78
Views
7
CrossRef citations to date
0
Altmetric
General Articles

Role of Interleukin-15 in Umbilical Cord Blood Transplantation

, , &
Pages 518-531 | Published online: 03 Aug 2009

REFERENCES

  • Brown J. A., Boussiotis V. A. Umbilical cord blood transplantation: basic biology and clinical challenges to immune reconstitution. Clin Immunol 2008
  • Wagner J., Champlin R., Petz L. D. Fifth Annual International Umbilical Cord Blood Transplantation Symposium, Los Angeles, California, May 11–12, 2007. Biol Blood Marrow Transplant 2007; 13: 1380–1392
  • Brunstein C. G., Baker K. S., Wagner J. E. Umbilical cord blood transplantation for myeloid malignancies. Curr Opin Hematol 2007; 14: 162–169
  • Wagner J. E., Barker J. N., DeFor T. E., Baker K. S., Blazar B. R., Eide C., Goldman A., Kersey J., Krivit W., MacMillan M. L., Orchard P. J., Peters C., Weisdorf D. J., Ramsay N. K., Davies S. M. Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood 2002; 100: 1611–1618
  • Brunstein C. G., Setubal D. C., Wagner J. E. Expanding the role of umbilical cord blood transplantation. Br J Haematol 2007; 137: 20–35
  • Rocha V., Sanz G., Gluckman E. Umbilical cord blood transplantation. Curr Opin Hematol 2004; 11: 375–385
  • Rocha V., Wagner J. E., Jr., Sobocinski K. A., Klein J. P., Zhang M. J., Horowitz M. M., Gluckman E. Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. Eurocord and International Bone Marrow Transplant Registry Working Committee on Alternative Donor and Stem Cell Sources. N Engl J Med 2000; 342: 1846–1854
  • Rubinstein P., Carrier C., Scaradavou A., Kurtzberg J., Adamson J., Migliaccio A. R., Berkowitz R. L., Cabbad M., Dobrila N. L., Taylor P. E., Rosenfield R. E., Stevens C. E. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med 1998; 339: 1565–1577
  • Laughlin M. J., Eapen M., Rubinstein P., Wagner J. E., Zhang M. J., Champlin R. E., Stevens C., Barker J. N., Gale R. P., Lazarus H. M., Marks D. I., van Rood J. J., Scaradavou A., Horowitz M. M. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N Engl J Med 2004; 351: 2265–2275
  • Williams K. M., Hakim F. T., Gress R. E. T cell immune reconstitution following lymphodepletion. Semin Immunol 2007; 19: 318–330
  • Komanduri K. V., St. John L. S., de Lima M., McMannis J., Rosinski S., McNiece I., Bryan S. G., Kaur I., Martin S., Wieder E. D., Worth L., Cooper L. J., Petropoulos D., Molldrem J. J., Champlin R. E., Shpall E. J. Delayed immune reconstitution after cord blood transplantation is characterized by impaired thymopoiesis and late memory T-cell skewing. Blood 2007; 110: 4543–4551
  • van Burik J. A., Brunstein C. G. Infectious complications following unrelated cord blood transplantation. Vox Sang 2007; 92: 289–296
  • Yao C. L., Hwang S. M. Ex vivo expansion of hematopoietic stem cells from human cord blood in serum-free conditions. Methods Mol Biol 2007; 407: 165–175
  • Wei Y., Huang Y., Zhang Y., Zhou H., Cao Q., Meng Q., Lan J., Chen L. Ex vivo expansion of CD34(+) and T and NK cells from umbilical cord blood for leukemic BALB/C nude mouse transplantation. Int J Hematol 2008; 87: 217–224
  • Hutton J. F., D'Andrea R. J., Lewis I. D. Potential for clinical ex vivo expansion of cord blood haemopoietic stem cells using non-haemopoietic factor supplements. Curr Stem Cell Res Ther 2007; 2: 229–237
  • Hofmeister C. C., Zhang J., Knight K. L., Le P., Stiff P. J. Ex vivo expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche. Bone Marrow Transplant 2007; 39: 11–23
