55
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Semiconductor Aspects of Chalcopyrite and its Relevance for Copper Bioleaching: A Review

, &

References

  • Ahmadi, A., M. Schaffie, Z. Manafi, and M. Ranjbar. 2010. Electrochemical bioleaching of high grade chalcopyrite flotation concentrates in a stirred bioreactor. Hydrometallurgy 104 (1):99–105. doi: 10.1016/j.hydromet.2010.05.001.
  • Ahmadi, A., M. Schaffie, J. Petersen, A. Schippers, and M. Ranjbar. 2011. Conventional and electrochemical bioleaching of chalcopyrite concentrates by moderately thermophilic bacteria at high pulp density. Hydrometallurgy 106 (1–2):84–92. doi: 10.1016/j.hydromet.2010.12.007.
  • Ahn, J., J. Wu, and J. Lee. 2022. A comparative kinetic study of chalcopyrite leaching using alternative oxidants in methanesulfonic acid system. Mineral Processing and Extractive Metallurgy Review 43 (3):390–401. doi: 10.1080/08827508.2021.1893719.
  • Akcil, A., H. Ciftci, and H. Deveci. 2007. Role and contribution of pure and mixed cultures of mesophiles in bioleaching of a pyritic chalcopyrite concentrate. Minerals Engineering 20 (3):310–18. doi: 10.1016/j.mineng.2006.10.016.
  • Antonijević, M. M., and G. D. Bogdanović. 2004. Investigation of the leaching of chalcopyritic ore in acidic solutions. Hydrometallurgy 73 (3–4):245–56. doi: 10.1016/j.hydromet.2003.11.003.
  • Arce, E. M., and I. González. 2002. A comparative study of electrochemical behavior of chalcopyrite, chalcocite and bornite in sulfuric acid solution. International Journal of Mineral Processing 67 (1–4):17–28. doi: 10.1016/S0301-7516(02)00003-0.
  • Atkins, P., L. Jones, and L. Laverman. 2018. Princípios de Química: Questionando a Vida Moderna e o Meio Ambiente, 7th ed. Porto Alegre: Bookman.
  • Bai, Y., W. Wang, S. Zhao, D. Lu, F. Xie, and D. Dreisinger. 2022. Effect of mechanical activation on leaching behavior and mechanism of chalcopyrite. Mineral Processing & Extractive Metallurgy Review 43 (4):440–52. doi: 10.1080/08827508.2021.1906239.
  • Barr, D. W., M. A. Jordan, P. R. Norris, and C. V. Phillips. 1992. An investigation into bacterial cell, ferrous iron, pH and eh interactions during thermophilic leaching of copper concentrates. Minerals Engineering 5 (3–5):557–67. doi: 10.1016/0892-6875(92)90234-Z.
  • Barton, I. F., and J. Brent Hiskey. 2022. Chemical, crystallographic, and electromagnetic variability in natural chalcopyrite and implications for leaching. Minerals Engineering 189 (March):107867. doi: 10.1016/j.mineng.2022.107867.
  • Bebie, J., M. A. A. Schoonen, M. Fuhrmann, and D. R. Strongin. 1998. Surface charge development on transition metal sulfides: An electrokinetic study. Geochimica et cosmochimica acta 62 (4):633–42. doi: 10.1016/S0016-7037(98)00058-1.
  • Bevilaqua, D., I. Diéz-Perez, C. S. Fugivara, F. Sanz, A. V. Benedetti, and O. Garcia. 2004. Oxidative dissolution of chalcopyrite by Acidithiobacillus Ferrooxidans analyzed by electrochemical impedance spectroscopy and atomic force microscopy. Bioelectrochemistry 64 (1):79–84. doi: 10.1016/j.bioelechem.2004.01.006.
  • Bevilaqua, D., O. Garcia, and O. H. Tuovinen. 2010. Oxidative dissolution of bornite by Acidithiobacillus Ferrooxidans. Process Biochemistry 45 (1):101–06. doi: 10.1016/j.procbio.2009.08.013.
  • Bevilaqua, D., H. Lahti, P. H. Suegama, O. Garcia, A. V. Benedetti, J. A. Puhakka, and O. H. Tuovinen. 2013. Effect of Na-Chloride on the bioleaching of a chalcopyrite concentrate in shake flasks and stirred tank bioreactors. Hydrometallurgy 138 (June):1–13. doi: 10.1016/j.hydromet.2013.06.008.
  • Bevilaqua, D., H. Lahti-Tommila, O. Garcia, J. A. Puhakka, and O. H. Tuovinen. 2014. Bacterial and chemical leaching of chalcopyrite concentrates as affected by the redox potential and ferric/ferrous iron ratio at 22°C. International Journal of Mineral Processing 132 (November):1–7. doi: 10.1016/j.minpro.2014.08.008.
  • Bevilaqua, D., A. L. L. C. Leite, O. Garcia, and O. H. Tuovinen. 2002. Oxidation of chalcopyrite by Acidithiobacillus Ferrooxidans and Acidithiobacillus thiooxidans in shake flasks. Process Biochemistry 38 (4):587–92. doi: 10.1016/S0032-9592(02)00169-3.
  • Bevilaqua, D., A. G. R. Toledo, L. G. Crocco, R. N. Peres, R. B. da Costa, A. V. Benedetti, and O. H. Tuovinen. 2024. Chalcopyrite Dissolution: Challenges. 23–39. doi: 10.1007/978-3-031-43625-3_2.
  • Biegler, T. 1977. Reduction kinetics of a chalcopyrite electrode surface. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 85 (1):101–06. doi: 10.1016/S0022-0728(77)80155-1.
  • Biegler, T., and M. D. Horne. 1985. The electrochemistry of surface oxidation of chalcopyrite. Journal of the Electrochemical Society 132 (6):1363–69. doi: 10.1149/1.2114117.
  • Biegler, T., and D. A. Swift. 1979. Anodic electrochemistry of Chalcopyrite. Journal of Applied Electrochemistry 9 (5):545–54. doi: 10.1007/BF00610940.
  • Bombicz, P., I. Mutikainen, M. Krunks, T. Leskelä, J. Madarász, and L. Niinistö. 2004. Synthesis, vibrational spectra and X-Ray structures of Copper(I) thiourea complexes. Inorganica Chimica Acta 357 (2):513–25. doi: 10.1016/j.ica.2003.08.019.
  • Bott, A. W. 1998. Electrochemistry of semiconductors. Current Separations 17 (3):87–91.
  • Brierley, C. L. 2008. How will biomining be applied in future? Transactions of Nonferrous Metals Society of China 18 (6):1302–10. doi: 10.1016/S1003-6326(09)60002-9.
  • Brierley, C. L. 2010. Biohydrometallurgical prospects. Hydrometallurgy 104 (3–4):324–28. doi: 10.1016/j.hydromet.2010.03.021.
  • Brierley, C. L. 2016. Biological processing: Biological processing of sulfidic ores and concentrates—integrating innovations. In Innovative Process Development in Metallurgical Industry, 109–35. Cham: Springer International Publishing. doi: 10.1007/978-3-319-21599-0_6.
