645
Views
62
CrossRef citations to date
0
Altmetric
Original

Logic and Extent of miRNA-Mediated Control of Autoimmune Gene Expression

, &
Pages 112-138 | Published online: 13 Aug 2009

REFERENCES

  • Goodnow C. C., Sprent J., de St Groth B., Vinuesa C. G. Cellular and genetic mechanisms of self-tolerance and autoimmunity. Nature 2005; 435: 590–597
  • Rigby R. J., Vinuesa C. G. SiLEncing SLE: The power and promise of small noncoding RNAs. Curr Opin Rheumatol 2008; 20: 526–531
  • Xiao C., Rajewsky K. MicroRNA control in the immune system: Basic principles. Cell 2009; 136: 26–36
  • Xiao C., Srinivasan L., Calado D. P., Patterson H. C., Zhang B., Wang J., et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nature Immunol 2008; 9: 405–414
  • Yu D., Tan A. H., Hu X., Athanasopoulos V., Simpson N., Silva D. G., et al. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature 2007; 450: 299–303
  • Pisitkun P., Deane J. A., Difilippantonio M. J., Tarasenko T., Satterthwaite A. B., Bolland S. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 2006; 312: 1669–1672
  • Ambros V. The functions of animal microRNAs. Nature 2004; 431: 350–355
  • Bartel D. P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297
  • Bushati N., Cohen S. M. microRNA functions. Annu Rev Cell Dev Biol 2007; 23: 175–205
  • Rodriguez A., Griffiths-Jones S., Ashurst J. L., Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res 2004; 14: 1902–1910
  • Koralov S. B., Muljo S. A., Galler G. R., Krek A., Chakraborty T., Kanellopoulou C., et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 2008; 132: 860–874
  • Li Q. J., Chau J., Ebert P. J., Sylvester G., Min H., Liu G., et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 2007; 129: 147–161
  • Baek D., Villen J., Shin C., Camargo F. D., Gygi S. P., Bartel D. P. The impact of microRNAs on protein output. Nature 2008; 455: 64–71
  • Selbach M., Schwanhausser B., Thierfelder N., Fang Z., Khanin R., Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455: 58–63
  • Vasudevan S., Tong Y., Steitz J. A. Cell-cycle control of microRNA-mediated translation regulation. Cell Cycle 2008; 7: 1545–1549
  • Kim D. H., Saetrom P., Snove O., Jr., Rossi J. J. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA 2008; 105: 16230–16235
  • Pheasant M., Mattick J. S. Raising the estimate of functional human sequences. Genome Res 2007; 17: 1245–1253
  • Hobert O. Gene regulation by transcription factors and microRNAs. Science 2008; 319: 1785–1786
  • Miska E. A., Alvarez-Saavedra E., Abbott A., Lau N., Hellman A., et al. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet 2007; 3(12)e215, doi:210.1371/journal.pgen.0030215
  • Ashraf S. I., McLoon A. L., Sclarsic S. M., Kunes S. Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 2006; 124: 191–205
  • Schratt G. M., Tuebing F., Nigh E. A., Kane C. G., Sabatini M. E., Kiebler M., Greenberg M. E. A brain-specific microRNA regulates dendritic spine development. Nature 2006; 439: 283–289
  • Vinuesa C. G., Cook M. C., Angelucci C., Athanasopoulos V., Rui L., Hill K. M., et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 2005; 435: 452–458
  • Janeway C. A., Jr., Bottomly K. Signals K. and signs for lymphocyte responses. Cell 1994; 76: 275–285
  • Lafferty K. J., Andrus L., Prowse S. J. Role of lymphokine and antigen in the control of specific T cell responses. Immunolog Rev 1980; 51: 279–314
  • Matzinger P. Tolerance, danger, and the extended family. Annual Rev Immunol 1994; 12: 991–1045
