66
Views
9
CrossRef citations to date
0
Altmetric
Original

Advances in Immunotherapy of Multiple Myeloma: From the Discovery of Tumor-Associated Antigens to Clinical Trials

, &
Pages 197-222 | Published online: 03 Aug 2009

REFERENCES

  • Myeloma Facts & Statistics. www.leukemia-lymphoma.org. Surveillance, Epidemiology and End Results (SEER), Cancer Statistics Review 1975–2003, National Cancer Institute, 2006.
  • R. Bataille and J.L. Harousseau, Multiple myeloma, N. Engl. J. Med., 336(23): 1657–1664, 1997.
  • C. Pellat-Deceunynck, M.P. Mellerin, N. Labarriere, G. Jego, A. Moreau-Aubry, J.L. Harousseau, F. Jotereau, and R. Bataille, The cancer germ-line genes MAGE-1, MAGE-3 and PRAME are commonly expressed by human myeloma cells, Eur. J. Immunol., 30(3): 803–809, 2000.
  • W. Matsui, C.A. Huff, Q. Wang, M.T. Malehorn, J. Barber, Y. Tanhehco, B.D. Smith, C.I. Civin, and R.J. Jones, Characterization of clonogenic multiple myeloma cells, Blood, 103(6): 2332–2336, 2004.
  • A.A. Jungbluth, S. Ely, M. DiLiberto, R. Niesvizky, B. Williamson, D. Frosina, Y.T. Chen, N. Bhardwaj, S. Chen-Kiang, L.J. Old, and H.J. Cho, The cancer testis antigens CT7 (MAGE-C1) and MAGEA3/6 are commonly expressed in multiple myeloma and correlate with plasma-cell proliferation, Blood, 106(1): 167–174, 2005.
  • P.R. Greipp, J. San Miguel, B.G. Durie, J.J. Crowley, B. Barlogie, J. Blade, M. Boccadoro, J.A. Child, H. Avet-Loiseau, R.A. Kyle, J.J. Lahuerta, H. Ludwig, G. Morgan, R. Powels, K. Shimizu, C. Shustik, P. Sonneveld, P. Tosi, I. Turesson, and J. Westin, International staging system for multiple myeloma, J. Clin. Oncol., 23(15): 3412–3420, 2005.
  • C.R. Parish, Cancer immunotherapy: The past, the present and the future, Immunol. Cell. Biol., 81(2): 106–113, 2003.
  • C.J.M. Melief and W.M. Kast, T cell immunotherapy of cancer, Res. Immunol., 142(5–6):425–429, 1991.
  • C.J.M. Melief and W.M. Kast, Lessons from T cell responses to virus-induced tumors for cancer eradication in general, Cancer Surv., 13: 81–99, 1992.
  • M.P. Velders, H. Schreiber, and W.M. Kast, Active immunization against cancer cells: Impediments and advances, Semin. Oncol., 25(6): 697–706, 1998.
  • J.A. Brinkman, S.C. Fausch, J.S. Weber, and W.M. Kast, Peptide-based vaccine for cancer immunotherapy, Expert Opin. Biol. Ther., 4(2): 181–198, 2004.
  • F.M. Burnet, Immunological aspects of malignant disease, Lancet, 1(7501): 1171–1174, 1967.
  • J.D. Lewis, B.D. Reilly, and R.K. Bright, Tumor-associated antigens: From discovery to immunity, Int. Rev. Immunol., 22(2): 81–111, 2003.
  • P. Van der Bruggen, C. Traversari, P. Chomez, C. Lurquin, E. De Plaen, B. Van den Eynde, A. Knuth, and T. Boon, A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma, Science, 254(5038): 1643–1647, 1991.
  • S.A. Rosenberg, Principles and practice of the biologic therapy of cancer. Philadelphia: Lippincott, 2000.
  • K.C. Parker, M. Shields, M. DiBrino, A. Brooks, and J.E. Coligan, Peptide binding to MHC class I molecules: Implications for antigenic peptide prediction, Immunol. Res., 14(1): 34–57, 1995.
