016/j.jclepro.2020.120064.
  • Xu, M., S. Kang, F. Jiang, X. Yan, Z. Zhu, Q. Zhao, Y. Teng, and Y. Wang. 2021. A process of leaching recovery for cobalt and lithium from spent lithium-ion batteries by citric acid and salicylic acid. RSC Advances 11 (44):27689–700. doi:10.1039/d1ra04979h.
  • Yamaji, Y., G. Dodbiba, S. Matsuo, K. Okaya, A. Shibayama, and T. Fujita. 2011. A novel flow sheet for processing of used lithium-ion batteries for recycling. Resources Processing 58 (1):9–13. doi:10.4144/rpsj.58.9.
  • Yan, J., X. Wang, J. Zhai, C. Gong, W. Zhu, D. Yang, Y. Luo, and X. Gao. 2023. Recovery oF graphite from anode in spent lithium-ion battery as an efficient peroxymonosulfate (PMS) activator: Performance and mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects 663 (January):131090. doi:10.1016/j.colsurfa.2023.131090.
  • Yao, L. P., Q. Zeng, T. Qi, and J. Li. 2020. An environmentally friendly discharge technology to pretreat spent lithium-ion batteries. Journal of Cleaner Production 245:118820. doi:10.1016/j.jclepro.2019.118820.
  • Yao, X.-Y., and M. G. Pecht. 2019. Tab design and failures in cylindrical li-ion batteries. IEEE Access 7:24082–95. doi:10.1109/ACCESS.2019.2899793.
  • Yken, J. V., N. J. Boxall, K. Y. Cheng, A. N. Nikoloski, N. R. Moheimani, and A. H. Kaksonen. 2021. E-Waste recycling and resource recovery: A review on technologies, barriers and enablers with a focus on Oceania. Metals 11 (8):1313. doi:10.3390/met11081313.
  • Yoo, K. 2023. Lithium ion battery recycling industry in South Korea. Resources Recycling 32 (1):13–20. doi:10.7844/kirr.2023.32.1.13.
  • Yoshino, A. 2014. Development of the lithium-ion battery and recent technological trends. In Lithium-ion batteries, 1–20. Elsevier. doi:10.1016/B978-0-444-59513-3.00001-7.
  • Yuan, M., and K. Liu. 2020. Rational design on separators and liquid electrolytes for safer lithium-ion batteries. Journal of Energy Chemistry 43:58–70. doi:10.1016/j.jechem.2019.08.008.
  • Zeng, X., J. Li, and N. Singh. 2014. Recycling of spent lithium-ion battery: A critical review. Critical Reviews in Environmental Science and Technology 44 (10):1129–65. doi:10.1080/10643389.2013.763578.
  • Zhan, R., Z. Oldenburg, and L. Pan. 2018. Recovery of active cathode materials from lithium-ion batteries using froth flotation. Sustainable Materials and Technologies 17:1–9. doi:10.1016/j.susmat.2018.e00062.
  • Zhang, G., L. Ding, X. Yuan, Y. He, H. Wang, and J. He. 2021. Recycling of electrode materials from spent lithium-ion battery by pyrolysis-assisted flotation. Journal of Environmental Chemical Engineering 9 (6):106777. doi:10.1016/j.jece.2021.106777.
  • Zhang, J., J. Qiao, K. Sun, and Z. Wang. 2022. Balancing particle properties for practical lithium-ion batteries. Particuology 61:18–29. doi:10.1016/j.partic.2021.05.006.
  • Zhang, T., Y. He, L. Ge, R. Fu, X. Zhang, and Y. Huang. 2013. Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries. Journal of Power Sources 240:766–71. doi:10.1016/j.jpowsour.2013.05.009.
  • Zhao, Y., T. Ruether, A. I. Bhatt, and J. Staines. 2021. Australian landscape for lithium ion battery recycling and reuse in 2020. CSIRO and FBI CRC. doi:10.25919/91ap-m622.
  • Zhu, H., Y. Bai, L. Zu, H. Bi, and J. Wen. 2023. Separation of metal and cathode materials from waste lithium iron phosphate battery by electrostatic process. Separations 10 (3):3. doi:10.3390/separations10030220.
  • Zhu, P., D. Gastol, J. Marshall, R. Sommerville, V. Goodship, and E. Kendrick. 2021. A review of current collectors for lithium-ion batteries. Journal of Power Sources 485 (November 2020):229321. doi:10.1016/j.jpowsour.2020.229321.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.