1,069
Views
4
CrossRef citations to date
0
Altmetric
Reviews

TLRs/NLRs: Shaping the landscape of host immunity

, , , &
Pages 3-19 | Received 16 Mar 2017, Accepted 24 Oct 2017, Published online: 01 Dec 2017

References

  • Brubaker SW, Bonham KS, Zanoni I, et al. Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol. 2015;33:257–290.
  • Medzhitov R. Approaching the asymptote: 20 years later. Immunity 2009;30(6):766–775.
  • De Nardo D. Toll-like receptors: activation, signalling and transcriptional modulation. Cytokine 2015;74(2):181–189.
  • Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335–76.
  • Delneste Y, Beauvillain C, Jeannin P. Innate immunity: structure and function of TLRs. Med Sci. 2007;23(1):67–73.
  • Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461.
  • O'Neill LA, Golenbock D, Bowie AG. The history of Toll-like receptors – redefining innate immunity. Nat Rev Immunol. 2013;13(6):453–460.
  • Koonin EV, Aravind L. The NACHT family – a new group of predicted NTPases implicated in apoptosis and MHC transcription activation. Trends Biochem Sci. 2000;25(5):223–224.
  • Feerick CL, McKernan DP. Understanding the regulation of pattern recognition receptors in inflammatory diseases – a ‘Nod’ in the right direction. Immunology 2017;150(3):237–247.
  • Kersse K, Bertrand MJ, Lamkanfi M, et al. NOD-like receptors and the innate immune system: coping with danger, damage and death. Cytokine Growth Factor Rev. 2011;22(5,6):257–276.
  • Motta V, Soares F, Sun T, et al. NOD-like receptors: versatile cytosolic sentinels. Physiol Rev. 2015;95(1):149–178.
  • Van Gorp H, Kuchmiy A, Van Hauwermeiren F, et al. NOD-like receptors interfacing the immune and reproductive systems. FEBS J. 2014;281(20):4568–4582.
  • Haneklaus M, O'Neill LA. NLRP3 at the interface of metabolism and inflammation. Immunol Rev. 2015;265(1):53–62.
  • Okabe Y, Medzhitov R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 2014;157(4):832–844.
  • Kindt T, Goldsby R, Osbourne B. Kuby Immunology: W. H. Freeman and Company; 2007:4–16.
  • Pasare C, Medzhitov R. Toll-like receptors: linking innate and adaptive immunity. Microbes Infect. 2004;6(15):1382–1387.
  • Damm A, Lautz K, Kufer TA. Roles of NLRP10 in innate and adaptive immunity. Microbes Infect. 2013;15(6,7):516–523.
  • Netea MG, Van der Meer JW, Sutmuller RP, et al. From the Th1/Th2 paradigm towards a Toll-like receptor/T-helper bias. Antimicrob Agents Chemother. 2005;49(10):3991–3996.
  • Jo EK, Yang CS, Choi CH, et al. Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cell Microbiol. 2007;9(5):1087–1098.
  • Murphy KM, Reiner SL. The lineage decisions of helper T cells. Nat Rev Immunol. 2002;2(12):933–944.
  • Salgame P. Host innate and Th1 responses and the bacterial factors that control Mycobacterium tuberculosis infection. Curr Opin Immunol. 2005;17(4):374–380.
  • Dorhoi A, Kaufmann SH. Perspectives on host adaptation in response to Mycobacterium tuberculosis: modulation of inflammation. Semin Immunol. 2014;26(6):533–542.
  • Roberts MTM. Current understandings on the immunology of leishmaniasis and recent developments in prevention and treatment. Br Med Bull. 2005;75,76(1):115–130.
  • Griffin AJ, McSorley SJ. Development of protective immunity to Salmonella, a mucosal pathogen with a systemic agenda. Mucosal Immunol. 2011;4(4):371–382.
  • Rook GA. Th2 cytokines in susceptibility to tuberculosis. Curr Mol Med. 2007;7(3):327–337.