  • Brierley, C. L., and J. A. Brierley. 2013. Progress in bioleaching: Part B: Applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology 97 (17):7543–52. doi: 10.1007/s00253-013-5095-3.
  • Calvo, G., and A. Valero. 2022. Strategic mineral resources: Availability and future estimations for the renewable energy sector. Environmental Development 41 (March):100640. doi: 10.1016/j.envdev.2021.100640.
  • Cárdenas, J. P., R. Quatrini, and D. S. Holmes. 2016. Genomic and metagenomic challenges and opportunities for bioleaching: A mini-review. Research in Microbiology 167 (7):529–38. doi: 10.1016/j.resmic.2016.06.007.
  • Castro, C., and E. Donati. 2016. Effects of different energy sources on cell adhesion and bioleaching of a chalcopyrite concentrate by extremophilic archaeon Acidianus Copahuensis. Hydrometallurgy 162 (1):49–56. doi: 10.1016/j.hydromet.2016.02.014.
  • Clark, D. A., and P. R. Norris. 1996. Oxidation of mineral sulphides by thermophilic microorganisms. Minerals Engineering 9 (11):1119–25. doi: 10.1016/0892-6875(96)00106-9.
  • Conejeros, S., P. Alemany, M. Llunell, I. D. P. R. Moreira, V. Sánchez, and J. Llanos. 2015. Electronic structure and magnetic properties of CuFeS2. Inorganic Chemistry 54 (10):4840–49. doi: 10.1021/acs.inorgchem.5b00399.
  • Córdoba, E. M., J. A. Muñoz, M. L. Blázquez, F. González, and A. Ballester. 2008a. Leaching of chalcopyrite with ferric ion. Part II: Effect of redox potential. Hydrometallurgy 93 (3–4):88–96. doi: 10.1016/j.hydromet.2008.04.016.
  • Córdoba, E. M., J. A. Muñoz, M. L. Blázquez, F. González, and A. Ballester. 2008b. Leaching of chalcopyrite with ferric ion. Part IV: The role of redox potential in the presence of mesophilic and thermophilic bacteria. Hydrometallurgy 93 (3–4):106–15. doi: 10.1016/j.hydromet.2007.11.005.
  • Crundwell, F. K. 2003. How do bacteria interact with minerals? Hydrometallurgy 71 (1–2):75–81. doi: 10.1016/S0304-386X(03)00175-0.
  • Crundwell, F. K. 2021. The impact of light on understanding the mechanism of dissolution and leaching of sphalerite (ZnS), Pyrite (FeS2) and Chalcopyrite (CuFeS2). Minerals Engineering 161 (November 2020):106728. doi: 10.1016/j.mineng.2020.106728.
  • Crundwell, F. K., L. J. Bryson, A. van Aswegen, and B. D. H. Knights. 2021. Effect of chopped light on the dissolution and leaching of chalcopyrite. Minerals Engineering 160 (August 2016):106703. doi: 10.1016/j.mineng.2020.106703.
  • Crundwell, F. K., A. Van Aswegen, L. J. Bryson, C. Biley, D. Craig, V. D. Marsicano, and J. M. Keartland. 2015. The effect of visible light on the dissolution of natural chalcopyrite (CuFeS2) in sulphuric acid solutions. Hydrometallurgy 158 (December):119–31. doi: 10.1016/j.hydromet.2015.10.014.
  • Crundwell, and F. K. Crundwell. 1988a. Effect of iron impurity in zinc sulfide concentrates on the rate of dissolution. AichE Journal 34 (7):1128–34. doi: 10.1002/aic.690340709.
  • Crundwell, and F. K. Crundwell. 1988b. The influence of the electronic structure of solids on the anodic dissolution and leaching of semiconducting sulphide minerals. Hydrometallurgy 21 (2):155–90. doi: 10.1016/0304-386X(88)90003-5.
  • Crundwell, and F. K. Crundwell. 2015. The semiconductor mechanism of dissolution and the pseudo-passivation of chalcopyrite. Canadian Metallurgical Quarterly 54 (3):279–88. doi: 10.1179/1879139515Y.0000000007.
  • Davis, J. R. 2001. Copper and copper alloys. In ASM International Handbook, ed. J. R. Davis, 590. Materials Park, OH: ASM International.
  • Dean, F. 1991. Chalcopyrite photoelectrochemistry. London: University of London.
  • Debernardi, G., and C. Carlesi. 2013. Chemical-electrochemical approaches to the study passivation of chalcopyrite. Mineral Processing & Extractive Metallurgy Review 34 (1):10–41. doi: 10.1080/08827508.2011.623745.
  • de Melo Silva Cheloni, L. M., F. L. Martins, L. Moreira Pinto, M. L. Marques Rodrigues, and V. A. Leão. 2023. Chemical and biological leaching of chalcopyrite- elemental sulfur reaction products. Mineral Processing & Extractive Metallurgy Review 1–12. doi: 10.1080/08827508.2023.2181347.
  • de Oliveira, C., and H. Anderson Duarte. 2010. Disulphide and metal sulphide formation on the reconstructed (0 0 1) surface of chalcopyrite: A DFT study. Applied Surface Science 257 (4):1319–24. doi: 10.1016/j.apsusc.2010.08.059.
  • Dixon, D., R. Asselin, and Z. Ren. 2020. Process for leaching metal sulfides with reagents having thiocarbonyl functional groups. New York. United States.
  • Donati, E. R., C. Castro, and M. Sofía Urbieta. 2016. Thermophilic microorganisms in biomining. World Journal of Microbiology and Biotechnology 32 (11):179. doi: 10.1007/s11274-016-2140-2.
  • Donnay, G., L. M. Corliss, J. D. H. Donnay, N. Elliott, and J. M. Hastings. 1958. Symmetry of magnetic structures: Magnetic structure of Chalcopyrite. Physical Review 112 (6):1917–23. doi: 10.1103/PhysRev.112.1917.
  • Dreisinger, D. 2005. Case study flowsheets: Copper–gold concentrate treatment. Developments in Mineral Processing 15:825–48. doi: 10.1016/S0167-4528(05)15033-9.
  • Dutrizac, J. E. 1978. The kinetics of dissolution of chalcopyrite in ferric ion media. Metallurgical Transactions B 9 (4):431–39. doi: 10.1007/BF02654418.
  • Dutrizac, J. E., and R. J. C. MacDonald. 1974. The kinetics of dissolution of covellite in acidified ferric sulphate solutions. Canadian Metallurgical Quarterly 13 (3):423–33. doi: 10.1179/cmq.1974.13.3.423.
  • Ebrahimpour, S., H. Abdollahi, M. Gharabaghi, Z. Manafi, and O. H. Tuovinen. 2022. Acid bioleaching of copper from smelter dust at incremental temperatures. Mineral Processing & Extractive Metallurgy Review 43 (2):233–42. doi: 10.1080/08827508.2021.1888726.
  • Elsherief, A. E. 2002. The influence of cathodic reduction, Fe2+ and Cu2+ ions on the electrochemical dissolution of chalcopyrite in acidic solution. Minerals Engineering 15 (4):215–23. doi: 10.1016/S0892-6875(01)00208-4.