  • Linterman M. A., Rigby R. J., Wong R., Silva D., Withers D., Anderson G., et al. Roquin differentiates the specialized functions of duplicated T cell costimulatory receptor genes CD28 and ICOS. Immunity 2009; 30: 228–241
  • Grimbacher B., Hutloff A., Schlesier M., Glocker E., Warnatz K., Drager R., et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nature Immunol 2003; 4: 261–268
  • Hutloff A., Buchner K., Reiter K., Baelde H. J., Odendahl M., Jacobi A., Dorner T., Kroczek R. A. Involvement of inducible costimulator in the exaggerated memory B cell and plasma cell generation in systemic lupus erythematosus. Arthr & Rheuma 2004; 50: 3211–3220
  • Yang J. H., Zhang J., Cai Q., Zhao D. B., Wang J., Guo P. E., Liu L., Han X. H., Shen Q. Expression and function of inducible costimulator on peripheral blood T cells in patients with systemic lupus erythematosus. Rheumatology 2005; 44: 1245–1254
  • Kawamoto M., Harigai M., Hara M., Kawaguchi Y., Tezuka K., Tanaka M., et al. Expression and function of inducible co-stimulator in patients with systemic lupus erythematosus: Possible involvement in excessive interferon-gamma and anti-double-stranded DNA antibody production. Arthr Res & Ther 2006; 8: R62
  • Hori S., Nomura T., Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299: 1057–1061
  • van der Vliet H. J., Nieuwenhuis E. E. IPEX as a result of mutations in FOXP3. Clin & Dev Immunol 2007; 2007: 89017
  • Brunkow M. E., Jeffery E. W., Hjerrild K. A., Paeper B., Clark L. B., Yasayko S. A., et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nature Genet 2001; 27: 68–73
  • Cobb B. S., Hertweck A., Smith J., O'Connor E., Graf D., Cook T., et al. A role for Dicer in immune regulation. J Exp Med 2006; 203: 2519–2527
  • Chong M. M., Rasmussen J. P., Rudensky A. Y., Littman D. R. The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. JExp Med 2008; 205: 2005–2017
  • Liston A., Lu L. F., O'Carroll D., Tarakhovsky A., Rudensky A. Y. Dicer-dependent microRNA pathway safeguards regulatory T cell function. J Exp Med 2008; 205: 1993–2004
  • Zhou X., Jeker L. T., Fife B. T., Zhu S., Anderson M. S., McManus M. T., Bluestone J. A. Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J Exp Med 2008; 205: 1983–1991
  • Lu L. F., Thai T. H., Calado D. P., Chaudhry A., Kubo M., Tanaka K., et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 2009; 30: 80–91
  • Taganov K. D., Boldin M. P., Chang K. J., Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad SciU S A 2006; 103: 12481–12486
  • Tang Y., Luo X., Cui H., Ni X., Yuan M., Guo Y., et al. MicroRNA-146a contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 2009; 60: 1065–1075
  • Mendell J. T. miRiad roles for the miR-17-92 cluster in development and disease. Cell 2008; 133: 217–222
  • He L., Thomson J. M., Hemann M. T., Hernando-Monge E., Mu D., Goodson S., et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435: 828–833
  • O'Donnell K. A., Wentzel E. A., Zeller K. I., Dang C. V., Mendell J. T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005; 435: 839–843
  • Goodnow C. C. Multistep pathogenesis of autoimmune disease. Cell 2007; 130: 25–35
  • Hershko T., Ginsberg D. Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J Biolog Chem 2004; 279: 8627–8634
  • Hoffman B., Liebermann D. A. Apoptotic signaling by c-MYC. Oncogene 2008; 27: 6462–6472
  • Shen W. H., Balajee A. S., Wang J., Wu H., Eng C., Pandolfi P. P., Yin Y. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 2007; 128: 157–170