  • Nair S, Ramaswamy PA, Ghosh S, et al. The PPE18 of Mycobacterium tuberculosis interacts with TLR2 and activates IL-10 induction in macrophage. J Immunol. 2009;183(10):6269–6281.
  • Nair S, Pandey AD, Mukhopadhyay S. The PPE18 protein of Mycobacterium tuberculosis inhibits NF-κB/rel-mediated proinflammatory cytokine production by upregulating and phosphorylating suppressor of cytokine signaling 3 protein. J Immunol. 2011;186(9):5413–5424.
  • Bhat KH, Chaitanya CK, Parveen N, et al. Proline-proline-glutamic acid (PPE) protein Rv1168c of Mycobacterium tuberculosis augments transcription from HIV-1 long terminal repeat promoter. J Biol Chem. 2012;287(20):16930–16946.
  • Udgata A, Qureshi R, Mukhopadhyay S. Transduction of functionally contrasting signals by two mycobacterial PPE proteins downstream of TLR2 Receptors. J Immunol. 2016;197(5):1776–1787
  • Bhat KH, Ahmed A, Kumar S, et al. Role of PPE18 Protein in Intracellular Survival and Pathogenicity of Mycobacterium tuberculosis in Mice. PLoS ONE 2012;7(12).
  • Misch EA, Macdonald M, Ranjit C, et al. Human TLR1 deficiency is associated with impaired mycobacterial signaling and protection from leprosy reversal reaction. PLOS Negl Trop Dis. 2008;2(5):e231.
  • Li J, Lee DSW, Madrenas J. Evolving bacterial envelopes and plasticity of TLR2-dependent responses: basic research and translational opportunities. Front Immunol. 2013;4:347.
  • Parveen N, Varman R, Nair S, et al. Endocytosis of Mycobacterium tuberculosis heat shock protein 60 is required to induce interleukin-10 production in macrophages. J Biol Chem. 2013;288(34):24956–24971.
  • Park BS, Lee J-O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med. 2013;45(12):e66.
  • Panda SK, Kumar S, Tupperwar NC, et al. Chitohexaose activates macrophages by alternate pathway through TLR4 and blocks endotoxemia. PLoS Pathog. 2012;8(5):e1002717.
  • Srivastava S, Pandey SP, Jha MK, et al. Leishmania expressed lipophosphoglycan interacts with Toll-like receptor (TLR)-2 to decrease TLR-9 expression and reduce anti-leishmanial responses. Clin Exp Immunol. 2013;172(3):403–409.
  • Lv S, Li J, Qiu X, et al. A negative feedback loop of ICER and NF-κB regulates TLR signaling in innate immune responses. Cell Death Differ. 2017;24(3):492–499.
  • Millrine D, Tei M, Gemechu Y, et al. Rabex-5 is a lenalidomide target molecule that negatively regulates TLR-induced type 1 IFN production. Proc Natl Acad Sci USA. 2016;113(38):10625–10630.
  • Lee MS, Kim YJ. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu Rev Biochem. 2007;76:447–480.
  • McClure R, Massari P. TLR-dependent human mucosal epithelial cell responses to microbial pathogens. Fronti Immunol. 2014;5:386.
  • Cohen P. The TLR and IL-1 signalling network at a glance. J Cell Sci. 2014;127(11):2383–2390.
  • Takeuchi O. Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. Int Immunol. 2000;12(1):113–117.
  • Scanga CA, Bafica A, Feng CG, et al. MyD88-deficient mice display a profound loss in resistance to Mycobacterium tuberculosis associated with partially impaired Th1 cytokine and nitric oxide synthase 2 expression. Infect Immun. 2004;72(4):2400–2404.
  • Re F, Strominger JL. IL-10 released by concomitant TLR2 stimulation blocks the induction of a subset of th1 cytokines that are specifically induced by TLR4 or TLR3 in human dendritic cells. J Immunol. 2004;173(12):7548–7555.
  • Valledor AF, Xaus J, Comalada M, et al. Protein kinase C epsilon is required for the induction of mitogen-activated protein kinase phosphatase-1 in lipopolysaccharide-stimulated macrophages. J mmunol. 2000;164(1):29–37.
