183
Views
20
CrossRef citations to date
0
Altmetric
Original

Tumor-Associated Antigens and Biomarkers in Cancer and Immune Therapy

Pages 223-247 | Published online: 03 Aug 2009

REFERENCES

  • D. Thomson, The carcinoembryonic antigen (CEA) radioimmunoassay. Proc. R. Soc. Med., 65: 635–636, 1972.
  • W.S. Dalton and S.H. Friend, Cancer biomarkers–an invitation to the table. Science, 312(5777): 1165–1168, 2006.
  • C.F. Basil, Y. Zhao, K. Zavaglia, , et al., Common cancer biomarkers, Cancer Res., 66: 2953–2961, 2006.
  • P.S. Nelson, Identifying immunotherapeutic targets for prostate carcinoma through the analysis of gene expression profiles, Ann. N. Y. Acad. Sci., 975: 232–246, 2002.
  • A.M. Glas, A. Floore, L.J. Delahaye, , et al., Converting a breast cancer microarray signature into a high-throughput diagnostic test, BMC Genomics, 7: 278, 2006.
  • T. Olafsen, V.E. Kenanova, G. Sundaresan, , et al., Optimizing radiolabeled engineered anti-p185HER2 antibody fragments for in vivo imaging, Cancer Res., 65(13): 5907–5916, 2005.
  • L.K. Mattison, J. Fourie, Y. Hirao, , et al., The uracil breath test in the assessment of dihydropyrimidine dehydrogenase activity: Pharmacokinetic relationship between expired 13CO2 and plasma [2-13C]Dihydrouracil, Clin. Cancer Res., 12(2): 549–555, 2006.
  • P. Duramad, C.W. McMahon, A. Hubbard, , et al., Flow cytometric detection of intracellular Th1/Th2 cytokines using whole blood: Validation of immunologic biomarker for use in epidemiologic studies, Cancer Epidemiol Biomarkers Prev., 13(9): 1452–1458, 2004.
  • C.B. Ambrosone, Sample collection, processing, and storage for large-scale studies: Biorepositories to support cancer research, Cancer Epidemiol Biomarkers Prev., 15: 1574, 2006.
  • D.F. Ransohoff, Bias as a threat to the validity of cancer molecular-marker research, Nat. Rev. Cancer, 5(2): 142–149, 2005.
  • M.J. Fackler, M. McVeigh, J. Mehrotra, , et al., Quantitative multiplex methylation-specific PCR assay for the detection of promoter hypermethylation in multiple genes in breast cancer, Cancer Res., 64(13): 4442–4452, 2004.
  • D.E. Bassett, M.B. Eisen, and M.S. Boguski, Gene expression informatics [mdash]it's all in your mine, Nature Genetics, 21(1): 51–55, 1999.
  • A. Schumacher, P. Kapranov, Z. Kaminsky, , et al., Microarray-based DNA methylation profiling: Technology and applications, Nucleic Acids Res., 34: 528–542, 2006.
  • A. Butte, The use and analysis of microarray data, Nat. Rev. Drug Discov., 1: 951–960, 2002.
  • A. Brazma, P. Hingamp, J. Quackenbush, , et al., Minimum information about a microarray experiment (MIAME)[—]toward standards for microarray data, Nature Genetics, 29(4): 365–371, 2001.
  • T. Sjoblom, S. Jones, L.D. Wood, , et al., The consensus coding sequences of human breast and colorectal cancers, Science, 314(5797): 268–274, 2006.
  • F. Campagne and L. Skrabanek, Mining expressed sequence tags identifies cancer markers of clinical interest, BMC Bioinformatics, 7: 481, 2006.
  • C.H. Chung, P.S. Bernard, and C.M. Perou, Molecular portraits and the family tree of cancer, Nature Genetics, 32: 533–540.
  • E. Segal, N. Friedman, D. Koller, and A. Regev, A module map showing conditional activity of expression modules in cancer, Nature Genetics, 36(10): 1090–1098, 2004.
  • J.B. Welsh, L.M. Sapinoso, S.G. Kern, , et al., Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum, PNAS, 100(6): 3410–3415, 2003.
  • J.E. Staunton, D.K. Slonim, H.A. Coller, , et al., Chemosensitivity prediction by transcriptional profiling, PNAS, 98(19): 10787–10792, 2001.
  • S. Dan, T. Tsunoda, O. Kitahara, , et al., An integrated database of chemosensitivity to 55 anticancer drugs and gene expression profiles of 39 human cancer cell lines, Cancer Res., 62(4), 1139–1147, 2002.