  • Elshkaki, A., T. E. Graedel, L. Ciacci, and K. R. Barbara. 2016. Copper demand, supply, and associated energy use to 2050. Global Environmental Change 39 (July):305–15. doi: 10.1016/j.gloenvcha.2016.06.006.
  • Franz, E. P. 1969. Research in pressure leaching. Journal of the South African Institute of Mining and Metallurgy 69 (12):632–54.
  • Gahan, C. S., H. Srichandan, D.-J. Kim, and A. Akcil. 2012. Biohydrometallurgy and biomineral processing technology: A review on its past, present and future. Research Journal of Recent Sciences 1 (10):85–99.
  • Geological Survey, Us. 2024. Mineral commodity summaries 2024. doi: 10.3133/mcs2024.
  • Gericke, M., Y. Govender, and A. Pinches. 2010. Tank bioleaching of low-grade chalcopyrite concentrates using redox control. Hydrometallurgy 104 (3–4):414–19. doi: 10.1016/j.hydromet.2010.02.024.
  • Gerischer, H. 1990. The impact of semiconductors on the concepts of electrochemistry. Electrochimica Acta 35 (11–12):1677–99. doi: 10.1016/0013-4686(90)87067-C.
  • Ghahremaninezhad, A., D. G. Dixon, and E. Asselin. 2013. Electrochemical and XPS analysis of chalcopyrite (CuFeS2) Dissolution in sulfuric acid solution. Electrochimica Acta 87 (January):97–112. doi: 10.1016/j.electacta.2012.07.119.
  • Gómez, C., E. Román, M. L. Blázquez, and A. Ballester. 1997. SEM and AES studies of chalcopyrite bioleaching in the presence of catalytic ions. Minerals Engineering 10 (8):825–35. doi: 10.1016/S0892-6875(97)00060-5.
  • Greenwood, N. N., and H. J. Whitfield. 1968. Mössbauer effect studies on cubanite (CuFe2S3) and related iron sulphides. Journal of the Chemical Society A 1697–99. doi: 10.1039/J19680001697.
  • Gu, G., K. Hu, X. Zhang, X. Xiong, and H. Yang. 2013. The stepwise dissolution of chalcopyrite bioleached by Leptospirillum Ferriphilum. Electrochimica Acta 103 (July):50–57. doi: 10.1016/j.electacta.2013.04.051.
  • Halfyard, J. E., and K. Hawboldt. 2011. Separation of elemental sulfur from hydrometallurgical residue: A review. Hydrometallurgy 109 (1–2):80–89. doi: 10.1016/j.hydromet.2011.05.012.
  • Hamajima, T., T. Kambara, K. Ichiro Gondaira, and T. Oguchi. 1981. Self-consistent electronic structures of magnetic semiconductors by a discrete variational xa calculation. III. Chalcopyrite CuFeS2. Physical Review B 24 (6):3349–53. doi: 10.1103/PhysRevB.24.3349.
  • Havlík, T., and R. Kammel. 1995. Leaching of chalcopyrite with acidified ferric chloride and carbon tetrachloride addition. Minerals Engineering 8 (10):1125–34. doi: 10.1016/0892-6875(95)00077-4.
  • Havlik, T., and M. Skrobian. 1990. Acid leaching of chalcopyrite in the presence of ozone. Canadian Metallurgical Quarterly 29 (2):133–39. doi: 10.1179/cmq.1990.29.2.133.
  • Hedrich, S., C. Joulian, T. Graupner, A. Schippers, and A.-G. Guézennec. 2018. Enhanced chalcopyrite dissolution in stirred tank reactors by temperature increase during bioleaching. Hydrometallurgy 179 (March):125–31. doi: 10.1016/j.hydromet.2018.05.018.
  • Hiroyoshi, N., M. Hirota, T. Hirajima, and M. Tsunekawa. 1997. A case of ferrous sulfate addition enhancing chalcopyrite leaching. Hydrometallurgy 47 (1):37–45. doi: 10.1016/S0304-386X(97)00032-7.
  • Hiroyoshi, N., H. Kitagawa, and M. Tsunekawa. 2008. Effect of solution composition on the optimum redox potential for chalcopyrite leaching in sulfuric acid solutions. Hydrometallurgy 91 (1–4):144–49. doi: 10.1016/j.hydromet.2007.12.005.
  • Hiroyoshi, N., S. Kuroiwa, H. Miki, M. Tsunekawa, and T. Hirajima. 2004. Synergistic effect of cupric and ferrous ions on active-passive behavior in anodic dissolution of chalcopyrite in sulfuric acid solutions. Hydrometallurgy 74 (1–2):103–16. doi: 10.1016/j.hydromet.2004.01.003.
  • Hiroyoshi, N., H. Miki, T. Hirajima, and M. Tsunekawa. 2000. A model for ferrous-promoted chalcopyrite leaching. Hydrometallurgy 57 (1):31–38. doi: 10.1016/S0304-386X(00)00089-X.
  • Hiroyoshi, N., H. Miki, T. Hirajima, and M. Tsunekawa. 2001. Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solutions. Hydrometallurgy 60 (3):185–97. doi: 10.1016/S0304-386X(00)00155-9.
  • Hollas, J. M. 2004. Modern spectroscopy, 4th ed. Chichester: John Wiley & Sons.
  • Holliday, R. I., and W. R. Richmond. 1990. An electrochemical study of the oxidation of chalcopyrite in acidic solution. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 288 (1–2):83–98. doi: 10.1016/0022-0728(90)80027-4.
  • Hong, M., S. Liu, X. Huang, B. Yang, C. Zhao, S. Yu, Y. Liu, G. Qiu, and J. Wang. 2021. A review on bornite (Bio)leaching. Minerals Engineering 174 (October):107245. doi: 10.1016/j.mineng.2021.107245.
  • Islam, M., K. S. Monirul, and M. M. Alam. 2022. Mineral import demand and clean energy transitions in the top mineral-importing countries. Resources Policy 78 (September):102893. doi: 10.1016/j.resourpol.2022.102893.
  • Isse, A. A., and A. Gennaro. 2010. Absolute potential of the standard hydrogen electrode and the problem of interconversion of potentials in different solvents. The Journal of Physical Chemistry B 114 (23):7894–99. doi: 10.1021/jp100402x.
  • Jaegermann, W., and H. Tributsch. 1988. Interfacial properties of semiconducting transition metal chalcogenides. Progress in Surface Science 29 (1–2):1–167. doi: 10.1016/0079-6816(88)90015-9.
  • Ji, G., Y. Liao, Y. Wu, J. Xi, and Q. Liu. 2022. A review on the research of hydrometallurgical leaching of low-grade complex chalcopyrite. Journal of Sustainable Metallurgy 8 (3):964–77. doi: 10.1007/s40831-022-00561-5.
  • Johnson, D. B. 2014. Biomining—biotechnologies for extracting and recovering metals from ores and waste materials. Current Opinion in Biotechnology 30 (December):24–31. doi: 10.1016/j.copbio.2014.04.008.
  • Jorjani, E., and A. Ghahreman. 2017. Challenges with elemental sulfur removal during the leaching of copper and zinc sulfides, and from the residues; a review. Hydrometallurgy 171 (May):333–43. doi: 10.1016/j.hydromet.2017.06.011.