  • J. D'Amaro, J.G.A. Houbiers, J.W. Drijfhout, R.M.P. Brandt, R. Schipper, J.N. Bouwes Bavinck, C.J.M. Melief, and W.M. Kast, A computer program for predicting possible CTL epitopes based on MHC class I peptide binding motives, Hum. Immunol., 43(1): 13–18, 1995.
  • B. Peters, H.H. Bui, S. Frankild, M. Nielson, C. Lundegaard, E. Kostem, D. Basch, K. Lamberth, M. Harndahl, W. Fleri, S.S. Wilson, J. Sidney, O. Lund, S. Buus, and A. Sette, A community resource benchmarking predictions of peptide binding to MHC-I molecules, PLoS Comput. Biol., 2(6): e65, 2006.
  • G. Van Bleek and S. Nathenson, Isolation of an endogenously processed immunodominant viral peptide from the class I H-2Kb molecule, Nature, 348(6298): 213–216, 1990.
  • P. Liang and A.B. Pardee, Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction, Science, 257(5072): 967–971, 1992.
  • F. Grizzi and M. Chiriva-Internati, The complexity of anatomical systems, Theor. Biol. Med. Model, 2: 26–34, 2005.
  • M. Chiriva-Internati, F. Grizzi, R.K. Bright, and W. Martin Kast, Cancer immunotherapy: Avoiding the road to perdition, J. Transl. Med., 2(1): 26–29, 2004.
  • M.J. Scanlan, A.O. Gure, A.A. Jungbluth, L.J. Old, and Y.T. Chen, Cancer/testis antigens: An expanding family of targets for cancer immunotherapy, Immun. Rev., 188: 22–32, 2002.
  • M.J. Scanlan, A.J.G. Simpson, and L.J. Old, The cancer/testis genes: Review, standardization, and commentary, Cancer Immunity, 4: 1–15, 2004.
  • L. Houet and H. Veelken, Active immunotherapy in multiple Myeloma, Eur. J. Cancer, 42(11): 1653–1660, 2006.
  • S.H. Lim, Z. Wang, M. Chiriva Internati, and Y. Xue, Sperm protein 17 is a novel cancer testis antigen in multiple myeloma, Blood, 97(5): 1508–1510, 2001.
  • M. Chiriva Internati, Z. Wang, E. Salati, K. Bumm, B. Barlogie, and S.H. Lim, Sperm protein 17 (Sp17) is a suitable target for immunotherapy of multiple myeloma, Blood, 100(3): 961–965, 2002.
  • Z. Wang, Y. Zhang, A. Mandal, J. Zhang, F.J. Giles, J.C. Herr, and S.H. Lim, The spermatozoa protein SLLP1 is a novel cancer testis antigen in hematological malignancies, Clin. Cancer Res., 10(19): 6544–6550, 2004.
  • B.J. Taylor, T. Reiman, J.A. Pittman, J.J. Keats, D.R. de Bruijn, M.J. Mant, A.R. Blech, and L.M. Pilarski, SSX cancer testis antigens are expressed in most multiple myeloma patients, J. Immunother, 28(6): 564–575, 2005.
  • Z. Wang, J. Zhang, Y. Zhang, and S.H. Lim, Span-Xb expression in myeloma cells is dependent on promoter hypomethylation and can be upregulated pharmacologically, Int. J. Cancer, 118(6): 1436–1444, 2005.
  • Z. Wang, Y. Zhang, H. Liu, E. Salati, M. Chiriva-Internati, and S.H. Lim, Gene expression and immunologic consequence of Span-Xb in myeloma and other hematologic malignancies, Blood, 101(3): 955–960, 2003.
  • J. Epstein and S. Yaccoby, The SCID-hu myeloma model. Methods Mol. Med., 113: 183–190, 2005.
  • A.R. Cattan and E. Douglas, The C.B. 17 SCID mouse strain as a model for human disseminated leukemia and myeloma in vivo, Leuk. Res., 18(7): 513, 1994.
  • A.W. Tong, Y.W. Huang, B.Q. Zhang, G. Netto, E.S. Vitetta, and M.J. Stone, Heterotransplantation of human multiple myeloma cells in severe combined immunodeficiency (SCID) mice, Anticancer Res., 13(3): 593–597, 1993.