  • Barker J. N., Weisdorf D. J., DeFor T. E., Blazar B. R., McGlave P. B., Miller J. S., Verfaillie C. M., Wagner J. E. Transplantation of 2 partially HLA-matched umbilical cord blood units to enhance engraftment in adults with hematologic malignancy. Blood 2005; 105: 1343–1347
  • Ballen K. K., Spitzer T. R., Yeap B. Y., McAfee S., Dey B. R., Attar E., Haspel R., Kao G., Liney D., Alyea E., Lee S., Cutler C., Ho V., Soiffer R., Antin J. H. Double unrelated reduced-intensity umbilical cord blood transplantation in adults. Biol Blood Marrow Transplant 2007; 13: 82–89
  • Laughlin M. J., Barker J., Bambach B., Koc O. N., Rizzieri D. A., Wagner J. E., Gerson S. L., Lazarus H. M., Cairo M., Stevens C. E., Rubinstein P., Kurtzberg J. Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N Engl J Med 2001; 344: 1815–1822
  • Morgado J. M., Pratas R., Laranjeira P., Henriques A., Crespo I., Regateiro F., Paiva A. The phenotypical and functional characteristics of cord blood monocytes and CD14(-/low)/CD16(+) dendritic cells can be relevant to the development of cellular immune responses after transplantation. Transpl Immunol 2008; 19: 55–63
  • Encabo A., Solves P., Carbonell-Uberos F., Minana M. D. The functional immaturity of dendritic cells can be relevant to increased tolerance associated with cord blood transplantation. Transfusion 2007; 47: 272–279
  • Bradley M. B., Cairo M. S. Cord blood immunology and stem cell transplantation. Hum Immunol 2005; 66: 431–446
  • Lin S. J., Yu J. C., Cheng P. J., Hsiao S. S., Kuo M. L. Effect of interleukin-15 on anti-CD3/anti-CD28 induced apoptosis of umbilical cord blood CD4+ T cells. Eur J Haematol 2003; 71: 425–432
  • Kadereit S., Mohammad S. F., Miller R. E., Woods K. D., Listrom C. D., McKinnon K., Alali A., Bos L. S., Iacobucci M. L., Sramkoski M. R., Jacobberger J. W., Laughlin M. J. Reduced NFAT1 protein expression in human umbilical cord blood T lymphocytes. Blood 1999; 94: 3101–3107
  • Lin S. J., Cheng P. J. Effect of interleukin-7 and -15 on activation of purified umbilical cord blood and adult peripheral blood CD4+ T cells. Biol Neonate 2004; 85: 3–10
  • Canto E., Rodriguez-Sanchez J. L., Vidal S. Naive CD4+ cells from cord blood can generate competent Th effector cells. Transplantation 2005; 80: 850–858
  • Canto E., Rodriguez-Sanchez J. L., Vidal S. Distinctive response of naive lymphocytes from cord blood to primary activation via TCR. J Leukoc Biol 2003; 74: 998–1007
  • Kloosterboer F. M., van Luxemburg-Heijs S. A., Willemze R., Falkenburg J. H. Similar potential to become activated and proliferate but differential kinetics and profiles of cytokine production of umbilical cord blood T cells and adult blood naive and memory T cells. Hum Immunol 2006; 67: 874–883
  • Lin S. J., Wang L. Y., Huang Y. J., Kuo M. L. Effect of interleukin (IL)-12 and IL-15 on apoptosis and proliferation of umbilical cord blood mononuclear cells. Bone Marrow Transplant 2001; 28: 439–445
  • Hagihara M., Chargui J., Gansuvd B., Tsuchida F., Sato T., Hotta T., Kato S. Umbilical cord blood T lymphocytes are induced to apoptosis after being allo-primed in vitro. Bone Marrow Transplant 1999; 24: 1229–1233
  • El Ghalbzouri A., Drenou B., Blancheteau V., Choqueux C., Fauchet R., Charron D., Mooney N. An in vitro model of allogeneic stimulation of cord blood: induction of Fas independent apoptosis. Hum Immunol 1999; 60: 598–607
  • Aggarwal S., Gupta A., Nagata S., Gupta S. Programmed cell death (apoptosis) in cord blood lymphocytes. J Clin Immunol 1997; 17: 63–73