  • Kaksonen, A. H., X. Deng, T. Bohu, L. Zea, H. Nahreen Khaleque, Y. Gumulya, N. J. Boxall, C. Morris, and K. Yu Cheng. 2020. Prospective directions for biohydrometallurgy. Hydrometallurgy 195 (August):105376. doi: 10.1016/j.hydromet.2020.105376.
  • Kaksonen, A. H., and Jochen P. 2023. The future of biomining: Towards sustainability in a metal-demanding world. In Biomining technologies, 295–314. Cham: Springer International Publishing. doi:10.1007/978-3-031-05382-5_17.
  • Kambara, T. 1974. Optical properties of a magnetic semiconductor: Chalcopyrite CuFeS. II. Calculated electronic structures of CuGaS2: Fe and CuFeS2. Journal of the Physical Society of Japan 36 (6):1625–35. doi: 10.1143/JPSJ.36.1625.
  • Kametani, H., and A. Aoki. 1985. Effect of suspension potential on the oxidation rate of copper concentrate in a sulfuric acid solution. Metallurgical Transactions B 16 (4):695–705. doi: 10.1007/BF02667506.
  • Kelly, J. J., and R. Memming. 1982. The influence of surface recombination and trapping on the cathodic photocurrent at P-Type III-V electrodes. Journal of the Electrochemical Society 129 (4):730–38. doi: 10.1149/1.2123961.
  • Kisch, H. 2013. Semiconductor photocatalysis-mechanistic and synthetic aspects. Angewandte Chemie International Edition 52 (3):812–47. doi: 10.1002/anie.201201200.
  • Kittel, C. 2005. Introduction to solid state physics, 8th ed. Hoboken: John Wiley & Sons.
  • Klauber, C. 2008. A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution. International Journal of Mineral Processing 86 (1–4):1–17. doi: 10.1016/j.minpro.2007.09.003.
  • Klauber, C., A. Parker, W. van Bronswijk, and H. Watling. 2001. Sulphur speciation of leached chalcopyrite surfaces as determined by X-Ray photoelectron spectroscopy. International Journal of Mineral Processing 62 (1–4):65–94. doi: 10.1016/S0301-7516(00)00045-4.
  • Krishnamoorthy, P., D. G. Dixon, Z. Ren, N. Mora, and C. Wei Chao. 2022. Modeling the distribution of an adsorbing solute in a catalyzed column. Minerals Engineering 182 (April):107556. doi: 10.1016/j.mineng.2022.107556.
  • Kumar, S., K. Ojha, and A. K. Ganguli. 2017. Interfacial charge transfer in photoelectrochemical processes. Advanced Materials Interfaces 4 (7):1600981. doi: 10.1002/admi.201600981.
  • Lawrence, R. W., R. Poulin, M. Kalin, and G. Béchard. 1998. The potential of biotechnology in the mining industry. Mineral Processing & Extractive Metallurgy Review 19 (1):5–23. doi: 10.1080/08827509608962425.
  • Li, Y., N. Kawashima, J. Li, A. P. Chandra, and A. R. Gerson. 2013. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite. Advances in Colloid and Interface Science 197–198 (September):1–32. doi: 10.1016/j.cis.2013.03.004.
  • Li, Y., Y. Liu, J. Chen, C. Zhao, and W. Cui. 2021. Comparison study of crystal and electronic structures for chalcopyrite (CuFeS2) and pyrite (FeS2). Physicochemical Problems of Mineral Processing 57 (1):100–11. doi: 10.37190/ppmp/129572.
  • Liang, C.-L., J.-L. Xia, Y. Yang, Z.-Y. Nie, X.-J. Zhao, L. Zheng, C.-Y. Ma, and Y.-D. Zhao. 2011. Characterization of the thermo-reduction process of chalcopyrite at 65°C by Cyclic Voltammetry and XANES Spectroscopy. Hydrometallurgy 107 (1–2):13–21. doi: 10.1016/j.hydromet.2011.01.011.
  • Lide, D. R. 2009. CRC Handbook of chemistry and physics. 89th ed. Boca Raton: CRC Press/Taylor and Francis.
  • Liu, H.-C., J.-L. Xia, and Z.-Y. Nie. 2015. Relatedness of Cu and Fe speciation to chalcopyrite bioleaching by Acidithiobacillus Ferrooxidans. Hydrometallurgy 156 (July):40–46. doi: 10.1016/j.hydromet.2015.05.013.
  • Liu, H.-C., J.-L. Xia, Z.-Y. Nie, L.-Z. Liu, L. Wang, C.-Y. Ma, L. Zheng, Y.-D. Zhao, and W. Wen. 2017. Comparative study of S, Fe and Cu speciation transformation during chalcopyrite bioleaching by mixed mesophiles and mixed thermophiles. Minerals Engineering 106 (May):22–32. doi: 10.1016/j.mineng.2017.01.013.
  • Liu, H., J. Xia, Z. Nie, C. Ma, L. Zheng, C. Hong, Y. Zhao, and W. Wen. 2016. Bioleaching of chalcopyrite by Acidianus Manzaensis under different constant PH. Minerals Engineering 98 (November):80–89. doi: 10.1016/j.mineng.2016.07.019.
  • Liu, Q., M. Chen, K. Zheng, Y. Yang, X. Feng, and H. Li. 2018. In situ electrochemical investigation of pyrite assisted leaching of chalcopyrite. Journal of the Electrochemical Society 165 (13):H813–19. doi: 10.1149/2.0461813jes.
  • Lotter, N. O., D. J. Bradshaw, and A. R. Barnes. 2016. Classification of the major copper sulphides into semiconductor types, and associated flotation characteristics. Minerals Engineering 96–97 (October):177–84. doi: 10.1016/j.mineng.2016.05.016.
  • Lu, A., Y. Li, and S. Jin. 2012. Interactions between semiconducting minerals and bacteria under light. Elements 8 (2):125–30. doi: 10.2113/gselements.8.2.125.
  • Lu, A., Y. Li, S. Jin, X. Wang, X.-L. Wu, C. Zeng, Y. Li, H. Ding, R. Hao, M. Lv, et al. 2012. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nature Communications 3 (1):768. doi: 10.1038/ncomms1768.
  • Ma, Y.-L., H.-C. Liu, J.-L. Xia, Z.-Y. Nie, H.-R. Zhu, Y.-D. Zhao, C.-Y. Ma, L. Zheng, C.-H. Hong, and W. Wen. 2017. Relatedness between catalytic effect of activated carbon and passivation phenomenon during chalcopyrite bioleaching by mixed thermophilic archaea culture at 65 °C. Transactions of Nonferrous Metals Society of China 27 (6):1374–84. doi: 10.1016/S1003-6326(17)60158-4.
  • Majuste, D., V. S. T. Ciminelli, K. Osseo-Asare, M. S. S. Dantas, and R. Magalhães-Paniago. 2012. Electrochemical dissolution of chalcopyrite: detection of bornite by synchrotron small angle X-Ray diffraction and its correlation with the hindered dissolution process. Hydrometallurgy 111–112 (1):114–23. doi: 10.1016/j.hydromet.2011.11.003.