  • W.T. Bellamy, A. Odeleye, P. Finely, B. Huizenga, W.S. Dalton, R.S. Weinstein, E.M. Hersh, and T.M. Grogan, An in vivo model of human multi drug-resistant multiple myeloma in SCID mice, Am. J. Pathol., 142(3): 691–698, 1993.
  • Y.W. Huang, J.A. Richardson, A.W. Tong, B.Q. Zhang, M.J. Stone, and E.S. Vitetta, Disseminated growth of human multiple myeloma cell line in mice with severe combined immunodeficiency disease, Cancer Res., 53(6): 1392–1396, 1993.
  • H. Suzuki, K. Yasukawa, T. Saito, R. Goitsuka, A. Hasegawa, Y. Ohsugi, T. Taga, and T. Kishimoto, Anti-human interleukin-6 receptor antibody inhibits human myeloma growth in vivo, Eur. J. Immunol., 22: 1989–1993, 1992.
  • Y.W. Huang, J.A. Richardson, and E.S. Vitetta, Anti CD-54 (Icam-1) has antitumor activity in scid mice with human myeloma cells, Cancer Res., 55(3): 610–616, 1995.
  • W.T. Bellamy, P. Mendibles, P. Bontje, F. Thompson, L. Richter, R.S. Weinstein, and T.M. Grogan, Development of an orthotopic SCID mouse-human tumor xenograft model displaying the multidrug- resistant phenotype, Cancer Chemother Pharmacol, 37(4): 305–316, 1996.
  • S. Yaccoby, B. Barlogie, and J. Epstein, Primary myeloma cells growing in SCID-hu mice: A model for studying the biology and treatment of myeloma and its manifestations, Blood, 92(8): 2908–2913, 1998.
  • I. Vlodavsky, O. Goldsmith, and E. Zcharia, Mammalian heparanase: Involvement in cancer metastasis, angiogenesis and normal development, Semin Cancer Biol., 12(2): 121–129, 2002.
  • J.B. Maxhimer, R.M. Quiros, R. Stewart, K. Dowlatshahi, P. Gattuso, M. Fan, R.A. Prinz, and X. Xu, Heparanase-1 expression is associated with the metastatic potential of breast cancer, Surgery, 132(2): 326–333, 2002.
  • Y. Friedman, I. Vlodavsky, H. Aingorm, A. Aviv, T. Peretetz, I. Pecker, and O. Pappo, Expression of heparanase in normal, dysplastic and neoplastic human colonic mucosa and stroma: Evidence for its role in colonic tumorigenesis, Am. J. Pathol., 157(4): 1167–1175, 2000.
  • S. Ginath, J. Menczer, Y. Friedmann, H. Aingorn, A. Aviv, K. Tajima, A. Dantes, M. Glezerman, I. Vlodavsky, and A. Amsterdam, Expression of heparanase, Mdm2 and erbB2 in ovarian cancer, Int. J. Oncol., 18(6): 1133–1144, 2001.
  • K. Gohji, M. Okamoto, S. Kitazawa, M. Toyoshima, J. Dong, Y. Katsuoka, and M. Nakajima, Heparanase protein and gene expression in bladder cancer, J. Urol., 166(4): 1286–1290, 2001.
  • A. Koliopanos, H. Friess, J. Kleeff, X. Shi, Q. Liao, I. Pecker, I. Vlodavsky, A. Zimmermann, and M.W. Buchler, Heparanase expression in primary and metastatic pancreatic cancer, Cancer Res., 61(12): 4655–4659, 2001.
  • M. Bitan, A. Polliack, G. Zecchina, A. Nagler, Y. Friedmann, L. Nadav, V. Deutsch, I. Pecker, A. Eldor, I. Vlodavsky, and B.Z. Katz, Heparanase expression in human leukemias is restricted to acute myeloid leukemias, Exp. Hematol., 30(1): 34–41, 2002.
  • T. Kelly, H.Q. Miao, Y. Yang, E. Navarro, P. Kussie, Y. Huang, V. MacLeod, J. Casciano, L. Joseph, F. Zhan, M. Zangari, B. Barlogie, J. Shaughnessy, and R.D. Sanderson, High heparanase activity in multiple myeloma is associated with elevated microvessel density, Cancer Res., 63(24): 8749–8756, 2003.