  • Lin S. J., Cheng P. J., Hsiao S. S., Lin H. H., Hung P. F., Kuo M. L. Differential effect of IL-15 and IL-2 on survival of phytohemagglutinin-activated umbilical cord blood T cells. Am J Hematol 2005; 80: 106–112
  • Wu J., Lanier L. L. Natural killer cells and cancer. Adv Cancer Res 2003; 90: 127–156
  • Farag S. S., VanDeusen J. B., Fehniger T. A., Caligiuri M. A. Biology and clinical impact of human natural killer cells. Int J Hematol 2003; 78: 7–17
  • Moretta L., Mingari M. C., Bottino C., Pende D., Biassoni R., Moretta A. Cellular and molecular basis of natural killer and natural killer-like activity. Immunol Lett 2003; 88: 89–93
  • Ruggeri L., Capanni M., Urbani E., Perruccio K., Shlomchik W. D., Tosti A., Posati S., Rogaia D., Frassoni F., Aversa F., Martelli M. F., Velardi A. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097–2100
  • Clausen J., Wolf D., Petzer A. L., Gunsilius E., Schumacher P., Kircher B., Gastl G., Nachbaur D. Impact of natural killer cell dose and donor killer-cell immunoglobulin-like receptor (KIR) genotype on outcome following human leucocyte antigen-identical haematopoietic stem cell transplantation. Clin Exp Immunol 2007; 148: 520–528
  • Farag S. S., Bacigalupo A., Eapen M., Hurley C., Dupont B., Caligiuri M. A., Boudreau C., Nelson G., Oudshoorn M., van Rood J., Velardi A., Maiers M., Setterholm M., Confer D., Posch P. E., Anasetti C., Kamani N., Miller J. S., Weisdorf D., Davies S. M. The effect of KIR ligand incompatibility on the outcome of unrelated donor transplantation: a report from the center for international blood and marrow transplant research, the European blood and marrow transplant registry, and the Dutch registry. Biol Blood Marrow Transplant 2006; 12: 876–884
  • Malmberg K. J., Schaffer M., Ringden O., Remberger M., Ljunggren H. G. KIR-ligand mismatch in allogeneic hematopoietic stem cell transplantation. Mol Immunol 2005; 42: 531–534
  • Dalle J. H., Menezes J., Wagner E., Blagdon M., Champagne J., Champagne M. A., Duval M. Characterization of cord blood natural killer cells: implications for transplantation and neonatal infections. Pediatr Res 2005; 57: 649–655
  • Nguyen Q. H., Roberts R. L., Ank B. J., Lin S. J., Thomas E. K., Stiehm E. R. Interleukin (IL)-15 enhances antibody-dependent cellular cytotoxicity and natural killer activity in neonatal cells. Cell Immunol 1998; 185: 83–92
  • Lin S. J., Yang M. H., Chao H. C., Kuo M. L., Huang J. L. Effect of interleukin-15 and Flt3-ligand on natural killer cell expansion and activation: umbilical cord vs. adult peripheral blood mononuclear cells. Pediatr Allergy Immunol 2000; 11: 168–174
  • Lin S. J., Cheng P. J., Huang Y. J., Kuo M. L. Evaluation of cytotoxic function and apoptosis in interleukin (IL)-12/IL-15-treated umbilical cord or adult peripheral blood natural killer cells by a propidium-iodide based flow cytometry. Pediatr Allergy Immunol 2004; 15: 79–85
  • Tanaka H., Kai S., Yamaguchi M., Misawa M., Fujimori Y., Yamamoto M., Hara H. Analysis of natural killer (NK) cell activity and adhesion molecules on NK cells from umbilical cord blood. Eur J Haematol 2003; 71: 29–38
  • Brahmi Z., Hommel-Berrey G., Smith F., Thomson B. NK cells recover early and mediate cytotoxicity via perforin/granzyme and Fas/FasL pathways in umbilical cord blood recipients. Hum Immunol 2001; 62: 782–790
  • Lundqvist A., McCoy J. P., Samsel L., Childs R. Reduction of GVHD and enhanced antitumor effects after adoptive infusion of alloreactive Ly49-mismatched NK cells from MHC-matched donors. Blood 2007; 109: 3603–3606