  • Chen G, Shaw MH, Kim YG, et al. NOD-like receptors: role in innate immunity and inflammatory disease. Ann Rev Pathol. 2009;4:365–398.
  • Philpott DJ, Sorbara MT, Robertson SJ, et al. NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol. 2014;14(1):9–23.
  • Park JH, Kim YG, McDonald C, et al. RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J Immunol. 2007;178(4):2380–2386.
  • Magalhaes JG, Sorbara MT, Girardin SE, et al. What is new with Nods? Curr Opin Immunol. 2011;23(1):29–34.
  • Khare S, Dorfleutner A, Bryan NB, et al. An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 2012;36(3):464–476.
  • Abdalla EM, Hayward BE, Shamseddin A, et al. Recurrent hydatidiform mole: detection of two novel mutations in the NLRP7 gene in two Egyptian families. Eur J Obstet Gynecol Reprod Biol. 2012;164(2):211–215.
  • Ulker V, Gurkan H, Tozkir H, et al. Novel NLRP7 mutations in familial recurrent hydatidiform mole: are NLRP7 mutations a risk for recurrent reproductive wastage? Eur J Obstet Gynecol Reprod Biol. 2013;170(1):188–192.
  • Hampe J, Cuthbert A, Croucher PJ, et al. Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations. Lancet 2001;357(9272):1925–1928.
  • Hugot J-P, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 2001;411(6837):599–603.
  • Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001;411(6837):603–606.
  • Fiorentino L, Stehlik C, Oliveira V, et al. A Novel PAAD-containing protein that modulates NF-κB Induction by Cytokines tumor necrosis factor-α and interleukin-1β. J Biol Chem. 2002;277(38):35333–35340.
  • Anand PK, Malireddi RKS, Lukens JR, et al. NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 2012;488(7411):389–393.
  • Allen IC, Wilson JE, Schneider M, et al. NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-κB signaling. Immunity 2012;36(5):742–754.
  • Schneider M, Zimmermann AG, Roberts RA, et al. The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-κB. Nature Immunol. 2012;13(9):823–831.
  • Martinon F, Burns K, Tschopp J. The Inflammasome. Mol Cell. 2002;10(2):417–426.
  • Schroder K, Tschopp J. The Inflammasomes. Cell 2010;140(6):821–832.
  • Shao W, Yeretssian G, Doiron K, et al. The Caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J Biol Chem. 2007;282(50):36321–36329.
  • Dinarello CA. IL-1: Discoveries, controversies and future directions. Eur J Immunol. 2010;40(3):599–606.
  • Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407–420.
  • Gomes MT, Campos PC, Oliveira FS, et al. Critical role of ASC inflammasomes and bacterial type IV secretion system in caspase-1 activation and host innate resistance to Brucella abortus infection. J Immunol. 2013;190(7):3629–3638.
  • Silveira TN, Zamboni DS. Pore formation triggered by Legionella spp. is an Nlrc4 inflammasome-dependent host cell response that precedes pyroptosis. Infect Immun. 2010;78(3):1403–1413.
  • Zhao Y, Yang J, Shi J, et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 2011;477(7366):596–600.
  • Moayeri M, Sastalla I, Leppla SH. Anthrax and the inflammasome. Microbes Infect. 2012;14(5):392–400.
  • Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nature Rev Microbiol. 2009;7(2):99–109.
  • Jo EK, Kim JK, Shin DM, Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol. 2016;13(2):148–159.
  • Feng H, Gu J, Gou F, et al. High glucose and lipopolysaccharide prime NLRP3 inflammasome via ROS/TXNIP pathway in mesangial cells. J Diabetes Res. 2016;2016:6973175.
  • Robblee MM, Kim CC, Porter Abate J, et al. Saturated fatty acids engage an IRE1alpha-dependent pathway to activate the NLRP3 inflammasome in myeloid cells. Cell Rep. 2016;14(11):2611–2623.
