708
Views
19
CrossRef citations to date
0
Altmetric
Reviews

Multiple functions of the E3 ubiquitin ligase CHIP in immunity

, &
Pages 300-312 | Received 23 Sep 2016, Accepted 18 Mar 2017, Published online: 02 Jun 2017

References

  • Liu YC. Ubiquitin ligases and the immune response. Annu Rev Immunol 2004;22:81–127.
  • Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998;67:425–479.
  • Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem 2001;70:503–533.
  • Cyr DM, Hohfeld J, Patterson C. Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem Sci 2002;27(7):368–375.
  • Ballinger CA, Connell P, Wu YX, et al. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 1999;19(6):4535–4545.
  • McDonough H, Patterson C. CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 2003;8(4):303–308.
  • Dai Q, Zhang C, Wu Y, et al. CHIP activates HSF1 and confers protection against apoptosis and cellular stress. EMBO J 2003;22(20):5446–5458.
  • Edkins AL. CHIP: a co-chaperone for degradation by the proteasome. Sub-Cell Biochem 2015;78:219–242.
  • Rosser MF, Washburn E, Muchowski PJ, et al. Chaperone functions of the E3 ubiquitin ligase CHIP. J Biol Chem 2007;282(31):22267–22277.
  • Xin H, Xu X, Li L, et al. CHIP controls the sensitivity of transforming growth factor-beta signaling by modulating the basal level of Smad3 through ubiquitin-mediated degradation. J Biol Chem 2005;280(21):20842–20850.
  • Li RF, Zhang F, Lu YJ, Sui SF. Specific interaction between Smad1 and CHIP: a surface plasmon resonance study. Colloids Surf B, Biointerf 2005;40(3–4):133–136.
  • Shao M, Li L, Song S, et al. E3 ubiquitin ligase CHIP interacts with C-type lectin-like receptor CLEC-2 and promotes its ubiquitin-proteasome degradation. Cell Signal 2016;28(10):1530–1536.
  • Paul I, Ghosh MK. The E3 ligase CHIP: insights into its structure and regulation. BioMed Res Int 2014;2014:918183.
  • Paul I, Ghosh MK. A CHIPotle in physiology and disease. Int J Biochem Cell Biol 2015;58:37–52.
  • Cao Z, Li G, Shao Q, et al. CHIP: a new modulator of human malignant disorders. Oncotarget 2016;7(20):29864.
  • Kundrat L, Regan L. Balance between folding and degradation for Hsp90-dependent client proteins: a key role for CHIP. Biochemistry 2010;49(35):7428–7438.
  • Wickner S, Maurizi MR, Gottesman S. Posttranslational quality control: Folding, refolding, and degrading proteins. Science 1999;286(5446):1888–1893.
  • Marques C, Guo W, Pereira P, et al. The triage of damaged proteins: degradation by the ubiquitin-proteasome pathway or repair by molecular chaperones. FASEB J: Off Pub Federat Am Soc Experimen Biol 2006;20(6):741–743.
  • Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control. Science 2016;353(6294):aac4354.
  • Kettern N, Dreiseidler M, Tawo R, Hohfeld J. Chaperone-assisted degradation: multiple paths to destruction. Biol Chem 2010;391(5):481–489.
  • Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell 1998;92(3):351–366.
  • Liberek K, Lewandowska A, Zietkiewicz S. Chaperones in control of protein disaggregation. EMBO J. 2008;27(2):328–335.
  • Mayer MP, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci: CMLS 2005;62(6):670–684.
  • Clerico EM, Tilitsky JM, Meng W, Gierasch LM. How hsp70 molecular machines interact with their substrates to mediate diverse physiological functions. J Mol Biol 2015;427(7):1575–1588.
  • Mayer MP. Hsp70 chaperone dynamics and molecular mechanism. Trends Biochem Sci 2013;38(10):507–514.
  • Zhang H, Amick J, Chakravarti R, et al. A bipartite interaction between Hsp70 and CHIP regulates ubiquitination of chaperoned client proteins. Structure 2015;23(3):472–482.