  • Ruggeri L., Mancusi A., Burchielli E., Capanni M., Carotti A., Aloisi T., Aversa F., Martelli M. F., Velardi A. NK cell alloreactivity and allogeneic hematopoietic stem cell transplantation. Blood Cells Mol Dis 2008; 40: 84–90
  • Nguyen S., Dhedin N., Vernant J. P., Kuentz M., Al Jijakli A., Rouas-Freiss N., Carosella E. D., Boudifa A., Debre P., Vieillard V. NK-cell reconstitution after haploidentical hematopoietic stem-cell transplantations: immaturity of NK cells and inhibitory effect of NKG2A override GvL effect. Blood 2005; 105: 4135–4142
  • Musha N., Yoshida Y., Sugahara S., Yamagiwa S., Koya T., Watanabe H., Hatakeyama K., Abo T. Expansion of CD56+ NK T and gamma delta T cells from cord blood of human neonates. Clin Exp Immunol 1998; 113: 220–228
  • Collin B. A., Leather H. L., Wingard J. R., Ramphal R. Evolution, incidence, and susceptibility of bacterial bloodstream isolates from 519 bone marrow transplant patients. Clin Infect Dis 2001; 33: 947–953
  • Chang C. C., Satwani P., Oberfield N., Vlad G., Simpson L. L., Cairo M. S. Increased induction of allogeneic-specific cord blood CD4+CD25+ regulatory T (Treg) cells: a comparative study of naive and antigenic-specific cord blood Treg cells. Exp Hematol 2005; 33: 1508–1520
  • Godfrey W. R., Spoden D. J., Ge Y. G., Baker S. R., Liu B., Levine B. L., June C. H., Blazar B. R., Porter S. B. Cord blood CD4(+)CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood 2005; 105: 750–758
  • Mackall C. L., Gress R. E. Pathways of T-cell regeneration in mice and humans: implications for bone marrow transplantation and immunotherapy. Immunol Rev 1997; 157: 61–72
  • Chen B. J., Cui X., Sempowski G. D., Chao N. J. Growth hormone accelerates immune recovery following allogeneic T-cell-depleted bone marrow transplantation in mice. Exp Hematol 2003; 31: 953–958
  • Alpdogan O., Muriglan S. J., Kappel B. J., Doubrovina E., Schmaltz C., Schiro R., Eng J. M., Greenberg A. S., Willis L. M., Rotolo J. A., O'Reilly R. J., van den Brink M. R. Insulin-like growth factor-I enhances lymphoid and myeloid reconstitution after allogeneic bone marrow transplantation. Transplantation 2003; 75: 1977–1983
  • Alpdogan O., Hubbard V. M., Smith O. M., Patel N., Lu S., Goldberg G. L., Gray D. H., Feinman J., Kochman A. A., Eng J. M., Suh D., Muriglan S. J., Boyd R. L., van den Brink M. R. Keratinocyte growth factor (KGF) is required for postnatal thymic regeneration. Blood 2006; 107: 2453–2460
  • Seggewiss R., Lore K., Guenaga F. J., Pittaluga S., Mattapallil J., Chow C. K., Koup R. A., Camphausen K., Nason M. C., Meier-Schellersheim M., Donahue R. E., Blazar B. R., Dunbar C. E., Douek D. C. Keratinocyte growth factor augments immune reconstitution after autologous hematopoietic progenitor cell transplantation in rhesus macaques. Blood 2007; 110: 441–449
  • Sutherland J. S., Goldberg G. L., Hammett M. V., Uldrich A. P., Berzins S. P., Heng T. S., Blazar B. R., Millar J. L., Malin M. A., Chidgey A. P., Boyd R. L. Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol 2005; 175: 2741–2753
  • Goldberg G. L., Alpdogan O., Muriglan S. J., Hammett M. V., Milton M. K., Eng J. M., Hubbard V. M., Kochman A., Willis L. M., Greenberg A. S., Tjoe K. H., Sutherland J. S., Chidgey A., van den Brink M. R., Boyd R. L. Enhanced immune reconstitution by sex steroid ablation following allogeneic hemopoietic stem cell transplantation. J Immunol 2007; 178: 7473–7484