  • Zhang Y, Li X, Grailer JJ, et al. Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome. J Pineal Res. 2016;60(4):405–414.
  • Zhang P, Tsuchiya K, Kinoshita T, et al. Vitamin B6 prevents IL-1β production by inhibiting NLRP3 inflammasome activation. J Biol Chem. 2016;291(47):24517–24527.
  • Mastrocola R, Penna C. Pharmacological inhibition of NLRP3 inflammasome attenuates myocardial ischemia/reperfusion injury by activation of RISK and mitochondrial pathways. Oxid Med Cell Longev. 2016;2016:5271251.
  • Guarda G, Dostert C, Staehli F, et al. T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes. Nature 2009;460(7252):269–273.
  • Man SM, Karki R, Sasai M, et al. IRGB10 liberates bacterial ligands for sensing by the AIM2 and caspase-11-NLRP3 inflammasomes. Cell 2016;167(2):382–396.e17.
  • de Souza HSP, Fiocchi C. Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol. 2016;13(1):13–27.
  • Bauernfeind FG, Horvath G, Stutz A, et al. Cutting Edge: NF- κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 Expression. J Immunol. 2009;183(2):787–791.
  • Jones CL, Weiss DS. TLR2 signaling contributes to rapid inflammasome activation during F. novicida infection. PLoS ONE 2011;6(6):e20609.
  • Lin KM, Hu W, Troutman TD, et al. IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation. Proc Natl Acad Sci USA. 2013;111(2):775–780.
  • de Almeida L, Khare S, Misharin Alexander V, et al. The PYRIN Domain-only protein POP1 inhibits inflammasome assembly and ameliorates inflammatory disease. Immunity 2015;43(2):264–276.
  • Hussain Bhat K, Mukhopadhyay S. Macrophage takeover and the host-bacilli interplay during tuberculosis. Future Microbiol. 2015;10(5):853–872.
  • Blander JM. Phagocytosis and antigen presentation: a partnership initiated by Toll-like receptors. Ann Rheum Dis. 2008;67(Suppl 3):iii44–iii9.
  • Shiratsuchi A, Watanabe I, Takeuchi O, et al. Inhibitory Effect of Toll-Like Receptor 4 on fusion between phagosomes and endosomes/lysosomes in macrophages. J Immunol. 2004;172(4):2039–2047.
  • Blander JM, Medzhitov R. Regulation of phagosome maturation by signals from Toll-like receptors. Science 2004;304(5673):1014–1018.
  • Yates RM, Russell DG. Phagosome maturation proceeds independently of stimulation of Toll-like receptors 2 and 4. Immunity 2005;23(4):409–417.
  • McCoy CE, Sheedy FJ, Qualls JE, et al. IL-10 inhibits miR-155 induction by Toll-like receptors. J Biol Chem. 2010;285(27):20492–20498.
  • Fratti RA, Backer JM, Gruenberg J, et al. Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol. 2001;154(3):631–644.
  • Cyktor JC, Turner J. Interleukin-10 and immunity against prokaryotic and eukaryotic intracellular pathogens. Infect Immun. 2011;79(8):2964–2973.
  • O'Leary S, O'Sullivan MP, Keane J. IL-10 blocks phagosome maturation in Mycobacterium tuberculosis– infected human macrophages. Am J Respir Cell Mol Biol. 2011;45(1):172–180.
  • Cole C, Thomas S, Filak H, et al. Nitric oxide increases susceptibility of Toll-like receptor-activated macrophages to spreading Listeria monocytogenes. Immunity 2012;36(5):807–820.
  • Lood C, Arve S. TLR7/8 activation in neutrophils impairs immune complex phagocytosis through shedding of FcgRIIA. J Exp Med. 2017;214(7):2103–2119
  • Lood C, Blanco LP, Purmalek MM, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 2016;22(2):146–153.
  • Sokolovska A, Becker CE, Ip WK, et al. Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function. Nature Immunol. 2013;14(6):543–553.