  • Martins, F. L., and V. Albis Leão. 2023. Chalcopyrite bioleaching in chloride media: A mini-review. Hydrometallurgy 216 (July 2022):105995. doi: 10.1016/j.hydromet.2022.105995.
  • Masaki, Y., T. Hirajima, K. Sasaki, H. Miki, and N. Okibe. 2018. Microbiological redox potential control to improve the efficiency of chalcopyrite bioleaching. Geomicrobiology Journal 35 (8):648–56. doi: 10.1080/01490451.2018.1443170.
  • McMillan, R. S., D. J. MacKinnon, and J. E. Dutrizac. 1982. Anodic dissolution of N-Type and p-type chalcopyrite. Journal of Applied Electrochemistry 12 (6):743–57. doi: 10.1007/BF00617495.
  • Memming, R. 2015. Semiconductor Electrochemistry. Semiconductor electrochemistry, vol. 27, 2nd ed. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. doi: 10.1002/9783527688685.
  • Mikhlin, Y. L., Y. V. Tomashevich, I. P. Asanov, A. V. Okotrub, V. A. Varnek, and D. V. Vyalikh. 2004. Spectroscopic and electrochemical characterization of the surface layers of chalcopyrite (CuFeS2) reacted in acidic solutions. Applied Surface Science 225 (1–4):395–409. doi: 10.1016/j.apsusc.2003.10.030.
  • Misra, V. N. 1992. Pressure leaching kinetics of multimetallic sulphide concentrates in H2SO4 + O2 solution. Mineral Processing and Extractive Metallurgy Review 9 (1):223–32. doi: 10.1080/08827509208952707.
  • Mokmeli, M. 2020. Pre feasibility study in hydrometallurgical treatment of low-grade chalcopyrite ores from sarcheshmeh copper mine. Hydrometallurgy 191 (May 2019):105215. doi: 10.1016/j.hydromet.2019.105215.
  • Munoz, P. B., J. D. Miller, and M. E. Wadsworth. 1979. Reaction mechanism for the acid ferric sulfate leaching of chalcopyrite. Metallurgical Transactions B 10 (2):149–58. doi: 10.1007/BF02652458.
  • Mussel, W. N., E. Murad, J. D. Fabris, W. S. Moreira, J. B. S. Barbosa, C. C. Murta, W. P. Abrahão, J. W. V. De Mello, and V. K. Garg. 2007. Characterization of a chalcopyrite from Brazil by mössbauer spectroscopy and other physicochemical techniques. Physics and Chemistry of Minerals 34 (6):383–87. doi: 10.1007/s00269-007-0156-8.
  • Mutch, L. A., H. R. Watling, and E. L. J. Watkin. 2010. Microbial population dynamics of inoculated low-grade chalcopyrite bioleaching columns. Hydrometallurgy 104 (3–4):391–98. doi: 10.1016/j.hydromet.2010.02.022.
  • Nakai, I., Y. Sugitani, K. Nagashima, and Y. Niwa. 1978. X-Ray photoelectron spectroscopic study of copper minerals. Journal of Inorganic and Nuclear Chemistry 40 (5):789–91. doi: 10.1016/0022-1902(78)80152-3.
  • Nakazawa, H., H. Fujisawa, and H. Sato. 1998. Effect of activated carbon on the bioleaching of chalcopyrite concentrate. International Journal of Mineral Processing 55 (2):87–94. doi: 10.1016/S0301-7516(98)00026-X.
  • Navarro, G. R. B., A. Zanardo, and C. Carolina Montibeller. 2017. Livro de Referência de Minerais Comuns e Economicamente Relevantes: Sulfetos. Museu de Minerais, Minérios e Rochas “Prof. Dr. Heinz Ebert”. https://museuhe.com.br/site/wp-content/uploads/2018/02/Museu-HE-CALCOPIRITA.pdf.
  • Nazari, G., and E. Asselin. 2009. Morphology of chalcopyrite leaching in acidic ferric sulfate media. Hydrometallurgy 96 (3):183–88. doi: 10.1016/j.hydromet.2008.09.004.
  • Nicol, M. J. 2016. Photocurrents at chalcopyrite and pyrite electrodes under leaching conditions. Hydrometallurgy 163 (August):104–07. doi: 10.1016/j.hydromet.2016.03.018.
  • Nicol, M. J. 2017. The anodic behaviour of chalcopyrite in chloride solutions: overall features and comparison with sulfate solutions. Hydrometallurgy 169 (May):321–29. doi: 10.1016/j.hydromet.2017.02.009.
  • Nicol, M. J. 2023. The role of the iodide/iodine couple as a redox mediator in the dissolution of chalcopyrite in sulfate media. An electrochemical study. Hydrometallurgy 220 (December 2022):106088. doi: 10.1016/j.hydromet.2023.106088.
  • Norris, P. R., and J. P. Owen. 1993. Mineral sulphide oxidation by enrichment cultures of novel thermoacidophilic bacteria. FEMS Microbiology Reviews 11 (1–3):51–56. doi: 10.1111/j.1574-6976.1993.tb00266.x.
  • O’Connor, G. M., and J. J. Eksteen. 2020. A critical review of the passivation and semiconductor mechanisms of chalcopyrite leaching. Minerals Engineering 154 (April):106401. doi: 10.1016/j.mineng.2020.106401.
  • O’Connor, G. M., K. Lepkova, J. J. Eksteen, and E. A. Oraby. 2018. Electrochemical behaviour and surface analysis of chalcopyrite in alkaline glycine solutions. Hydrometallurgy 182 (May):32–43. doi: 10.1016/j.hydromet.2018.10.009.
  • Oguchi, T., K. Sato, and T. Teranishi. 1980. Optical reflectivity spectrum of a CuFeS2 single crystal. Journal of the Physical Society of Japan 48 (1):123–28. doi: 10.1143/JPSJ.48.123.
  • Olubambi, P. A., and J. H. Potgieter. 2009. Investigations on the mechanisms of sulfuric acid leaching of chalcopyrite in the presence of hydrogen peroxide. Mineral Processing and Extractive Metallurgy Review 30 (4):327–45. doi: 10.1080/08827500902958191.
  • Olvera, O. G., M. Rebolledo, and E. Asselin. 2016. Atmospheric ferric sulfate leaching of chalcopyrite: Thermodynamics, kinetics and electrochemistry. Hydrometallurgy 165 (October):148–58. doi: 10.1016/j.hydromet.2015.09.017.
  • Osseo-Asare, K. 1992. Semiconductor electrochemistry and hydrometallurgical dissolution processes. Hydrometallurgy 29 (1–3):61–90. doi: 10.1016/0304-386X(92)90006-L.
  • Panda, S., A. Akcil, N. Pradhan, and H. Deveci. 2015. Current scenario of chalcopyrite bioleaching: A review on the recent advances to its heap-leach technology. Bioresource Technology 196 (November):694–706. doi: 10.1016/j.biortech.2015.08.064.
  • Pearce, C. I. 2006. Electrical and Magnetic Properties of Sulfides. Reviews in Mineralogy and Geochemistry 61 (1):127–80. doi: 10.2138/rmg.2006.61.3.