  • Alpdogan O., Muriglan S. J., Eng J. M., Willis L. M., Greenberg A. S., Kappel B. J., van den Brink M. R. IL-7 enhances peripheral T cell reconstitution after allogeneic hematopoietic stem cell transplantation. J Clin Invest 2003; 112: 1095–1107
  • Rosenberg S. A., Sportes C., Ahmadzadeh M., Fry T. J., Ngo L. T., Schwarz S. L., Stetler-Stevenson M., Morton K. E., Mavroukakis S. A., Morre M., Buffet R., Mackall C. L., Gress R. E. IL-7 administration to humans leads to expansion of CD8 + and CD4+ cells but a relative decrease of CD4+ T-regulatory cells. J Immunother 2006; 29: 313–319
  • Grabstein K. H., Eisenman J., Shanebeck K., Rauch C., Srinivasan S., Fung V., Beers C., Richardson J., Schoenborn M. A., Ahdieh M., et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 1994; 264: 965–968
  • Giri J. G., Anderson D. M., Kumaki S., Park L. S., Grabstein K. H., Cosman D. IL-15, a novel T cell growth factor that shares activities and receptor components with IL-2. J Leukoc Biol 1995; 57: 763–766
  • Carson W. E., Fehniger T. A., Haldar S., Eckhert K., Lindemann M. J., Lai C. F., Croce C. M., Baumann H., Caligiuri M. A. A potential role for interleukin-15 in the regulation of human natural killer cell survival. J Clin Invest 1997; 99: 937–943
  • Ranson T., Vosshenrich C. A., Corcuff E., Richard O., Muller W., Di Santo J. P. IL-15 is an essential mediator of peripheral NK-cell homeostasis. Blood 2003; 101: 4887–4893
  • Liu C. C., Perussia B., Young J. D. The emerging role of IL-15 in NK-cell development. Immunol Today 2000; 21: 113–116
  • Kennedy M. K., Glaccum M., Brown S. N., Butz E. A., Viney J. L., Embers M., Matsuki N., Charrier K., Sedger L., Willis C. R., Brasel K., Morrissey P. J., Stocking K., Schuh J. C., Joyce S., Peschon J. J. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 2000; 191: 771–780
  • Berard M., Brandt K., Bulfone-Paus S., Tough D. F. IL-15 promotes the survival of naive and memory phenotype CD8+ T cells. J Immunol 2003; 170: 5018–5026
  • Marks-Konczalik J., Dubois S., Losi J. M., Sabzevari H., Yamada N., Feigenbaum L., Waldmann T. A., Tagaya Y. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc Natl Acad Sci USA 2000; 97: 11445–11450
  • Waldmann T. A., Dubois S., Tagaya Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 2001; 14: 105–110
  • Zhang X., Sun S., Hwang I., Tough D. F., Sprent J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 1998; 8: 591–599
  • Qian J. X., Lee S. M., Suen Y., Knoppel E., van de Ven C., Cairo M. S. Decreased interleukin-15 from activated cord versus adult peripheral blood mononuclear cells and the effect of interleukin-15 in upregulating antitumor immune activity and cytokine production in cord blood. Blood 1997; 90: 3106–3117
  • Wang Y., Zheng X., Wei H., Sun R., Tian Z. Different roles of IL-15 from IL-2 in differentiation and activation of human CD3(+)CD56(+) NKT-like cells from cord blood in long term culture. Int Immunopharmacol 2008; 8: 927–934
  • Hakim F. T., Cepeda R., Kaimei S., Mackall C. L., McAtee N., Zujewski J., Cowan K., Gress R. E. Constraints on CD4 recovery postchemotherapy in adults: thymic insufficiency and apoptotic decline of expanded peripheral CD4 cells. Blood 1997; 90: 3789–3798
  • Alves N. L., Hooibrink B., Arosa F. A., van Lier R. A. IL-15 induces antigen-independent expansion and differentiation of human naive CD8+ T cells in vitro. Blood 2003; 102: 2541–2546
  • Yamada H., Nakamura T., Matsuzaki G., Iwamoto Y., Nomoto K. TCR-independent activation of extrathymically developed, self antigen-specific T cells by IL-2/IL-15. J Immunol 2000; 164: 1746–1752