  • E.C. Gunther, D.J. Stone, R.W. Gerwien, , et al., Prediction of clinical drug efficacy by classification of drug-induced genomic expression profiles in vitro, PNAS, 100(16): 9608–9613, 2003.
  • A. Potti, H.K. Dressman, A. Bild, , et al., Genomic signatures to guide the use of chemotherapeutics, Nature Medicine, 12(11): 1294–1300, 2006.
  • A. Esquela-Kerscher and F.J. Slack, Oncomirs [—] microRNAs with a role in cancer, Nature Reviews Cancer, 6(4): 259–269, 2006.
  • J.P. Lambert, M. Ethier, J.C. Smith, and D. Figeys, Proteomics: from gel based to gel free, Anal. Chem., 77: 3771–3787, 2005.
  • K.S. Anderson and J. LaBaer, The sentinel within: Exploiting the immune system for cancer biomarkers. J. Proteome. Res., 4: 1123–1133, 2005.
  • E.F. Petricoin, A.M. Ardekani, B.A. Hitt, , et al., Use of proteomic patterns in serum to identify ovarian cancer, Lancet, 359: 572–577, 2002.
  • E.P. Diamandis, Serum proteomic profiling by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for cancer diagnosis: Next steps, Cancer Res., 66(11): 5540–5541, 2006.
  • T.M. Pawlik, D.H. Hawke, Y. Liu, , et al., Proteomic analysis of nipple aspirate fluid from women with early-stage breast cancer using isotope-coded affinity tags and tandem mass spectrometry reveals differential expression of vitamin D binding protein, BMC Cancer, 6: 68, 2006.
  • G. Chen, T.G. Gharib, C. Huang, , et al., Proteomic analysis of lung adenocarcinoma: Identification of a highly expressed set of proteins in tumors, Clin. Cancer Res., 8(7): 2298–2305, 2002.
  • A. Grolleau, J. Bowman, B. Pradet-Balade, , et al., Global and specific translational control by rapamycin in T cells uncovered by microarrays and proteomics, J. Biol. Chem., 277(25): 22175–22184, 2002.
  • E.F. Petricoin, C. Belluco, R.P. Araujo, and L.A. Liotta, The blood peptidome: A higher dimension of information content for cancer biomarker discovery, Nat. Rev. Cancer, 6: 961–967, 2006.
  • E.F. Petricoin, III, V.E. Bichsel, V.S. Calvert, , et al., Mapping molecular networks using proteomics: A vision for patient-tailored combination therapy, J. Clin. Oncol., 23(15): 3614–3621, 2005.
  • R.S. Tirumalai, K.C. Chan, D.A. Prieto, , et al., Characterization of the low molecular weight human serum proteome, Mol. Cell. Proteomics, 2(10): 1096–1103, 2003.
  • M.S. Lowenthal, A.I. Mehta, K. Frogale, , et al., Analysis of albumin-associated peptides and proteins from ovarian cancer patients, Clin. Chem., 51: 1933–1945, 2005.
  • J. Palacios, E. Honrado, A. Osorio, , et al., Phenotypic characterization of BRCA1 and BRCA2 tumors based in a tissue microarray study with 37 immunohistochemical markers, Breast Cancer Res. Treat., 90(1): 5–14, 2005.
  • M. Uhlen, E. Bjorling, C. Agaton, , et al., A human protein atlas for normal and cancer tissues based on antibody proteomics, Mol. Cell Proteomics, 4(12): 1920–1932, 2005.
  • J.E. Ippolito, J. Xu, S. Jain, , et al., An integrated functional genomics and metabolomics approach for defining poor prognosis in human neuroendocrine cancers, PNAS, 102(28): 9901–9906, 2005.
  • B. Perroud, J. Lee, N. Valkova, , et al., Pathway analysis of kidney cancer using proteomics and metabolic profiling, Mol. Cancer, 5: 64, 2006.
  • G.V. Glinsky, O. Berezovska, and A.B. Glinskii, Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer, J. Clin. Invest., 115(6): 1503–1521, 2005.
  • I.C. Gerling, S. Singh, N.I. Lenchik, , et al., New data analysis and mining approaches identify unique proteome and transcriptome markers of susceptibility to autoimmune diabetes. Mol. Cell Proteomics, 5(2): 293–305, 2006.
  • A. Dalgleish and H. Pandha, Tumor antigens as surrogate markers and targets for therapy and vaccines, Adv. Cancer Res., 96: 175–190, 2007.