  • Pedroza, F. R. C., M. D. J. S. Aguilar, T. P. Treviño, A. M. Luévanos, and M. S. Castillo. 2012. Treatment of Sulfide Minerals by Oxidative Leaching with Ozone. Mineral Processing & Extractive Metallurgy Review 33 (4):269–79. doi: 10.1080/08827508.2011.584093.
  • Petersen, J., and D. G. Dixon. 2006. Competitive Bioleaching of Pyrite and Chalcopyrite. Hydrometallurgy 83 (1–4):40–49. doi: 10.1016/j.hydromet.2006.03.036.
  • Petiau, J., P. Sainctavit, and G. Calas. 1988. K X-Ray Absorption Spectra and Electronic Structure of Chalcopyrite CuFeS2. Materials Science and Engineering: B 1 (3–4):237–49. doi: 10.1016/0921-5107(88)90004-9.
  • Pradhan, N., K. C. Nathsarma, K. Srinivasa Rao, L. B. Sukla, and B. K. Mishra. 2008. Heap bioleaching of Chalcopyrite: A review. Minerals Engineering 21 (5):355–65. doi: 10.1016/j.mineng.2007.10.018.
  • Price, D. C., and J. P. Chilton. 1980. The Electroleaching of Bornite and Chalcopyrite. Hydrometallurgy 5 (4):381–94. doi: 10.1016/0304-386X(80)90027-4.
  • Pridmore, D. F., and R. T. Shuey. 1976. The Electrical Resistivity of Galena, Pyrite, and Chalcopyrite. American Mineralogist 61:248–59.
  • Ranjbar, M., M. Hasan Fazaelipoor, M. Schaffie, Z. Manafi, and M. Ranjbar Hamghavandi. 2017. Kinetic Analysis of Copper Sulfide (Chalcopyrite) Dissolution by Moderately Thermophilic Bacteria. Mineral Processing & Extractive Metallurgy Review 38 (5):292–97. doi: 10.1080/08827508.2017.1320651.
  • Rawlings, D. E. 2002. Heavy metal mining using microbes. Annual Review of Microbiology 56 (1):65–91. doi: 10.1146/annurev.micro.56.012302.161052.
  • Ren, Z., P. Krishnamoorthy, P. Zuñiga Sanchez, E. Asselin, D. G. Dixon, and N. Mora. 2020. Catalytic Effect of Ethylene Thiourea on the Leaching of Chalcopyrite. Hydrometallurgy 196 (February):105410. doi: 10.1016/j.hydromet.2020.105410.
  • Rios, D., S. Bellenberg, S. Christel, P. Lindblom, T. Giroux, and M. Dopson. 2023. Potential of Single and Designed Mixed Cultures to Enhance the Bioleaching of Chalcopyrite by Oxidation-Reduction Potential Control. Hydrometallurgy 8 (3):106245. doi: 10.1016/j.hydromet.2023.106245.
  • Roberto, F. F., and A. Schippers. 2022. Progress in Bioleaching: Part B, Applications of Microbial Processes by the Minerals Industries. Applied Microbiology and Biotechnology 106 (18):5913–28. doi: 10.1007/s00253-022-12085-9.
  • Rodríguez, Y., A. Ballester, M. Luisa Blázquez, F. González, and J. Angel Muñoz. 2003. Study of bacterial attachment during the bioleaching of pyrite, chalcopyrite, and sphalerite. Geomicrobiology Journal 20 (2):131–41. doi: 10.1080/01490450303880.
  • Ropp, R. 2004. Luminescence and the Solid State. Studies in Inorganic Chemistry, vol. 21, 2nd ed. Amsterdam: Elsevier.
  • Ruiz, M. C., K. S. Montes, and R. Padilla. 2015. Galvanic Effect of Pyrite on Chalcopyrite Leaching in Sulfate-Chloride Media. Mineral Processing & Extractive Metallurgy Review 36 (1):65–70. doi: 10.1080/08827508.2013.868349.
  • Sandström, Å., A. Shchukarev, and J. Paul. 2005. XPS characterisation of chalcopyrite chemically and Bio-leached at high and Low Redox Potential. Minerals Engineering 18 (5):505–15. doi: 10.1016/j.mineng.2004.08.004.
  • Santos, A. L. A., F. Antonia Arena, A. Vicente Benedetti, and D. Bevilaqua. 2017. Effect of Redox Potential on Chalcopyrite Dissolution Imposed by Addition of Ferrous Ions. Eclética Química Journal 42 (1):40. doi: 10.26850/1678-4618eqj.v42.1.2017.p40-50.
  • Schipper, B. W., H.-C. Lin, M. A. Meloni, K. Wansleeben, R. Heijungs, and E. van der Voet. 2018. Estimating Global Copper Demand until 2100 with Regression and Stock Dynamics. Resources, Conservation & Recycling 132 (October 2017):28–36. doi: 10.1016/j.resconrec.2018.01.004.
  • Schippers, A., H. Sabrina, V. Jürgen, D. Malte, S. Wolfgang, and W. Sabine. 2013. Biomining: Metal Recovery from Ores with Microorganisms. In Geobiotechnology I. Advances in Biochemical Engineering/Biotechnology, ed. A. Schippers, F. Glombitza, and W. Sand, 1–47. Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/10_2013_216.
  • Schippers, A., and W. Sand. 1999. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via Polysulfides and sulfur. Applied and Environmental Microbiology 65 (1):319–21. doi: 10.1128/AEM.65.1.319-321.1999.
  • Shiers, D. W., D. M. Collinson, and H. R. Watling. 2016. Life in Heaps: A Review of Microbial Responses to Variable Acidity in Sulfide Mineral Bioleaching Heaps for Metal Extraction. Research in Microbiology 167 (7):576–86. doi: 10.1016/j.resmic.2016.05.007.
  • Sohn, H.-J., and M. E. Wadsworth. 1980. Reduction of Chalcopyrite with SO2 in the Presence of Cupric Ions. JOM 32 (11):18–22. doi: 10.1007/BF03354577.
  • Srichandan, H., R. Kumar Mohapatra, P. Kumar Singh, S. Mishra, P. Kumar Parhi, and K. Naik. 2020. Column Bioleaching Applications, Process Development, Mechanism, Parametric Effect and Modelling: A Review. Journal of Industrial & Engineering Chemistry 90 (October):1–16. doi: 10.1016/j.jiec.2020.07.012.
  • Tao, J., X. Liu, X. Luo, T. Teng, C. Jiang, L. Drewniak, Z. Yang, and H. Yin. 2021. An Integrated Insight into Bioleaching Performance of Chalcopyrite Mediated by Microbial Factors: Functional Types and Biodiversity. Bioresource Technology 319 (October 2020):124219. doi: 10.1016/j.biortech.2020.124219.
  • Tapera, T., and A. N. Nikoloski. 2019. The Effect of Silver on the Acidic Ferric Sulfate Leaching of Primary Copper Sulfides under Recycle Solution Conditions Observed in Heap Leaching. Part 4: Semiconductor Behaviour. Hydrometallurgy 186 (January):50–57. doi: 10.1016/j.hydromet.2019.03.016.