  • Gassler CS, Wiederkehr T, Brehmer D, et al. Bag-1M accelerates nucleotide release for human Hsc70 and Hsp70 and can act concentration-dependent as positive and negative cofactor. J Biol Chem 2001;276(35):32538–32544.
  • Demand J, Alberti S, Patterson C, Hohfeld J. Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Current Biol: CB 2001;11(20):1569–1577.
  • Luders J, Demand J, Hohfeld J. The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 2000;275(7):4613–4617.
  • Wiederkehr T, Bukau B, Buchberger A. Protein turnover: a CHIP programmed for proteolysis. Current Biol: CB 2002;12(1):R26–R28.
  • Arndt V, Dick N, Tawo R, et al. Chaperone-assisted selective autophagy is essential for muscle maintenance. Current Biol: CB 2010;20(2):143–148.
  • Gamerdinger M, Hajieva P, Kaya AM, et al. Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J 2009;28(7):889–901.
  • Zhang M, Windheim M, Roe SM, et al. Chaperoned ubiquitylation–crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol Cell 2005;20(4):525–538.
  • Assimon VA, Southworth DR, Gestwicki JE. Specific binding of tetratricopeptide repeat proteins to heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) is regulated by affinity and phosphorylation. Biochemistry 2015;54(48):7120–7131.
  • Stankiewicz M, Nikolay R, Rybin V, Mayer MP. CHIP participates in protein triage decisions by preferentially ubiquitinating Hsp70-bound substrates. FEBS J 2010;277(16):3353–3367.
  • Garcia-Carbonero R, Carnero A, Paz-Ares L. Inhibition of HSP90 molecular chaperones: moving into the clinic. Lancet Oncol 2013;14(9):e358–e369.
  • Smith DF, Whitesell L, Nair SC, et al. Progesterone receptor structure and function altered by geldanamycin, an hsp90-binding agent. Mol Cell Biol 1995;15(12):6804–6812.
  • Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Experimen Biol Med (Maywood, NJ) 2003;228(2):111–133.
  • Scheufler C, Brinker A, Bourenkov G, et al. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 2000;101(2):199–210.
  • Young JC, Moarefi I, Hartl FU. Hsp90: a specialized but essential protein-folding tool. J Cell Biol 2001;154(2):267–273.
  • Rodina A, Wang T, Yan P, et al. The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature 2016;538(7625):397–401.
  • Yang M, Wang C, Zhu X, et al. E3 ubiquitin ligase CHIP facilitates Toll-like receptor signaling by recruiting and polyubiquitinating Src and atypical PKC{zeta}. J Experimen Med 2011;208(10):2099–2112.
  • Yau R, Rape M. The increasing complexity of the ubiquitin code. Nat Cell Biol 2016;18(6):579–586.
  • Loureiro J, Ploegh HL. Antigen presentation and the ubiquitin‐proteasome system in host–pathogen interactions. Adv Immunol 2006;92:225–305.
  • Qian SB, Reits E, Neefjes J, et al. Tight linkage between translation and MHC class I peptide ligand generation implies specialized antigen processing for defective ribosomal products. J Immunol 2006;177(1):227–233.
  • Schubert U, Anton LC, Gibbs J, et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 2000;404(6779):770–774.
  • Yewdell JW, Anton LC, Bennink JR. Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J Immunol 1996;157(5):1823–1826.
  • Lelouard H, Ferrand V, Marguet D, et al. Dendritic cell aggresome-like induced structures are dedicated areas for ubiquitination and storage of newly synthesized defective proteins. J Cell Biol 2004;164(5):667–675.
  • Herter S, Osterloh P, Hilf N, et al. Dendritic cell aggresome-like-induced structure formation and delayed antigen presentation coincide in influenza virus-infected dendritic cells. J Immunol 2005;175(2):891–898.
  • Lelouard H, Gatti E, Cappello F, et al. Transient aggregation of ubiquitinated proteins during dendritic cell maturation. Nature 2002;417(6885):177–182.