  • Y. Yang, V. Mcleod, M. Bendre, Y. Huang, M.A. Theus, H.-Q. Miao, P. Kussie, S. Yaccoby, J. Epstein, J.L. Suva, T. Kelly, and R.D. Sanderson, Heparanase promotes the spontaneous metastasis of myeloma cell to bones, Blood, 105(3): 1303–1309, 2005.
  • G.R. Mundy, B. Boyce, D. Hughes, K. Wright, L. Bonewald, and S. Dallas, The effects of cytochines and growth factors on osteoblastic cells, Bone, 17(2 suppl.): 71S–75S, 1995.
  • S.C. Manolagas, Birth and death of bone cells: Basic regulatory mechanisms and implications for the patogenesis and treatment of osteoporosis, Endocr. Rev., 21(2): 115–137, 2000.
  • R.S. Weinstein and S.C. Manolagas, Apoptosis and osteoporosis, Am. J. Med., 108(2): 153–164, 2000.
  • R. Bataille, D. Chappard, C. Marcelli, P. Dessauw, P. Baldet, J. Sany, and C. Alexandre, Recruitment of new osteoblast and osteoclasts is the earliest critical event in the pathogenesis of human multiple myeloma, J. Clin. Invest., 88(1): 62–66, 1991.
  • A. Vacca, D. Ribatti, L. Roncali, G. Serio, F. Silvestris, and F. Dammaco, Bone marrow angiogenesis and progression in multiple myeloma, Br. J. Haematol., 87(3): 503–508, 1994.
  • S. Yaccoby, M.J. Wezeman, A. Henderson, M. Cottler-Fox, Q. Yi, B. Barlogie, and J. Epstein, Cancer and the microenvironment: Myeloma osteoclast interaction as a model, Cancer Res., 64(4): 2016–2023, 2004.
  • I. Grigorieva, X. Thomas, and J. Epstein, The bone marrow stromal environment is a major factor in myeloma cell resistance to dexamethasone, Exp. Hematol., 26(7): 597–603, 1998.
  • J. Hardin, S. MacLeod, I. Grigorieva, R. Chang, B. Barlogie, H. Xiao, and J. Epstein, IL-6 prevents dexamethasone-induced myeloma cell death, Blood, 84(9): 3063–3070, 1994.
  • A. Lichtenstein, Y. Tu, C. Fady, R. Vescio, and J. Berenson, IL-6 inhibits Fas-induced apoptosis of malignant plasma cells, Cell. Immunol., 162(2): 248–255, 1995.
  • Y. Ge, F. Zhan, B. Barlogie, J. Epstein, J. Shaugnessy Jr, and S. Yaccoby, Fibroblast activation protein (FAP) is upregulated in myelomatous bone and supports myeloma cell survival, Br. J. Haematol., 133(1): 83–92, 2006.
  • X. Xin, T.J. Abrams, P.W. Hollenbeck, K.G. Rendhal, Y. Tang, Y.A. Oei, M.G. Embry, D.E. Swinarski, E.N. Garrett, N.K. Pryer, S. Trudel, B. Jallal, D.B. Mendel, and C.C. Heise, CHIR-258 is efficacious in a newly developed fibroblast growth factor receptor 3-expressing orthotopic multiple myeloma model in mice, Clin. Cancer Res., 12(16): 4908–4915, 2006.
  • P.L. Bergsagel and W.M. Kuhel, Chromosome translocations in multiple myeloma, Oncogene, 20(40): 5611–5622, 2001.
  • M. Chesi, E. Nardini, R.S. Lim, K.D. Smith, W.M. Kuehl, and P.L. Bergsagel, The t(4;14) translocation in myeloma deregulates both FGFR3 and a novel gene MMSET, resulting in IgH/MMSEThybrid transcripts, Blood, 92(9): 3025–3034, 1998.
  • M. Chesi, L.A. Brents, S.A. Ely, C. Bais, D.F. Robbiani, E.A. Mesri, W.M. Kuehl, and P.L. Bergsagel, Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma, Blood, 97(3): 729–736, 2001.