  • Fortier A, De Chastellier C, Balor S, et al. Birc1e/Naip5 rapidly antagonizes modulation of phagosome maturation by Legionella pneumophila. Cell Microbiol. 2007;9(4):910–923.
  • Amer A, Franchi L, Kanneganti TD, et al. Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem. 2006;281(46):35217–35223.
  • Kaur J, Debnath J. Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol. 2015;16(8):461–472.
  • Hsu P, Shi Y. Regulation of autophagy by mitochondrial phospholipids in health and diseases. Biochim Biophys Acta. 2017;1862(1):114–129.
  • Medina DL, Di Paola S, Peluso I, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol. 2015;17(3):288–299.
  • Scherz-Shouval R, Elazar Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci. 2011;36(1):30–38.
  • Delgado MA, Deretic V. Toll-like receptors in control of immunological autophagy. Cell Death Differ. 2009;16(7):976–983.
  • Lamb CA, Yoshimori T, Tooze SA. The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol. 2013;14(12):759–774.
  • Russell RC, Tian Y, Yuan H, et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol. 2013;15(7):741–750.
  • Sou YS, Tanida I, Komatsu M, et al. Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16. J Biol Chem. 2006;281(6):3017–3024.
  • Levine B, Deretic V. Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol. 2007;7(10):767–777.
  • Shibutani ST, Saitoh T, Nowag H, et al. Autophagy and autophagy-related proteins in the immune system. Nature Immunol. 2015;16(10):1014–1024.
  • Wu DJ, Adamopoulos IE. Autophagy and autoimmunity. Clin Immunol. 2017;176:55–62.
  • Delgado MA, Elmaoued RA, Davis AS, et al. Toll-like receptors control autophagy. EMBO J. 2008;27(7):1110–1121.
  • Kawai T, Akira S. Signaling to NF-κB by Toll-like receptors. Trends Mol Med. 2007;13(11):460–469.
  • Delgado MA, Deretic V. Toll-like receptors in control of immunological autophagy. Cell Death Differ. 2009;16(7):976–983.
  • Gutierrez MG, Master SS, Singh SB, et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004;119(6):753–766.
  • Harris J, Keane J. How tumour necrosis factor blockers interfere with tuberculosis immunity. Clin Exp Immunol. 2010;161(1):1–9.
  • Tateosian NL, Pellegrini JM, Amiano NO, et al. IL17A augments autophagy in Mycobacterium tuberculosis-infected monocytes from patients with active tuberculosis in association with the severity of the disease. Autophagy 2017:1–14.
  • Harris J, De Haro SA, Master SS, et al. T Helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 2007;27(3):505–517.
  • Harris J, Hartman M, Roche C, et al. Autophagy controls IL-1β secretion by targeting pro-IL-1β for degradation. J Biol Chem. 2011;286(11):9587–9597.
  • Kirkin V, McEwan DG, Novak I, et al. A role for ubiquitin in selective autophagy. Mol Cell. 2009;34(3):259–269.
  • Lee H-M, Shin D-M, Yuk J-M, et al. Autophagy negatively regulates keratinocyte inflammatory responses via scaffolding protein p62/SQSTM1. J Immunol. 2011;186(2):1248–1258.
  • Shi CS, Kehrl JH. MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J Biol Chem. 2008;283(48):33175–33182.
  • Xu Y, Jagannath C, Liu XD, et al. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 2007;27(1):135–144.
  • Li X, Cen Y, Cai Y, et al. TLR9-ERK-mTOR signaling is critical for autophagic cell death induced by CpG oligodeoxynucleotide 107 combined with irradiation in glioma cells. Sci Repc. 2016;6:27104.
  • van der Vaart M, Korbee CJ, Lamers GE, et al. The DNA damage-regulated autophagy modulator DRAM1 links mycobacterial recognition via TLR-MYD88 to autophagic defense. Cell Host Microbe. 2014;15(6):753–767.
  • Anand PK, Tait SW, Lamkanfi M, et al. TLR2 and RIP2 pathways mediate autophagy of Listeria monocytogenes via extracellular signal-regulated kinase (ERK) activation. J Biol Chem. 2011;286(50):42981–42991.