  • Kettern N, Rogon C, Limmer A, et al. The Hsc/Hsp70 Co-Chaperone network controls antigen aggregation and presentation during maturation of professional antigen presenting cells. Plos One 2011;6(1).
  • Alberti S, Bohse K, Arndt V, et al. The cochaperone HspBP1 inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Mol Biol Cell. 2004;15(9):4003–4010.
  • Kunisawa J, Shastri N. Hsp90alpha chaperones large C-terminally extended proteolytic intermediates in the MHC class I antigen processing pathway. Immunity 2006;24(5):523–534.
  • Yin L, Wu L, Wesche H, et al. Defective lymphotoxin-beta receptor-induced NF-kappaB transcriptional activity in NIK-deficient mice. Science 2001;291(5511):2162–2165.
  • Sun SC. Non-canonical NF-kappaB signaling pathway. Cell Res 2011;21(1):71–85.
  • Willmann KL, Klaver S, Dogu F, et al. Biallelic loss-of-function mutation in NIK causes a primary immunodeficiency with multifaceted aberrant lymphoid immunity. Nat Commun 2014;5:5360.
  • Zarnegar BJ, Wang Y, Mahoney DJ, et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 2008;9(12):1371–1378.
  • Jiang B, Shen H, Chen Z, et al. Carboxyl terminus of HSC70-interacting protein (CHIP) down-regulates NF-kappaB-inducing kinase (NIK) and suppresses NIK-induced liver injury. J Biol Chem 2015;290(18):11704–11714.
  • Gaude H, Aznar N, Delay A, et al. Molecular chaperone complexes with antagonizing activities regulate stability and activity of the tumor suppressor LKB1. Oncogene 2012;31(12):1582–1591.
  • Su CH, Wang CY, Lan KH, et al. Akt phosphorylation at Thr308 and Ser473 is required for CHIP-mediated ubiquitination of the kinase. Cell Signal 2011;23(11):1824–1830.
  • Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011;34(5):637–650.
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010;11(5):373– 384.
  • Afrazi A, Sodhi CP, Good M, et al. Intracellular heat shock protein-70 negatively regulates TLR4 signaling in the newborn intestinal epithelium. J Immunol 2012;188(9):4543–4557.
  • Yang K, Zhang TP, Tian C, et al. Carboxyl terminus of heat shock protein 70-interacting protein inhibits angiotensin II-induced cardiac remodeling. Am J Hypertens 2012;25(9):994–1001.
  • Xu CW, Zhang TP, Wang HX, et al. CHIP enhances angiogenesis and restores cardiac function after infarction in transgenic mice. Cell Phys biochem: Int J Experimen Cell Physiol, Biochem, Pharmacol 2013;31(2-3):199–208.
  • Meng Y, Chen C, Wang L, et al. Toll-like receptor-2 ligand peptidoglycan upregulates expression and ubiquitin ligase activity of CHIP through JNK pathway. Cell Physiol Biochem: Int J Experimen Cell Physiol, Biochem, Pharmacol 2013;32(4):1097–1105.
  • Bogdan C. Nitric oxide and the immune response. Nat Immunol 2001;2(10):907–916.
  • Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol 2015;36(3):161–178.
  • Kobayashi Y. The regulatory role of nitric oxide in proinflammatory cytokine expression during the induction and resolution of inflammation. J Leukocyte Biol 2010;88(6):1157–1162.
  • Garcia-Cardena G, Fan R, Shah V, et al. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 1998;392(6678):821–824.
  • Jiang J, Cyr D, Babbitt RW, et al. Chaperone-dependent regulation of endothelial nitric-oxide synthase intracellular trafficking by the co-chaperone/ubiquitin ligase CHIP. J Biol Chem 2003;278(49):49332–49341.
  • Peng HM, Morishima Y, Jenkins GJ, et al. Ubiquitylation of neuronal nitric-oxide synthase by CHIP, a chaperone-dependent E3 ligase. J Biol Chem 2004;279(51):52970–52977.