  • Z. Li, Y.X. Zhu, E.E. Plowright, P.L. Bergsagel, M. Chesi, B. Patterson, T.S. Hawley, R.G. Hawley, and A.K. Stewart, The myeloma associated oncogene fibroblast growth factor receptor 3 is transforming in hematopoietic cells, Blood, 97(8): 2413–2419, 2001.
  • S. Trudel, S. Ely, Y. Farooqi, M. Affer, D.F. Robbiani, M. Chesi, and P.L. Bergsagel, Inhibition of FGFR3 induces terminal differentiation and apoptosis in t(4:14) myeloma, Blood, 103: 3521–3528, 2004.
  • W. Matsui, C.A. Huff, Q. Wang, M.T. Malehorn, J. Barber, Y. Tanhehco, B.D. Smith, C.I. Civin, and R.J. Jones, Characterization of clonogenic multiple myeloma cells, Blood, 103(6): 2332–2336, 2004.
  • C. Carlo-Stella, A. Guidetti, M. Di Nicola, P. Longoni, L. Cleris, C. Lavazza, M. Milanesi, R. Milani, M. Carabba, L. Farina, F. Formelli, A.M. Gianni, and P. Corradini, CD52 antigen expressed by malignant plasma cells can be targeted by alemtuzumab in vivo in NOD/SCID mice, Exp. Haematol., 34(6): 721–727, 2006.
  • M. Attal and J.L. Harousseau, Autologous peripheral blood progenitor cell transplantation for multiple myeloma, Bailieres Best Pract. Res. Clin. Haematol., 12(1-2): 171–191, 1999.
  • J.A. Cild, G.J. Morgan, F.E. Davies, R.G. Owen, S.E. Bell, K. Hawkins, J. Brown, M.T. Drayson, and P.J. Selby, High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma, N. Eng. J. Med., 348(19): 1875–1883,2003.
  • S.J. Harrison and G. Cook, Immunotherapy in multiple Myeloma – possibility or probability? Br. J. Haematol., 130(3): 344–362, 2005.
  • L.A. Emens, Roadmap to a better therapeutic tumor vaccine, Int. Rev. Immunol., 25(5-6): 415–443, 2006.
  • L.F. Porrata, D.A. Gastineau, D. Padley, K. Bundy, and S.N. Markovic, Re-infused autologous graft natural killer cells correlates with absolute lymphocyte count recovery after autologous stem cells tranplantation, Leuk. Lymphoma, 44(6): 997–1000, 2003.
  • D.M. Andrews, A.A. Scalzo, W.M. Yokoyama, M.J. Smyth, and M.A. Degli-Espositi, Functional interactions between dendritic cells and NK cells during viral infection, Nat. Immunol., 4(2): 175–181, 2003.
  • D.H. Chang, N. Liu, V. Klimek, H. Hassoun, A. Mazumder, S.D. Nimer, S. Jagannath, and M.V. Dhodapkar, Enhancement of ligand-dependent activation of human natural killer T cells by lenalidomide: Therapeutic implications, Blood, 108(2): 618–621, 2006.
  • A. Villunger, A. Egle, I. Marshitz, M. Kos, G. Bock, H. Ludwig, S. Geley, R. Kofler, and R. Greil, Constitutive expression of Fas (Apo-1/CD95) ligand on multiple myeloma cells: A potential mechanism of tumor induced suppression of immune surveillance, Blood, 90(1): 12–20, 1997.
  • T. Oyama, S. Ran, T. Ishida, S. Nadaf, L. Kerr, D.P. Carbone, and D.I. Gabrilovich, Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-K B activation in hemopoietic progenitor cells, J. Immunol., 160(3): 1224–1232, 1998.
  • B. Agrawal, M.J. Krantz, M.A. Reddish, and B.M. Longenecker, Cancer associated MUC1 mucin inhibits human T cell proliferation, which is reversible by IL-2, Nat. Med., 4(1): 43–49, 1998.
  • J.H. Harrison, G. Cook, R.J.B. Nibbs, and M. Prince, Immunotherapy of multiple myeloma: The start of a long and tortuous journey, Expert Rev. Anticancer Ther., 6(12): 1769–1785, 2006.