  • Teranishi, T., and K. Sato. 1975. Optical, Electrical and Magnetic Properties of Chalcopyrite, CuFeS2. Le Journal de Physique Colloques 36 (C3):C3–149–C3–153. doi: 10.1051/jphyscol:1975327.
  • Thiel, R., and M. E. Smith. 2004. State of the Practice Review of Heap Leach Pad Design Issues. Geotextiles and Geomembranes 22 (6):555–68. doi: 10.1016/j.geotexmem.2004.05.002.
  • Third, K., R. Cord-Ruwisch, and H. R. Watling. 2000. The Role of Iron-Oxidizing Bacteria in Stimulation or Inhibition of Chalcopyrite Bioleaching. Hydrometallurgy 57 (3):225–33. doi: 10.1016/S0304-386X(00)00115-8.
  • Third, K., R. Cord-Ruwisch, and H. R. Watling. 2002. Control of the redox potential by oxygen limitation improves bacterial leaching of chalcopyrite. Biotechnology and Bioengineering 78 (4):433–41. doi: 10.1002/bit.10184.
  • Thomeo, Y. M. 2021. Otimização Da Lixiviação de Minério Calcopirítico Concentrado Em Condição Mesofílica. Araraquara: Universidade Estadual Paulista.
  • Tian, Z., H. Li, Q. Wei, W. Qin, and C. Yang. 2021. Effects of Redox Potential on Chalcopyrite Leaching: An Overview. Minerals Engineering 172 (August):107135. doi: 10.1016/j.mineng.2021.107135.
  • Toledo, A. G. R., D. Bevilaqua, S. Panda, and A. Akcil. 2023. Hydrometallurgical Processing of Sulfide Minerals from the Perspective of Semiconductor Electrochemistry: A Review. Minerals Engineering 204 (September):108409. doi: 10.1016/j.mineng.2023.108409.
  • Toledo, A. G. R., R. Biancalana Costa, T. Palladino Delforno, F. Antonia Arena, and D. Bevilaqua. 2023. Exploring Chalcopyrite (Bio)leaching Mechanisms under Thermophilic Conditions. Minerals Engineering 204 (September):108417. doi: 10.1016/j.mineng.2023.108417.
  • Toledo, A. G. R., S. Prioto Tayar, F. Antonia Arena, A. Vicente Benedetti, and D. Bevilaqua. 2022. New Insights into Oxidative-Reductive Leaching of Chalcopyrite Concentrate Using a Central Composite Factorial Design. Minerals Engineering 180 (February):107467. doi: 10.1016/j.mineng.2022.107467.
  • Torma, A. E. 1987. Impact of biotechnology on metal extractions. Mineral Processing and Extractive Metallurgy Review 2 (4):289–330. doi: 10.1080/08827508708952609.
  • Tossell, J. A., D. S. Urch, D. J. Vaughan, and G. Wiech. 1982. The electronic structure of CuFeS2, Chalcopyrite, from X-ray emission and X-ray photoelectron spectroscopy and X α calculations. The Journal of Chemical Physics 77 (1):77–82. doi: 10.1063/1.443603.
  • Trasatti, S. 1986. The absolute electrode potential: An explanatory note (recommendations 1986). Pure and Applied Chemistry 58 (7):955–66. doi: 10.1351/pac198658070955.
  • Tributsch, H. 2001. Direct versus Indirect Bioleaching. Hydrometallurgy 59 (2–3):177–85. doi: 10.1016/S0304-386X(00)00181-X.
  • Tributsch, and Bennett. 1981a. Semiconductor-Electrochemical Aspects of Bacterial Leaching. I. Oxidation of Metal Sulphides with Large Energy Gaps. Journal of Chemical Technology & Biotechnology 31 (1):565–77. doi: 10.1002/jctb.280310176.
  • Tributsch, and Bennett. 1981b. Semiconductor-Electrochemical Aspects of Bacterial Leaching. Part 2. Survey of Rate-Controlling Sulphide Properties. Journal of Chemical Technology & Biotechnology 31 (1):627–35. doi: 10.1002/jctb.280310186.
  • Turner, D. R. 1960. On the mechanism of chemically etching germanium and silicon. Journal of the Electrochemical Society 107 (10):810. doi: 10.1149/1.2427519.
  • Uosaki, K., and K. Hideaki. 1986. Theoretical Aspects of Semiconductor Electrochemistry. In Modern Aspects of Electrochemistry, ed. B. E. Conway, J. O. Bockris, and R. E. White, vol. 18, 1st ed. 1–60. Modern Aspects of Electrochemistry. Boston, MA: Springer US. doi: 10.1007/978-1-4613-1791-3.
  • Vaughan, D. J., and J. A. Tossell. 1983. Electronic structures of sulfide minerals? Theory and experiment. Physics and Chemistry of Minerals 9 (6):253–62. doi: 10.1007/BF00309575.
  • Velásquez-Yévenes, L., M. Nicol, and H. Miki. 2010. The dissolution of chalcopyrite in chloride solutions. Hydrometallurgy 103 (1–4):108–13. doi: 10.1016/j.hydromet.2010.03.001.
  • Vera, M., A. Schippers, S. Hedrich, and W. Sand. 2022. Progress in Bioleaching: Fundamentals and Mechanisms of Microbial Metal Sulfide Oxidation – Part a. Applied Microbiology and Biotechnology 106 (21):6933–52. doi: 10.1007/s00253-022-12168-7.
  • Vera, M., A. Schippers, and W. Sand. 2013. Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation—part a. Applied Microbiology and Biotechnology 97 (17):7529–41. doi: 10.1007/s00253-013-4954-2.
  • Vilcáez, J., K. Suto, and C. Inoue. 2008. Bioleaching of Chalcopyrite with thermophiles: Temperature–pH–ORP dependence. International Journal of Mineral Processing 88 (1–2):37–44. doi: 10.1016/j.minpro.2008.06.002.
  • Viramontes-Gamboa, G., M. M. Peña-Gomar, and D. G. Dixon. 2010. Electrochemical Hysteresis and Bistability in Chalcopyrite Passivation. Hydrometallurgy 105 (1–2):140–47. doi: 10.1016/j.hydromet.2010.08.012.
  • Wang, J., R. Liao, L. Tao, H. Zhao, R. Zhai, W. Qin, and G. Qiu. 2017. A Comprehensive Utilization of Silver-Bearing Solid Wastes in Chalcopyrite Bioleaching. Hydrometallurgy 169 (May):152–57. doi: 10.1016/j.hydromet.2017.01.006.
  • Warren, G. W., M. E. Wadsworth, and S. M. El-Raghy. 1982. Passive and transpassive anodic behavior of chalcopyrite in acid solutions. Metallurgical Transactions B 13 (4):571–79. doi: 10.1007/BF02650014.
  • Watling, H. R. 2006. The Bioleaching of Sulphide Minerals with Emphasis on Copper Sulphides — a Review. Hydrometallurgy 84 (1–2):81–108. doi: 10.1016/j.hydromet.2006.05.001.
  • Watling, H. R. 2013. Chalcopyrite Hydrometallurgy at Atmospheric Pressure: 1. Review of Acidic Sulfate, Sulfate–Chloride and Sulfate–Nitrate Process Options. Hydrometallurgy 140 (November):163–80. doi: 10.1016/j.hydromet.2013.09.013.