  • A.M. Jubb, H.I. Hurwitz, W. Bai, , et al., Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer, J. Clin. Oncol., 24(2): 217–227, 2006.
  • A. Sandler, R. Gray, M.C. Perry, , et al., Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer, N. Engl. J. Med., 355(24): 2542–2550, 2006.
  • R.L. Wahl, Tositumomab and 131I therapy in non-hodgkin's lymphoma, J. Nucl. Med., 46(1 suppl): 128S–140, 2005.
  • G.L. Plosker and D.P. Figgitt, Rituximab: A review of its use in non-Hodgkin's lymphoma and chronic lymphocytic leukaemia, Drugs, 63: 803–843, 2003.
  • S.A. Jacobs, N. Vidnovic, J. Joyce, , et al. Full-dose 90Y ibritumomab tiuxetan therapy is safe in patients with prior myeloablative chemotherapy, Clin. Cancer Res., 11(19): 7146s–7150, 2005.
  • N.E. Hynes and H.A. Lane, Erbb Receptors and Cancer: The Complexity of Targeted Inhibitors, Nat. Rev. Cancer, 5(5): 341–354, 2005.
  • D.J. Slamon, B. Leyland-Jones, S. Shak, , et al., Use of chemotherapy plus a monoclonal antibody against HER2 for Metastatic breast cancer that overexpresses HER2, N. Engl. J. Med., 344(11): 783–792, 2001.
  • F.J. Esteva, C.D. Cheli, H. Fritsche, , et al., Clinical utility of serum HER2/neu in monitoring and prediction of progression-free survival in metastatic breast cancer patients treated with trastuzumab-based therapies, Breast Cancer Res., 7(4): R436–443, 2005.
  • T. Okegawa, M. Kinjo, K. Nutuhara, and E. Higashihara, Pretreatment serum level of HER2/nue as a prognostic factor in metastatic prostate cancer patients about to undergo endocrine therapy, International Journal of Urology, 13(9): 1197–1201, 2006.
  • A.M. Gonzalez-Angulo, G.N. Hortobagyi, and F.J. Esteva, Adjuvant therapy with trastuzumab for HER-2/neu-positive breast cancer, Oncologist, 11(8): 857–867, 2006.
  • Y. Nagata, K.H. Lan, X. Zhou, , et al., PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients, Cancer Cell, 6(2): 117–127, 2004.
  • C. Kari, T.O. Chan, M. Rocha de Quadros, and U. Rodeck, targeting the epidermal growth factor receptor in cancer: Apoptosis takes center stage, Cancer Res., 63(1): 1–5, 2003.
  • W.S. Siegel-Lakhai, J.H. Beijnen, and J.H.M. Schellens, Current knowledge and future directions of the selective epidermal growth factor receptor inhibitors erlotinib (Tarceva(R)) and gefitinib (Iressa(R)) Oncologist, 10(8): 579–589, 2005.
  • L. Toschi and F. Cappuzzo, understanding the new genetics of responsiveness to epidermal growth factor receptor tyrosine kinase inhibitors, Oncologist, 12(2): 211–220, 2007.
  • A. Hirata, F. Hosoi, M. Miyagawa, , et al., HER2 overexpression increases sensitivity to gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, through inhibition of HER2/HER3 heterodimer formation in lung cancer cells, Cancer Res., 65(10): 4253–4260, 2005.
  • C.A. Casiano, M. Mediavilla-Varela, and E.M. Tan, Tumor-associated antigen arrays for the serological diagnosis of cancer, Mol. Cell. Proteomics, 5(10): 1745–1759, 2006.
  • M.J. Scanlan, S. Welt, C.M. Gordon, , et al., Cancer-related serological recognition of human colon cancer: Identification of potential diagnostic and immunotherapeutic targets, Cancer Res., 62(14): 4041–4047, 2002.
  • J. Cui, W. Li, J. Wang, , et al., Proteomics-based identification of human acute leukemia antigens that induce humoral immune response, Mol. Cell Proteomics, 4(11): 1718–1724, 2005.
  • L. Zhong, S.P. Coe, A.J. Stromberg, , et al., Profiling tumor-associated antibodies for early detection of non-small cell lung cancer, J. Thorac. Oncol., 1: 513–519, 2006.
  • X. Wang, J. Yu, A. Sreekumar, , et al., Autoantibody signatures in prostate cancer, N. Engl. J. Med., 353(12): 1224–1235, 2005.