  • Q. Yi, A. Osterborg, S. Bergenbrant, H. Mellstedt, G. Holm, and A.K. Lefvert, Idiotype-reactive T cell subsets and tumor load in monoclonal gammopathies, Blood, 86(8): 3043–3049, 1995.
  • Y.J. Wen, B. Barlogie, and Q. Yi, Idiotype-specific cytotoxic T lymphocytes in multiple Myeloma: evidence for their capacity to lyse autologous primary tumor cells, Blood, 97(6): 1750–1755, 2001.
  • Y. Li, M. Benandi, Y. Deng, C. Dunbar, N. Munshi, S. Jagannath, L.W. Kwak, and H.K. Lyerly, Tumor specific recognition of human myeloma cells by idiotype induced CD8 T cells, Blood, 96(8): 2828–2833, 2000.
  • C. Bertinetti, K. Zirlik, K. Heining-Mikesch, G. Ihorst, H. Dierbach, C.F. Waller, and H. Veelken, A phase I trial of a novel intradermal idiotype vaccine in patients with advanced B-cell lymphoma: specific immune responses despite profound immunosuppression, Cancer Res., 66(8): 4496–4502, 2006.
  • A. Liso, K.E. Stockerl-Goldstein, S. Auffermann-Gretzinger, C.J. Benike, V. Reichardt, van A. Beckoven, R. Rajapaksa, E.G. Engelman, K.G. Blume, and R. Levy, Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma, Biol. Blood Marrow Transplant, 6(6): 621–627, 2000.
  • L.W. Kwak, R. Pennington, and D.L. Longo, Active immunization of murine allogeneic bone marrow transplant donors with B-cell tumour-derived idiotype: A strategy for enhancing the specific antitumour effect of marrow grafts, Blood, 87(7): 3053–3060, 1996.
  • S.B. Kim, S. Baskar, and L.W. Kwak, In vitro priming of myeloma antigen-specific allogeneic donor T cells with idiotype pulsed dendritic cells, Leuk. Lymphoma, 44(7): 1201–1208, 2003.
  • T. Osada, T.M. Clay, C.Y. Woo, M.A. Morse, and H.K. Lyerly, Dendritic cell based immunotherapy, Int. Rev. Immunol., 25(5-6): 377–413, 2006.
  • P. Serafini, K. Meckel, M. Kelso, K. Noonan, J. Califano, W. Koch, L. Dolcetti, V. Bronte, and I. Borrello, Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function, J. Exp. Med., 203(12): 2691–702, 2006.
  • V. Reichardt, C. Okada, A. Liso, C. Benike, K. Stockerl-Goldstein, E. Engleman, K. Blume, and R. Levy, Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma – a feasibility study, Blood, 93(7): 2411–2419, 1999.
  • V.L. Reichardt, C. Milazzo, W. Brugger, H. Einsele, L. Kanz, and P. Brossart, Idiotype vaccination of multiple myeloma patients using monocyte-derived dendritic cells, Haematologica, 88(10): 1139–1149, 2003.
  • Q. Yi, Immunotherapy in multiple myeloma: current strategies and future prospects, Expert Rev Vaccines, 2(3): 391–398, Jun., 2003.
  • Q. Yi, Dendritic cell-based immunotherapy in multiple myeloma, Leuk Lymphoma, 44(12): 2031–2038, Dec., 2003.
  • S.M. Szmania, N.A. Rosen, J. Freeman, R.B. Batchu, B. Barlogie, G. Tricot, M.H. Cottler-Fox, Q. Yi, and F. Van Rhee, Cryopreserved tumor protein loaded dendritic cell vaccines induce potent immune responses in patient with poor prognosis multiple myeloma, Blood, 102: 90–91, abstract no. 1652, 2003.
  • A.E. Guardino, R. Rajapaksa, K.H. Ong, K. Sheehan, and R. Levy, Production of myeloid dendritic cells (DCs) pulsed with tumor-specific idiotype protein for vaccination of patients with multiple myeloma, Cytotherapy, 8(3): 277–289, 2006.