  • Li Y., Zhi W., Wareski P., Weng N. P. IL-15 activates telomerase and minimizes telomere loss and may preserve the replicative life span of memory CD8+ T cells in vitro. J Immunol 2005; 174: 4019–4024
  • Alpdogan O., Eng J. M., Muriglan S. J., Willis L. M., Hubbard V. M., Tjoe K. H., Terwey T. H., Kochman A., van den Brink M. R. Interleukin-15 enhances immune reconstitution after allogeneic bone marrow transplantation. Blood 2005; 105: 865–873
  • Rutella S., Pierelli L., Bonanno G., Mariotti A., Sica S., Sora F., Chiusolo P., Scambia G., Rumi C., Leone G. Immune reconstitution after autologous peripheral blood progenitor cell transplantation: effect of interleukin-15 on T-cell survival and effector functions. Exp Hematol 2001; 29: 1503–1516
  • Blaser B. W., Roychowdhury S., Kim D. J., Schwind N. R., Bhatt D., Yuan W., Kusewitt D. F., Ferketich A. K., Caligiuri M. A., Guimond M. Donor-derived IL-15 is critical for acute allogeneic graft-versus-host disease. Blood 2005; 105: 894–901
  • Roychowdhury S., Blaser B. W., Freud A. G., Katz K., Bhatt D., Ferketich A. K., Bergdall V., Kusewitt D., Baiocchi R. A., Caligiuri M. A. IL-15 but not IL-2 rapidly induces lethal xenogeneic graft-versus-host disease. Blood 2005; 106: 2433–2435
  • Kumaki S., Minegishi M., Fujie H., Sasahara Y., Ohashi Y., Tsuchiya S., Konno T. Prolonged secretion of IL-15 in patients with severe forms of acute graft-versus-host disease after allogeneic bone marrow transplantation in children. Int J Hematol 1998; 67: 307–312
  • Chik K. W., Li K., Pong H., Shing M. M., Li C. K., Yuen P. M. Elevated serum interleukin-15 level in acute graft-versus-host disease after hematopoietic cell transplantation. J Pediatr Hematol Oncol 2003; 25: 960–964
  • Lin S. J., Cheng P. J., Yan D. C., Lee P. T., Hsaio H. S. Effect of interleukin-15 on alloreactivity in umbilical cord blood. Transpl Immunol 2006; 16: 112–116
  • Goldberg S. L., Pecora A. L., Rosenbluth R. J., Jennis A. A., Preti R. A. Treatment of leukemic relapse following unrelated umbilical cord blood transplantation with interleukin-2: potential for augmenting graft-versus-leukemia and graft-versus-host effects with cytokines. Bone Marrow Transplant 2000; 26: 353–355
  • Sprangers B., Fevery S., Van Wijmeersch B., De Somer L., Waer M., Billiau A. D. Can graft-versus-leukemia reactivity be dissociated from graft-versus-host disease?. Front Biosci 2007; 12: 4568–4594
  • Schulze A., Schirutschke H., Oelschlagel U., Schmitz M., Fussel M., Wassmuth R., Ehninger G., Bornhauser M., Platzbecker U. Altered phenotype of natural killer cell subsets after haploidentical stem cell transplantation. Exp Hematol 2008; 36: 378–389
  • Lu X., Kondo Y., Takamatsu H., Ohata K., Yamazaki H., Takami A., Akatsuka Y., Nakao S. CD16(+) CD56(-) NK cells in the peripheral blood of cord blood transplant recipients: a unique subset of NK cells possibly associated with graft-versus-leukemia effect. Eur J Haemato 2008
  • Choi S. S., Chhabra V. S., Nguyen Q. H., Ank B. J., Stiehm E. R., Roberts R. L. Interleukin-15 enhances cytotoxicity, receptor expression, and expansion of neonatal natural killer cells in long-term culture. Clin Diagn Lab Immunol 2004; 11: 879–888
  • Boyiadzis M., Memon S., Carson J., Allen K., Szczepanski M. J., Vance B. A., Dean R., Bishop M. R., Gress R. E., Hakim F. T. Up-regulation of NK cell activating receptors following allogeneic hematopoietic stem cell transplantation under a lymphodepleting reduced intensity regimen is associated with elevated IL-15 levels. Biol Blood Marrow Transplant 2008; 14: 290–300