  • K.C. Garcia, M. Degano, L.R. Pease, , et al., Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen, Science, 279(5354): 1166–1172, 98.
  • J.W. Yewdell, U. Schubert, and J.R. Bennink, At the crossroads of cell biology and immunology: DRiPs and other sources of peptide ligands for MHC class I molecules, J. Cell Sci., 114(5): 845–851, 2001.
  • T.M. Clay, A.C. Hobeika, P.J. Mosca, , et al., Assays for monitoring cellular immune responses to active immunotherapy of cancer, Clin. Cancer Res., 7(5): 1127–1135, 2001.
  • V. Brusic, V.B. Bajic, and N. Petrovsky, Computational methods for prediction of T-cell epitopes–a framework for modelling, testing, and applications, Methods, 34: 436–443, 2004.
  • B. Trost, M. Bickis, and A. Kusalik, Strength in numbers: Achieving greater accuracy in MHC-I binding prediction by combining the results from multiple prediction tools, Immunome Res., 3: 5, 2007.
  • I.D. Davis, M. Jefford, P. Parente, and J. Cebon, Rational approaches to human cancer immunotherapy, J. Leukoc Biol., 73(1): 3–29, 2003.
  • S.M. Schmidt, K. Schag, M.R. Muller, , et al., Survivin is a shared tumor-associated antigen expressed in a broad variety of malignancies and recognized by specific cytotoxic T cells, Blood, 102(2): 571–576, 2003.
  • Y. Oka, A. Tsuboi, T. Taguchi, , et al., Induction of WT1 (Wilms' tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression, PNAS, 101(38): 13885–13890, 2004.
  • L. Chin, L.A. Garraway, and D.E. Fisher, Malignant melanoma: Genetics and therapeutics in the genomic era, Genes Dev., 20(16): 2149–2182, 2006.
  • B.K. Edwards, M.L. Brown, P.A. Wingo, , et al., Annual report to the nation on the status of cancer, 1975–2002, featuring population-based trends in cancer treatment, J. Natl. Cancer Inst., 97(19): 1407–1427, 2005.
  • V. Winnepenninckx, V. Lazar, S. Michiels, , et al., Gene expression profiling of primary cutaneous melanoma and clinical outcome, J. Natl. Cancer Inst., 98(7): 472–482, 2006.
  • M.D. Onken, L.A. Worley, J.P. Ehlers, and J.W. Harbour, Gene expression profiling in uveal melanoma reveals two molecular classes and predicts metastatic death, Cancer Res., 64(20): 7205–7209, 2004.
  • K. Hoek, D.L. Rimm, K.R. Williams, , et al., Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas, Cancer Res., 64: 5270–5282, 2004.
  • T. Talebi, and J.S. Weber, Peptide vaccine trials for melanoma: preclinical background and clinical results, Semin. Cancer Biol., 13: 431–438, 2003.
  • T. Di Pucchio, L. Pilla, I. Capone, , et al., Immunization of stage IV melanoma patients with melan-A/MART-1 and gp 100 peptides plus IFN-{alpha} results in the activation of specific CD8 + T cells and monocyte/dendritic cell precursors, Cancer Res., 66(9): 4943–4951, 2006.
  • C.P. Tarassoff, P.M. Arlen, and J.L. Gulley, Therapeutic vaccines for prostate cancer, Oncologist, 11(5): 451–462, 2006.
  • N. Meidenbauer, D.T. Harris, L.E. Spitler, and T.L. Whiteside, Generation of PSA-reactive effector cells after vaccination with a PSA-based vaccine in patients with prostate cancer, Prostate, 43: 88–100, 2000.
  • H.L. Kaufman, W. Wang, J. Manola, , et al., Phase II randomized study of vaccine treatment of advanced prostate cancer (E7897): A trial of the Eastern Cooperative Oncology Group, J. Clin. Oncol., 22: 2122–2132, 2004.
  • M. Noguchi, K. Itoh, A. Yao, , et al., Immunological evaluation of individualized peptide vaccination with a low dose of estramustine for HLA-A24 + HRPC patients, Prostate, 63: 1–12, 2005.
  • V.J. Assikis, K.-A. Do, S. Wen, , et al., Clinical and biomarker correlates of androgen-independent, locally aggressive prostate cancer with limited metastatic potential, Clin. Cancer Res., 10(20): 6770–6778, 2004.
  • P.M. Arlen, J.L. Gulley, C. Parker, , et al., A randomized phase II study of concurrent docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate cancer, Clin. Cancer Res., 12(4): 1260–1269, 2006.