  • Merino D., Bouillet P. MicroRNAs and lymphocyte homeostasis: Dangerous eggs in a single basket. Immunol & Cell Biol 2008; 86: 387–388
  • Kono D. H., Theofilopoulos A. N. Genetics of SLE in mice. Springer Semin Immunopathol 2006; 28: 83–96
  • Harley J. B., Alarcon-Riquelme M. E., Criswell L. A., Jacob C. O., Kimberly R. P., Moser K. L. B. P., et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nature Genet 2008; 40: 204–210
  • Rynes R. I. Inherited complement deficiency states and SLE. Clin Rheum Dis 1982; 8: 29–47
  • Lewis B. P., Burge C. B., Bartel D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20
  • Grimson A., Farh K. K., Johnston W. K., Garrett-Engele P., Lim L. P., Bartel D. P. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol Cell 2007; 27: 91–105
  • Sawalha A. H., Webb R., Han S., Kelly J. A., Kaufman K. M., Kimberly R. P., Alarcon-Riquelme M. E., et al. Common variants within MECP2 confer risk of systemic lupus erythematosus. PLoS ONE 2008; 3: e1727
  • Tsukiji N., Nishihara D., Yajima I., Takeda K., Shibahara S., Yamamoto H. Mitf functions as an in ovo regulator for cell differentiation and proliferation during development of the chick RPE. Dev Biol 2009; 326: 335–346
  • Schneider H., Wang H., Raab M., Valk E., Smith X., Lovatt M., et al. Adaptor SKAP-55 binds p21 activating exchange factor RasGRP1 and negatively regulates the p21-ERK pathway in T-cells. PLoS ONE 2008; 3: e1718
  • Leadbetter E. A., Rifkin I. R., Hohlbaum A. M., Beaudette B. C., Shlomchik M. J., Marshak-Rothstein A. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 2002; 416: 603–607
  • Linterman M., Rigby R., Wong R., Yu D., Brink R., Cannons J., et al. Follicular helper T cells are required for systemic autoimmunity. J Exp Med 2009; 206: 561–576
  • Subramanian S., Tus K., Li Q. Z., Wang A., Tian X. H., Zhou J., et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci USA 2006; 103: 9970–9975
  • Murata K., Nose M., Ndhlovu L. C., Sato T., Sugamura K., Ishii N. Constitutive OX40/OX40 ligand interaction induces autoimmune-like diseases. J Immunol 2002; 169: 4628–4636
  • Wu H., Neilson J. R., Kumar P., Manocha M., Shankar P., Sharp P. A., Manjunath N. miRNA profiling of naive, effector and memory CD8 T cells. PLoS ONE 2007; 2: e1020
  • Guest C. B., Park M. J., Johnson D. R., Freund G. G. The implication of proinflammatory cytokines in type 2 diabetes. Front Biosci 2008; 13: 5187–5194
  • Saito T., Chiba S., Ichikawa M., Kunisato A., Asai T., Shimizu K., et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 2003; 18: 675–685
  • Juntilla M. M., Wofford J. A., Birnbaum M. J., Rathmell J. C., Koretzky G. A. Akt1 and Akt2 are required for alphabeta thymocyte survival and differentiation. Proc Natl Acad Sci U S A 2007; 104: 12105–12110
  • Ridderstrale M., Groop L. Genetic dissection of type 2 diabetes. Molec & Cellu Endocrin 2009; 297: 10–17
  • Poole B. D., Templeton A. K., Guthridge J. M., Brown E. J., Harley J. B., James J. A. Aberrant Epstein-Barr viral infection in systemic lupus erythematosus. Autoimmun Rev 2009; 8: 337–342
  • Kang I., Quan T., Nolasco H., Park S. H., Hong M. S., Crouch J., Pamer E. G., Howe J. G., Craft J. Defective control of latent Epstein-Barr virus infection in systemic lupus erythematosus. J Immunol 2004; 172: 1287–1294
  • Gross A. J., Hochberg D., Rand W. M., Thorley-Lawson D. A. EBV and systemic lupus erythematosus: A new perspective. J Immunol 2005; 174: 6599–6607