  • Vodovotz Y, Bogdan C, Paik J, et al. Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor beta. J Experimen Med 1993;178(2):605–613.
  • Musial A, Eissa NT. Inducible nitric-oxide synthase is regulated by the proteasome degradation pathway. J Biol Chem 2001;276(26):24268–24273.
  • Chen L, Kong X, Fu J, et al. CHIP facilitates ubiquitination of inducible nitric oxide synthase and promotes its proteasomal degradation. Cell Immunol 2009;258(1):38–43.
  • Yao X, Li G, Lu C, et al. Arctigenin promotes degradation of inducible nitric oxide synthase through CHIP-associated proteasome pathway and suppresses its enzyme activity. Int Immunopharmacol 2012;14(2):138–144.
  • Gale DP, Maxwell PH. The role of HIF in immunity. Int J Biochem Cell Biol 2010;42(4):486–494.
  • Palazon A, Goldrath AW, Nizet V, Johnson RS. HIF transcription factors, inflammation, and immunity. Immunity 2014;41(4):518–528.
  • Nizet V, Johnson RS. Interdependence of hypoxic and innate immune responses. Nat Rev Immunol 2009;9(9):609–617.
  • Cockman ME, Masson N, Mole DR, et al. Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 2000;275(33):25733–25741.
  • Maxwell PH, Wiesener MS, Chang GW, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999;399(6733):271–275.
  • Liu YV, Baek JH, Zhang H, et al. RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha. Mol Cell 2007;25(2):207–217.
  • Bento CF, Fernandes R, Ramalho J, et al. The chaperone-dependent ubiquitin ligase CHIP targets HIF-1alpha for degradation in the presence of methylglyoxal. PLoS One 2010;5(11):e15062.
  • Luo W, Zhong J, Chang R, et al. Hsp70 and CHIP selectively mediate ubiquitination and degradation of hypoxia-inducible factor (HIF)-1alpha but Not HIF-2alpha. J Biol Chem 2010;285(6):3651–3663.
  • Ferreira JV, Fofo H, Bejarano E, et al. STUB1/CHIP is required for HIF1A degradation by chaperone-mediated autophagy. Autophagy 2013;9(9):1349–1366.
  • Ferreira JV, Soares AR, Ramalho JS, et al. K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy. Sci Rep 2015;5:10210.
  • Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 2012;30:531–564.
  • Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell 2008;133(5):775–787.
  • Barbi J, Pardoll DM, Pan F. Ubiquitin-dependent regulation of Foxp3 and Treg function. Immunol Rev 2015;266(1):27–45.
  • Wang S, Li Y, Hu YH, et al. STUB1 is essential for T-cell activation by ubiquitinating CARMA1. Eur J Immunol 2013;43(4):1034–1041.
  • Zhao Y, Guo H, Qiao G, et al. E3 ubiquitin ligase Cbl-b regulates thymic-derived CD4+CD25+ regulatory T cell development by targeting Foxp3 for ubiquitination. J Immunol 2015;194(4):1639–1645.
  • Tai X, Cowan M, Feigenbaum L, Singer A. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol 2005;6(2):152–162.
  • Zhang J, Bardos T, Li DD, et al. Cutting edge: Regulation of T cell activation threshold by CD28 costimulation through targeting Cbl-b for ubiquitination. J Immunol 2002;169(5):2236–2240.
  • Chen Z, Barbi J, Bu S, et al. The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity 2013;39(2):272–285.
  • Zhang Y, Chen Z, Luo X, et al. Cimetidine down-regulates stability of Foxp3 protein via Stub1 in Treg cells. Human vaccines immunotherap 2016;12(10):2512–2518.
  • Kato H, Takahasi K, Fujita T. RIG-I-like receptors: cytoplasmic sensors for non-self RNA. Immunol Rev 2011;243(1):91–98.
  • Ramos HJ, Gale M. RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity. Curr Opin Virol 2011;1(3):167–176.