  • A.M. Lin, R.M. Hershberg, and E.J. Small, Immunotherapy for prostate cancer using prostatic acid phosphatase loaded antigen presenting cells, Urol. Oncol., 24: 434–41, 2006.
  • N.E. Hynes and H.A. Lane, ERBB Receptors and cancer: The complexity of targeted inhibitors, Nat. Rev. Cancer, 5(5): 341–354, 2005.
  • E. Quaglino, S. Rolla, M. Iezzi, , et al., Concordant morphologic and gene expression data show that a vaccine halts HER-2/neu preneoplastic lesions, J. Clin. Invest., 113(5): 709–717, 2004.
  • E.A. Mittendorf, C.E. Storrer, C.D. Shriver, , et al., Investigating the combination of trastuzumab and HER2/neu peptide vaccines for the treatment of breast cancer, Ann. Surg. Oncol., 13: 1085–1098, 2006.
  • A.J. Muller and P.A. Scherle, Targeting the mechanisms of tumoral immune tolerance with small-molecule inhibitors, Nature Review Cancer, 6(8): 613–625, 2006.
  • G.Q. Phan, J.C. Yang, R.M. Sherry, , et al., Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma, PNAS, 100(14): 8372–8377, 2003.
  • G.J.D. Van Mierlo, Z.F.H.M. Boonman, H.M.H. Dumortier, , et al., Activation of dendritic cells that cross-present tumor-derived antigen licenses CD8 + CTL to cause tumor eradication, J. Immunol., 173(11): 6753–6759, 2004.
  • I.D. Davis, M. Jefford, P. Parente, and J. Cebon, Rational approaches to human cancer immunotherapy, J. Leukoc. Biol., 73(1): 3–29, 2003.
  • J. Copier, M. Whelan, and A. Dalgleish, Biomarkers for the development of cancer vaccines: Current status, Mol. Diagn. Ther., 10: 337–343, 2006.
  • C. Lurquin, B. Lethe, E. De Plaen, , et al., Contrasting frequencies of antitumor and anti-vaccine T cells in metastases of a melanoma patient vaccinated with a MAGE tumor antigen, J. Exp. Med., 201(2): 249–257, 2005.
  • D.H. Munn and A.L. Mellor, The tumor-draining lymph node as an immune-privileged site, Immunol. Rev., 213: 146–158, 2006.
  • S. Gutman and L.G. Kessler, The US Food and Drug Administration perspective on cancer biomarker development, Nature Review Cancer, 6(7): 565–571, 2006.
  • L. Jeu, F.J. Piacenti, A.G. Lyakhovetskiy, and H.B.V. Fung, Clin. Ther., 25: 1321–1381, 2003.
  • R. Roskoski, Jr., Structure and regulation of Kit protein-tyrosine kinase–the stem cell factor receptor, Biochem. Biophys. Res. Commun., 338: 1307–1315, 2005.
  • L.K. Mattison, J. Fourie, Y. Hirao, , et al., The uracil breath test in the assessment of dihydropyrimidine dehydrogenase activity: Pharmacokinetic relationship between expired 13CO2 and plasma [2-13C]dihydrouracil, Clin. Cancer Res., 12(2): 549–555, 2006.
  • E.B. Elkin, M.C. Weinstein, E.P. Winer, , et al., HER-2 Testing and trastuzumab therapy for metastatic breast cancer: A cost-effectiveness analysis, J. Clin. Oncol., 22(5): 854–863, 2004.
  • R.D. Mass, M.F. Press, S. Anderson, , et al., Evaluation of clinical outcomes according to HER2 detection by fluorescence in situ hybridization in women with metastatic breast cancer treated with trastuzumab, Clin. Breast Cancer, 6: 240–246, 2005.
  • J.G. Paez, P.A. Janne, J.C Lee, , et al., EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy, Science, 304(5676): 1497–1500, 2004.
  • S. Paik, S. Shak, G. Tang, , et al., A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer, N. Engl. J. Med., 351(27): 2817–2826, 2004.
  • A.M. Glas, A. Floore, L.J. Delahaye, , et al., Converting a breast cancer microarray signature into a high-throughput diagnostic test, BMC Genomics, 7: 278, 2006.
  • C.L. Vogel, M.A. Cobleigh, D. Tripathy, , et al., Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer, J. Clin. Oncol., 20(3): 719–726, 2002.
  • D.J. Slamon, B. Leyland-Jones, S. Shak, , et al., Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2, N. Engl. J. Med., 344(11): 783–792, 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.