  • K. Noonan, W. Matsui, P. Serafini, R. Carbley, G. Tan, J. Khalili, M. Bonyhadi, H. Levitsky, K. Whartenby, and I. Borrello, Activated marrow infiltrating lymphocytes effectively target plasma cells and their clonogenic precursors, Cancer Res., 65(5): 2026–2034, 2005.
  • S. Chen, C. Zani, Y. Khouri, and W.A. Marasco, Design of a genetic immunotoxin to eliminate toxin immunogenicity, Gene. Ther., 2(2): 116–123, 1995.
  • J.H. Ellis, K.A. Barber, A. Tutt, C. Hale, A.P. Lewis, M.J. Glennie, G.T. Stevenson, and J.S. Crowe, Engineered anti-CD38 monoclonal antibodies for immunotherapy of multiple myeloma, J. Immunol., 155(2): 925–937, 1995.
  • I.B. Bayer-Garner, R.D. Sanderson, M.V. Dhodapkar, R.B. Owens, and C.S. Wilson, Syndecan-1 (CD138) immunoreactivity in bone marrow biopsies of multiple myeloma: shed syndecan-1 accumulates in fibrotic regions, Mod. Pathol., 14(10): 1052–1058, 2001.
  • Y.W. Huang, J.A. Richardson, and E.S. Vitetta, Anti-CD54 (ICAM-1) has antitumor activity in SCID mice with human myeloma cells, Cancer Res., 55(3): 610–16, 1995.
  • J.J. Westendorf, G.J. Ahmann, R.J. Armitage, M.K. Spriggs, J. Lust, P.R. Greipp, J.A. Katzmann, and D.F. Jelinek, CD40 expression in malignant plasma cells. Role in stimulation of autocrine IL-6 secretion by a human myeloma cell line, J. Immunol., 152(1): 117–128, 1994.
  • J.C. Yang, L. Haworth, R.M. Sherry, P. Hwu, D.J. Schwarzentruber, S.L. Topalian, S.M. Steinberg, H.X. Chen, and S.A. Rosenberg, A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer, N. Engl. J. Med., 349(5): 427–434, 2003.
  • S.H. Lim, Y. Zhang, Z. Wang, R. Varadarajan, P. Periman, and W.V. Esler, Rituximab administration following autologous stem cells transplantation for multiple myeloma is associated with severe IgM deficiency, Blood, 103(5): 1971–1972, 2004.
  • P. Musto, A.M. Carella, Jr. M.M. Greco, A. Falcone, G. Sanpaolo, C. Bodenizza, N. Cascavilla, L. Melillo, and A.M. Carella, Short progression-free survival in myeloma patients receiving rituximab as maintenance therapy after autologous transplantation, Br. J. Haematol., 123(4): 746–747, 2003.
  • W. Matsui, C.A. Huff, Q. Wang, M.T. Malehorn, J. Barber, Y. Tanhehco, B.D. Smith, C.I. Civin, and R.J. Jones, Characterization of clonogenic multiple myeloma cells, Blood, 103(6): 2332–2336, 2004.
  • R.J. Jones, Differentiation of cancer stem cells, Exp. Hematol., 31(7 Suppl. 1), S136, 2003.
  • T. Azuma, K. Otsuki, C.J. Kuzushima, C.J. Froelich, S. Fujita, and M. Yasukawa, Myeloma cells are highly sensitive to the granule exocytosis pathway mediated by WT1-specific cytotoxic T lymphocytes, Clin. Cancer Res., 10(21): 7402–7412, 2004.
  • T. Goto, S.J. Kennel, M. Abe, M. Takishita, M. Kosaka, A. Solomon, and S. Saito, A novel membrane antigen selectively expressed on terminally differentiated human B cells, Blood, 84(6): 1922–1930, 1994.
  • A. Jalili, S. Ozaki, T. Hara, H. Shibata, T. Hashimoto, M. Abe, Y. Nishioka, and T. Matsumoto, Induction of HM1.24 peptide-specific cytotoxic T lymphocytes by using peripheral-blood stem-cell harvests in patients with multiple myeloma, Blood, 106(10): 3538–3545, 2005.