  • Winarko, R. 2022. Iodine-Assisted Heap Leaching of Chalcopyrite: Laboratory and Modelling Studies. Vancouver: The University of British Columbia. doi: 10.14288/1.0416283.
  • Wu, J., J. Ahn, and J. Lee. 2021. Kinetic and Mechanism Studies Using Shrinking Core Model for Copper Leaching from Chalcopyrite in Methanesulfonic Acid with Hydrogen Peroxide. Mineral Processing and Extractive Metallurgy Review 42 (1):38–45. doi: 10.1080/08827508.2020.1795850.
  • Xiao, Y., X. Liu, W. Dong, Y. Liang, J. Niu, Y. Gu, L. Ma, X. Hao, X. Zhang, Z. Xu, et al. 2017. Effects of pyrite and sphalerite on Population Compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process. Archives of Microbiology 199 (5):757–66. doi: 10.1007/s00203-017-1342-9.
  • Xu, Y., and M. A. A. Schoonen. 2000. The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals. American Mineralogist 85 (3–4):543–56. doi: 10.2138/am-2000-0416.
  • Yang, B., M. Gan, W. Luo, S. Zhou, P. Lei, J. Zeng, W. Sun, J. Zhu, and Y. Hu. 2017. Synergistic Catalytic Effects of Visible Light and Graphene on Bioleaching of Chalcopyrite. RSC Advances 7 (79):49838–48. doi: 10.1039/C7RA10015A.
  • Yang, B.-J., M. Lin, J. Fang, R. Zhang, W. Luo, X. Wang, R. Liao, B. Wu, J. Wang, M. Gan, et al. 2020. Combined Effects of Jarosite and Visible Light on Chalcopyrite Dissolution Mediated by Acidithiobacillus Ferrooxidans. Science of the Total Environment 698 (January):134175. doi: 10.1016/j.scitotenv.2019.134175.
  • Yang, B.-J., W. Luo, Q. Liao, J.-Y. Zhu, M. Gan, X.-D. Liu, and G.-Z. Qiu. 2020. Photogenerated-Hole Scavenger for Enhancing Photocatalytic Chalcopyrite Bioleaching. Transactions of Nonferrous Metals Society of China 30 (1):200–11. doi: 10.1016/S1003-6326(19)65192-7.
  • Yang, C., W. Qin, H. Zhao, J. Wang, and X. Wang. 2018. Mixed potential plays a key role in leaching of chalcopyrite: Experimental and theoretical analysis. Industrial & Engineering Chemistry Research 57 (5):1733–44. doi: 10.1021/acs.iecr.7b02051.
  • Yepsen, O., J. Yáñez, and H. D. Mansilla. 2018. Photocorrosion of Copper Sulfides: Toward a Solar Mining Industry. Solar Energy 171 (February):106–11. doi: 10.1016/j.solener.2018.06.049.
  • Yoo, K., S.-K. Kim, J.-C. Lee, M. Ito, M. Tsunekawa, and N. Hiroyoshi. 2010. Effect of Chloride Ions on Leaching Rate of Chalcopyrite. Minerals Engineering 23 (6):471–77. doi: 10.1016/j.mineng.2009.11.007.
  • Yu, S., R. Liao, B. Yang, C. Fang, Z. Wang, Y. Liu, B. Wu, J. Wang, and G. Qiu. 2022. Chalcocite (Bio)hydrometallurgy—Current State, Mechanism, and Future Directions: A Review. Chinese Journal of Chemical Engineering 41 (January):109–20. doi: 10.1016/j.cjche.2021.12.014.
  • Zanetta-Colombo, N. C., T. Scharnweber, D. A. Christie, C. A. Manzano, M. Blersch, E. M. Gayo, A. A. Muñoz, Z. L. Fleming, and M. Nüsser. 2024. When Another One Bites the Dust: Environmental Impact of Global Copper Demand on Local Communities in the Atacama Mining Hotspot as Registered by Tree Rings. Science of the Total Environment 920 (April):170954. doi: 10.1016/j.scitotenv.2024.170954.
  • Zhang, Y., H. Zhao, L. Qian, M. Sun, X. Lv, L. Zhang, J. Petersen, and G. Qiu. 2020. A Brief Overview on the Dissolution Mechanisms of Sulfide Minerals in Acidic Sulfate Environments at Low Temperatures: Emphasis on Electrochemical Cyclic Voltammetry Analysis. Minerals Engineering 158 (932):106586. doi: 10.1016/j.mineng.2020.106586.
  • Zhao, C.-X., B.-J. Yang, X.-X. Wang, H.-B. Zhao, M. Gan, G.-Z. Qiu, and J. Wang. 2020. Catalytic Effect of Visible Light and Cd2+ on Chalcopyrite Bioleaching. Transactions of Nonferrous Metals Society of China 30 (4):1078–90. doi: 10.1016/S1003-6326(20)65279-7.
  • Zhao, C., B. Yang, R. Liao, M. Hong, S. Yu, S. Liu, J. Wang, and G. Qiu. 2022. Combined Effect and Mechanism of Visible Light and Ag+ on Chalcopyrite Bioleaching. Minerals Engineering 175 (October 2021):107283. doi: 10.1016/j.mineng.2021.107283.
  • Zhao, C., B. Yang, R. Liao, M. Hong, S. Yu, J. Wang, and G. Qiu. 2022. Catalytic Mechanism of Manganese Ions and Visible Light on Chalcopyrite Bioleaching in the Presence of Acidithiobacillus Ferrooxidans. Chinese Journal of Chemical Engineering 41 (January):457–65. doi: 10.1016/j.cjche.2021.10.009.
  • Zhao, H., X. Huang, J. Wang, Y. Li, R. Liao, X. Wang, X. Qiu, Y. Xiong, W. Qin, and G. Qiu. 2017. Comparison of Bioleaching and Dissolution Process of p-Type and n-Type Chalcopyrite. Minerals Engineering 109 (March):153–61. doi: 10.1016/j.mineng.2017.03.013.
  • Zhao, H., J. Wang, C. Yang, M. Hu, X. Gan, L. Tao, W. Qin, and G. Qiu. 2015. Effect of Redox Potential on Bioleaching of Chalcopyrite by Moderately Thermophilic Bacteria: An Emphasis on Solution Compositions. Hydrometallurgy 151 (January):141–50. doi: 10.1016/j.hydromet.2014.11.009.
  • Zhao, H., Y. Zhang, X. Zhang, L. Qian, M. Sun, Y. Yang, Y. Zhang, J. Wang, H. Kim, and G. Qiu. 2019. The Dissolution and Passivation Mechanism of Chalcopyrite in Bioleaching: An Overview. Minerals Engineering 136 (932):140–54. doi: 10.1016/j.mineng.2019.03.014.
  • Zhou, S., M. Gan, J. Zhu, Q. Li, S. Jie, B. Yang, and X. Liu. 2015. Catalytic Effect of Light Illumination on Bioleaching of Chalcopyrite. Bioresource Technology 182 (April):345–52. doi: 10.1016/j.biortech.2015.02.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.