  • Munz C. Autophagy beyond intracellular MHC Class II antigen presentation. Trends Immunol. 2016;37(11):755–763.
  • Feng Y, Gao J, Cui Y, et al. Neuroprotective effects of resatorvid against traumatic brain injury in rat: involvement of neuronal autophagy and TLR4 Signaling Pathway. Cell Mol Neurobiol. 2017;37(1):155–168.
  • Liu G, Bi Y, Wang R, et al. Self-eating and self-defense: autophagy controls innate immunity and adaptive immunity. J Leukoc Biol. 2013;93(4):511–519.
  • Travassos LH, Carneiro LAM, Girardin S, et al. Nod proteins link bacterial sensing and autophagy. Autophagy 2010;6(3):409–411.
  • Cooney R, Baker J, Brain O, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med. 2010;16(1):90–97.
  • Homer CR, Kabi A, Marina-García N, et al. A dual role for Receptor-interacting Protein Kinase 2 (RIP2) Kinase activity in Nucleotide-binding Oligomerization Domain 2 (NOD2)-dependent Autophagy. J Biol Chem. 2012;287(30):25565–25576.
  • Suzuki T, Franchi L, Toma C, et al. Differential regulation of Caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog. 2007;3(8):e111.
  • Travassos LH, Carneiro LA, Ramjeet M, et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol. 2010;11(1):55–62.
  • Lei Y, Wen H, Ting JPY. The NLR protein, NLRX1, and its partner, TUFM, reduce type I interferon, and enhance autophagy. Autophagy 2013;9(3):432–433.
  • Yu S-X, Du C-T, Chen W, et al. Genipin inhibits NLRP3 and NLRC4 inflammasome activation via autophagy suppression. Sci Rep. 2015;5:17935.
  • Jounai N, Kobiyama K, Shiina M, et al. NLRP4 negatively regulates autophagic processes through an association with beclin1. J Immunol. 2011;186(3):1646–1655.
  • Deng Q, Wang Y, Zhang Y, et al. Pseudomonas aeruginosa Triggers macrophage autophagy to escape intracellular killing by activation of the NLRP3 inflammasome. Infect Immun. 2016;84(1):56–66.
  • Wang D, Zhang J, Jiang W, et al. The role of NLRP3-CASP1 in inflammasome-mediated neuroinflammation and autophagy dysfunction in manganese-induced, hippocampal-dependent impairment of learning and memory ability. Autophagy 2017;13(5):914–927.
  • Chuang S-Y, Yang C-H, Chou C-C, et al. TLR-induced PAI-2 expression suppresses IL-1β processing via increasing autophagy and NLRP3 degradation. Proc Natl Acad Sci USA. 2013;110(40):16079–16084.
  • Bansal K, Elluru SR, Narayana Y, et al. PE_PGRS antigens of Mycobacterium tuberculosis induce maturation and activation of human dendritic cells. J Immunol. 2010;184(7):3495–3504.
  • Mantegazza AR, Zajac AL, Twelvetrees A, et al. TLR-dependent phagosome tubulation in dendritic cells promotes phagosome cross-talk to optimize MHC-II antigen presentation. Proc Natl Acad Sci USA. 2014;111(43):15508–15513.
  • Blander JM, Medzhitov R. On regulation of phagosome maturation and antigen presentation. Nat Immunol. 2006;7(10):1029–1035.
  • Chen M, Barnfield C, Naslund TI, et al. MyD88 expression is required for efficient cross-presentation of viral antigens from infected Cells. J Virol. 2005;79(5):2964–2972.
  • Gil-Torregrosa BC, Lennon-Duménil AM, Kessler B, et al. Control of cross-presentation during dendritic cell maturation. Eur J Immunol. 2004;34(2):398–407.
  • Weck MM, Grunebach F, Werth D, et al. TLR ligands differentially affect uptake and presentation of cellular antigens. Blood 2007;109(9):3890–3894.