  • M. Chiriva-Internati, Y. Liu, J.A. Weidanz, F. Grizzi, H. You, W. Zhou, K. Bumm, B. Barlogie, J.L. Mehta, and P.L. Hermonat, Testing recombinant adeno-associated virus-gene loading of dendritic cells for generating potent cytotoxic T lymphocytes against a prototype self-antigen, multiple myeloma HM1.24, Blood, 102(9): 3100–3107, 2003.
  • S.B. Rew, K. Peggs, I. Sanjuan, A.R. Pizzey, Y. Koishihara, S. Kawai, M. Kosaka, S. Ozaki, B. Chain, and K.L. Yong, Generation of potent antitumour CTL from patients with multiple myeloma directed against HM1.24, Clin. Cancer Res., 11(9): 3377–3384, 2005.
  • C. Rosenfeld, M.A. Cheever, and A. Gaiger, WT1 in acute leukaemia, chronic myelogenous leukaemia and myelodysplastic syndrome: therapeutic potential of WT1 targeted therapies, Leukaemia, 17(7): 1301–1312, 2003.
  • C. Scheibenbogen, A. Letsch, E. Thiel, A. Schmittel, V. Mailaender, S. Baerwolf, D. Nagorsen, and U. Keilholz. CD8 T-cell responses to Wilms tumour gene product WT1 and proteinase 3 in patients with acute myeloid leukaemia, Blood, 100(6): 2132–2137, 2002.
  • C. Choi, M. Witzens, M. Bucur, M. Feuerer, N. Sommerfeldt, A. Trojan, A. Ho, V. Schmirrmacher, H. Goldschmidt, and P. Beckove, Enrichment of functional CD8 memory T cells specific for MUC1 in bone marrow of patients with multiple myeloma, Blood, 105(5): 2132–2134, 2005.
  • D. Atanackovic, J. Arfsten, Y. Cao, S. Gnjatic, F. Schnieders, K. Bartels, G. Schilling, C. Faltz, C. Wolschke, J. Dierlamm, G. Ritter, T. Eiermann, D.K. Hossfeld, A.R. Zander, A.A. Jungbluth, L.J. Old, C. Bokemeyer, and N. Kroger, Cancer-testis antigens are commonly expressed in multiple myeloma and induce systemic immunity following allogeneic stem cell transplantation, Blood, 109(3): 1103–1112, 2007.
  • F. Van Rhee, S.M. Szmania, F. Zhan, S.K. Gupta, M. Pomtree, P. Lin, R.B. Batchu, A. Moreno, G. Spagnoli, J. Shaughnessy, and G. Tricot, NY-ESO-1 is highly expressed in poor-prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses, Blood, 105(10): 3939–3944, 2005.
  • M. Chiriva Internati, Z. Wang, E. Salati, D. Wroblewski, and S.H. Lim, Successful generation of sperm protein 17 (Sp17)-specific cytotoxic T lymphocytes from normal donors: implication for tumour-specific adoptive immunotherapy following allogeneic stem cell transplantation for Sp17-positive multiple myeloma, Scand. J. Immunol., s56(4): 429–433, 2002.
  • R.A. Morgan, M.E. Dudley, J.R. Wunderlich, M.S. Hughes, J.C. Yang, R.M. Sherry, R.E. Royal, S.L. Topalian, U.S. Kammula, N.P. Restifo, Z. Zheng, A. Nahvi, C.R. de Vries, L.J. Rogers-Freezer, S.A. Mavroukakis, and S.A. Rosenberg, Cancer regression in patients after transfer of genetically engineered lymphocytes, Science, 314(5796): 126–129, 2006.
  • D.I. Gabrilovich, V. Bronte, S.H. Chen, M.P. Colombo, A. Ochoa, S. Ostrand-Rosenberg, and H. Schreiber, The terminology issue for myeloid-derived suppressor cells, Cancer Res., 67(1): 425, 2007.
  • I.M. Borrello and E.M. Sotomayor, Cancer vaccines for hematologic malignancies, Cancer Control, 9(2): 138–151, 2002.
  • G.A. Rabinovich, D. Gabrilovich, and E.M. Sotomayor, Immunosuppressive strategies that are mediated by tumor cells, Annu. Rev. Immunol., 25: 267–296, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.