  • Biron C. A., Nguyen K. B., Pien G. C., Cousens L. P., Salazar-Mather T. P. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 1999; 17: 189–220
  • Zitvogel L. Dendritic and natural killer cells cooperate in the control/switch of innate immunity. J Exp Med 2002; 195: F9–14
  • Becker T. C., Wherry E. J., Boone D., Murali-Krishna K., Antia R., Ma A., Ahmed R. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J Exp Med 2002; 195: 1541–1548
  • Schluns K. S., Williams K., Ma A., Zheng X. X., Lefrancois L. Cutting edge: requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells. J Immunol 2002; 168: 4827–4831
  • Ahmad A., Sharif-Askari E., Fawaz L., Menezes J. Innate immune response of the human host to exposure with herpes simplex virus type 1: in vitro control of the virus infection by enhanced natural killer activity via interleukin-15 induction. J Virol 2000; 74: 7196–7203
  • Gill N., Rosenthal K. L., Ashkar A. A. NK and NKT cell-independent contribution of interleukin-15 to innate protection against mucosal viral infection. J Virol 2005; 79: 4470–4478
  • Kagimoto Y., Yamada H., Ishikawa T., Maeda N., Goshima F., Nishiyama Y., Furue M., Yoshikai Y. A regulatory role of interleukin 15 in wound healing and mucosal infection in mice. J Leukoc Biol 2008; 83: 165–172
  • Yajima T., Nishimura H., Ishimitsu R., Yamamura K., Watase T., Busch D. H., Pamer E. G., Kuwano H., Yoshikai Y. Memory phenotype CD8(+) T cells in IL-15 transgenic mice are involved in early protection against a primary infection with Listeria monocytogenes. Eur J Immunol 2001; 31: 757–766
  • Saito K., Yajima T., Kumabe S., Doi T., Yamada H., Sad S., Shen H., Yoshikai Y. Impaired protection against Mycobacterium bovis bacillus Calmette-Guerin infection in IL-15-deficient mice. J Immunol 2006; 176: 2496–2504
  • Lin S. J., Roberts R. L., Ank B. J., Nguyen Q. H., Thomas E. K., Stiehm E. R. Human immunodeficiency virus (HIV) type-1 GP120-specific cell-mediated cytotoxicity (CMC) and natural killer (NK) activity in HIV-infected (HIV+) subjects: enhancement with interleukin-2 (IL-2), IL-12, and IL-15. Clin Immunol Immunopathol 1997; 82: 163–173
  • Lin S. J., Roberts R. L., Ank B. J., Nguyen Q. H., Thomas E. K., Stiehm E. R. Effect of interleukin (IL)-12 and IL-15 on activated natural killer (ANK) and antibody-dependent cellular cytotoxicity (ADCC) in HIV infection. J Clin Immunol 1998; 18: 335–345
  • Mueller Y. M., Bojczuk P. M., Halstead E. S., Kim A. H., Witek J., Altman J. D., Katsikis P. D. IL-15 enhances survival and function of HIV-specific CD8 + T cells. Blood 2003; 101: 1024–1029
  • d'Ettorre G., Forcina G., Lichtner M., Mengoni F., D'Agostino C., Massetti A. P., Mastroianni C. M., Vullo V. Interleukin-15 in HIV infection: immunological and virological interactions in antiretroviral-naive and -treated patients. AIDS 2002; 16: 181–188
  • Hamza N. S., Lisgaris M., Yadavalli G., Nadeau L., Fox R., Fu P., Lazarus H. M., Koc O. N., Salata R. A., Laughlin M. J. Kinetics of myeloid and lymphocyte recovery and infectious complications after unrelated umbilical cord blood versus HLA-matched unrelated donor allogeneic transplantation in adults. Br J Haematol 2004; 124: 488–498
  • Cohen G., Carter S. L., Weinberg K. I., Masinsin B., Guinan E., Kurtzberg J., Wagner J. E., Kernan N. A., Parkman R. Antigen-specific T-lymphocyte function after cord blood transplantation. Biol Blood Marrow. Transplant 2006; 12: 1335–1342

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.