  • Yoneyama M, Kikuchi M, Natsukawa T, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 2004;5(7):730–737.
  • Zhao K, Zhang Q, Li X, et al. Cytoplasmic STAT4 Promotes Antiviral Type I IFN Production by Blocking CHIP-Mediated Degradation of RIG-I. J Immunol 2016;196(3):1209–1217.
  • Chaipan C, Soilleux EJ, Simpson P, et al. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets. J Virol 2006;80(18):8951–8960.
  • Suzuki-Inoue K, Inoue O, Ding G, et al. Essential in vivo roles of the C-type lectin receptor CLEC-2: embryonic/neonatal lethality of CLEC-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of CLEC-2-deficient platelets. J Biol Chem 2010;285(32):24494–24507.
  • Mok CC, Lau CS. Pathogenesis of systemic lupus erythematosus. J Clin Pathol 2003;56(7):481–490.
  • Zhao M, Sun YM, Gao F, et al. Epigenetics and SLE: RFX1 downregulation causes CD11a and CD70 overexpression by altering epigenetic modifications in lupus CD4(+) T cells. J Autoimmun 2010;35(1):58–69.
  • Zhao M, Wu X, Zhang Q, et al. RFX1 regulates CD70 and CD11a expression in lupus T cells by recruiting the histone methyltransferase SUV39H1. Arthritis Res Ther 2010;12(6):R227.
  • Sheng YJ, Xu JH, Wu YG, et al. Association analyses confirm five susceptibility loci for systemic lupus erythematosus in the Han Chinese population. Arthritis Res Ther 2015;17:85.
  • Bezie S, Picarda E, Ossart J, et al. IL-34 is a Treg-specific cytokine and mediates transplant tolerance. J Clin Invest 2015;125(10):3952–3964.
  • Kluger MA, Melderis S, Nosko A, et al. Treg17 cells are programmed by Stat3 to suppress Th17 responses in systemic lupus. Kidney Int 2016;89(1):158–166.
  • Guo Y, Zhao M, Lu Q. Transcription factor RFX1 is ubiquitinated by E3 ligase STUB1 in systemic lupus erythematosus. Clin Immunol 2016;169:1–7.
  • Holtzman MJ, Byers DE, Alexander-Brett J, Wang X. The role of airway epithelial cells and innate immune cells in chronic respiratory disease. Nat Rev Immunol 2014;14(10):686–698.
  • Oh CK, Geba GP, Molfino N. Investigational therapeutics targeting the IL-4/IL-13/STAT-6 pathway for the treatment of asthma. Eur Respir Rev 2010;19(115):46–54.
  • Kuperman DA, Schleimer RP. Interleukin-4, interleukin-13, signal transducer and activator of transcription factor 6, and allergic asthma. Curr Mol Med 2008;8(5):384–392.
  • Baye TM, Kovacic MB, Myers JMB, et al. Differences in Candidate Gene Association between European Ancestry and African American Asthmatic Children. Plos One 2011;6(2).
  • Wei Q, Sha Y, Bhattacharya A, et al. Regulation of IL-4 receptor signaling by STUB1 in lung inflammation. Am J Respirat Crit Care Med 2014;189(1):16–29.
  • Ramadas RA, Roche MI, Moon JJ, et al. CARMA1 is necessary for optimal T-cell responses in a murine model of allergic asthma. J Immunol 2011;187(12):6197– 6207.
  • Huerta-Yepez S, Baay-Guzman GJ, Bebenek IG, et al. Hypoxia inducible factor promotes murine allergic airway inflammation and is increased in asthma and rhinitis. Allergy 2011;66(7):909–918.
  • Perros F, Lambrecht BN, Hammad H. TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways. Resp Res 2011;12.
  • Kim W, Bennett EJ, Huttlin EL, et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 2011;44(2):325–340.
  • Emanuele MJ, Elia AE, Xu Q, et al. Global identification of modular cullin-RING ligase substrates. Cell 2011;147(2):459–474.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.