  • Datta SK, Raz E. Induction of antigen cross-presentation by Toll-like receptors. Springer Semin Immunopathol. 2004;26(3):247–255.
  • Mittal SK, Roche PA. Suppression of antigen presentation by IL-10. Curr Opin Immunol. 2015;34:22–27.
  • Staehli F, Ludigs K, Heinz LX, et al. NLRC5 deficiency selectively impairs MHC Class I-dependent lymphocyte killing by cytotoxic T cells. J Immunol. 2012;188(8):3820–3828.
  • Reith W, LeibundGut-Landmann S, Waldburger J-M. Regulation of MHC class II gene expression by the class II transactivator. Nat Rev Immunol. 2005;5(10):793–806.
  • Michallet MC, Rota G, Maslowski K, et al. Innate receptors for adaptive immunity. Curr Opin Microbiol. 2013;16(3):296–302.
  • Yao Y, Wang Y, Chen F, et al. NLRC5 regulates MHC class I antigen presentation in host defense against intracellular pathogens. Cell Res. 2012;22(5):836–847.
  • Biswas A, Meissner TB, Taro K, et al. Cutting edge: impaired MHC class I expression in mice deficient for Nlrc5/CITA. J. Immunol. 2012;189(2):516–520.
  • Meissner TB, Li A, Biswas A, et al. NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc Natl Acad Sci USA. 2010;107(31):13794–13799.
  • O'Keefe GM, Nguyen VT, Benveniste EN. Class II transactivator and class II MHC gene expression in microglia: modulation by the cytokines TGF-beta, IL-4, IL-13 and IL-10. Eur J Immunol. 1999;29(4):1275–1285.
  • Velasquez LN, Milillo MA, Delpino MV, et al. Brucella abortus down-regulates MHC class II by the IL-6-dependent inhibition of CIITA through the downmodulation of IFN regulatory factor-1 (IRF-1). J Leukoc Biol. 2017;101(3):759–773.
  • Cai Q, Banerjee S, Cervini A, et al. IRF-4-mediated CIITA transcription is blocked by KSHV encoded LANA to Inhibit MHC II Presentation. PLoS Pathog. 2013;9(10):e1003751.
  • Yoshihama S, Vijayan S, Sidiq T, et al. NLRC5/CITA: a key player in cancer immune surveillance. Trends Cancer 2017;3(1):28–38.
  • Rodriguez GM, Bobbala D, Serrano D, et al. NLRC5 elicits antitumor immunity by enhancing processing and presentation of tumor antigens to CD8+ T lymphocytes. Oncoimmunology 2016;5(6):e1151593.
  • Reynolds JM, Dong C. Toll-like receptor regulation of effector T lymphocyte function. Trends Immunol. 2013;34(10):511–519.
  • Komai-Koma M, Jones L, Ogg GS,et al. TLR2 is expressed on activated T cells as a costimulatory receptor. Proc Natl Acad Sci USA. 2004;101(9):3029–3034.
  • Lancioni CL, Li Q, Thomas JJ, et al. Mycobacterium tuberculosis lipoproteins directly regulate human memory CD4+ T cell activation via Toll-Like Receptors 1 and 2. Infect Immun. 2010;79(2):663–673.
  • Cottalorda A, Verschelde C, Marçais A, et al. TLR2 engagement on CD8 T cells lowers the threshold for optimal antigen-induced T cell activation. Eur J Immunol. 2006;36(7):1684–1693.
  • Mercier BC, Cottalorda A, Coupet CA, et al. TLR2 engagement on CD8 T Cells Enables generation of functional memory cells in response to a suboptimal TCR Signal. J Immunol. 2009;182(4):1860–1867.
  • Caron G, Duluc D, Fremaux I, et al. Direct stimulation of human T cells via TLR5 and TLR7/8: flagellin and R-848 up-regulate proliferation and IFN- production by memory CD4+ T Cells. J Immunol. 2005;175(3):1551–1557.