  • Gatto G., Rossi A., Rossi D., Kroening S., Bonatti S., Mallardo M. Epstein-Barr virus latent membrane protein 1 trans-activates miR-155 transcription through the NF-kappaB pathway. Nucleic Acids Res 2008; 36: 6608–6619
  • Cameron J. E., Yin Q., Fewell C., Lacey M., McBride J., Wang X., et al. Epstein-Barr virus latent membrane protein 1 induces cellular MicroRNA miR-146a, a modulator of lymphocyte signaling pathways. J Virol 2008; 82: 1946–1958
  • Thai T. H., Calado D. P., Casola S., Ansel K. M., Xiao C., Xue Y., et al. Regulation of the germinal center response by microRNA-155. Science 2007; 316: 604–608
  • Dorsett Y., McBride K. M., Jankovic M., Gazumyan A., Thai T. H., Robbiani D. F., et al. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 2008; 28: 630–638
  • Vigorito E., Perks K. L., Abreu-Goodger C., Bunting S., Xiang Z., Kohlhaas S., et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 2007; 27: 847–859
  • Petri M. Sex hormones and systemic lupus erythematosus. Lupus 2008; 17: 412–415
  • Dai R., Phillips R. A., Zhang Y., Khan D., Crasta O., Ahmed S. A. Suppression of LPS-induced interferon-gamma and nitric oxide in splenic lymphocytes by select estrogen-regulated microRNAs: A novel mechanism of immune modulation. Blood 2008; 112: 4591–4597
  • Ronnblom L., Eloranta M. L., Alm G. V. The type I interferon system in systemic lupus erythematosus. Arthr & Rheuma 2006; 54: 408–420
  • Jinek M., Doudna J. A. A three-dimensional view of the molecular machinery of RNA interference. Nature 2009; 457: 405–412
  • Horikawa Y., Wood C. G., Yang H., Zhao H., Ye Y., Gu J., et al. Single nucleotide polymorphisms of microRNA machinery genes modify the risk of renal cell carcinoma. Clin Cancer Res 2008; 14: 7956–7962
  • Merritt W. M., Lin Y. G., Han L. Y., Kamat A. A., Spannuth W. A., Schmandt R., et al. Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 2008; 359: 2641–2650
  • Melo S. A., Ropero S., Moutinho C., Aaltonen L. A., Yamamoto H., Calin G. A., et al. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nature Genet 2009; 41: 365–370
  • Borel C., Antonarakis S. E. Functional genetic variation of human miRNAs and phenotypic consequences. Mamm Genome 2008; 19: 503–509
  • Duan R., Pak C., Jin P. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum Mol Genet 2007; 16: 1124–1131
  • Hu Z., Chen J., Tian T., Zhou X., Gu H., Xu L., et al. Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest 2008; 118: 2600–2608
  • Saunders M. A., Liang H., Li W. H. Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci USA 2007; 104: 3300–3305
  • Mishra P. J., Humeniuk R., Mishra P. J., Longo-Sorbello G. S., Banerjee D., Bertino J. R. A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci USA 2007; 104: 13513–13518
  • Tan Z., Randall G., Fan J., Camoretti-Mercado B., Brockman-Schneider R., Pan L., et al. Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet 2007; 81: 829–834
  • Sethupathy P., Borel C., Gagnebin M., Grant G. R., Deutsch S., Elton T. S., et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: A mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet 2007; 81: 405–413
  • Huppi K., Volfovsky N., Mackiewicz M., Runfola T., Jones T. L., Martin S. E., et al. MicroRNAs and genomic instability. Seminars Cancer Biol 2007; 17: 65–73
  • Calin G. A., Dumitru C. D., Shimizu M., Bichi R., Zupo S., Noch E., et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529
  • Cimmino A., Calin G. A., Fabbri M., Iorio M. V., Ferracin M., Shimizu M., et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005; 102: 13944–13949

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.