  • Reynolds JM, Pappu BP, Peng J, et al. Toll-like Receptor 2 signaling in CD4+ T lymphocytes promotes T Helper 17 responses and regulates the pathogenesis of autoimmune disease. Immunity 2010;32(5):692–702.
  • Ye J, Wang Y, Liu X, et al. TLR7 signaling regulates Th17 cells and autoimmunity: novel potential for autoimmune therapy. J Immunol. 2017;199(3):941–954.
  • Dominguez-Villar M, Gautron A-S, de Marcken M, et al. TLR7 induces anergy in human CD4+ T cells. Nat Immunol. 2014;16(1):118–128.
  • Shaw MH, Kamada N, Warner N, et al. The ever-expanding function of NOD2: autophagy, viral recognition, and T cell activation. Trend Immunol. 2011;32(2):73–79.
  • Bruchard M, Rebe C, Derangere V, et al. The receptor NLRP3 is a transcriptional regulator of TH2 differentiation. Nat Immunol. 2015;16(8):859–870.
  • Arbore G, West EE, Spolski R, et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4+ T cells. Science 2016;352(6292):aad1210.
  • Mercier BC, Ventre E, Fogeron ML, et al. NOD1 cooperates with TLR2 to enhance T cell receptor-mediated activation in CD8 T cells. PLoS ONE 2012;7(7):e42170.
  • Crellin NK, Garcia RV, Hadisfar O, et al. Human CD4+ T cells express TLR5 and its ligand flagellin enhances the suppressive capacity and expression of FOXP3 in CD4+CD25+ T regulatory cells. J Immunol. 2005;175(12):8051–8059.
  • Peng G. Toll-Like Receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 2005;309(5739):1380–1384.
  • Sutmuller RPM. Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 2006;116(2):485–494.
  • Jin B, Sun T, Yu XH, et al. The effects of TLR activation on T-cell development and differentiation. Clin Dev Immunol. 2012;2012:836485.
  • Koch KN, Muller A. Helicobacter pylori activates the TLR2/NLRP3/caspase-1/IL-18 axis to induce regulatory T-cells, establish persistent infection and promote tolerance to allergens. Gut Microbes. 2015;6(6):382–387.
  • Rahman MK, Midtling EH, Svingen PA, et al. The pathogen recognition receptor NOD2 regulates human FOXP3+ T cell survival. J Immunol. 2010;184(12):7247–7256
  • Zheng L, Asprodites N, Keene AH, et al. TLR9 engagement on CD4 T lymphocytes represses γ-radiation-induced apoptosis through activation of checkpoint kinase response elements. Blood 2007;111(5):2704–2713.
  • Peng G, Wang HY, Peng W, et al. Tumor-infiltrating γδ T cells suppress T and dendritic cell function via mechanisms controlled by a unique Toll-like Receptor signaling pathway. Immunity 2007;27(2):334–348.
  • Buchta CM, Bishop GA. Toll-like receptors and B cells: functions and mechanisms. Immunol Res. 2014;59(1–3):12–22.
  • Pasare C, Medzhitov R. Control of B-cell responses by Toll-like receptors. Nature 2005;438(7066):364–368.
  • Xu Z, Zan H, Pone EJ, et al. Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat Rev Immunol. 2012;12(7):517–531.
  • Bernasconi NL. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 2002;298(5601):2199–2202.
  • Guay HM, Andreyeva TA, Garcea RL, et al. MyD88 Is required for the formation of long-term humoral immunity to virus infection. J Immunol. 2007;178(8):5124–5131.
  • Raval FM, Mishra R, Garcea RL, et al. Long-lasting T cell-independent IgG responses require MyD88-mediated pathways and are maintained by high levels of virus persistence. mBio 2013;4(6):e00812-13-e-13.
  • Mocsai A, Ruland J, Tybulewicz VL. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol. 2010;10(6):387–402.
  • Schweighoffer E, Nys J, Vanes L, et al. TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK. J Exp Med. 2017;214(5):1269–1280.
  • Adjobimey T, Satoguina J, Oldenburg J, et al. Co-activation through TLR4 and TLR9 but not TLR2 skews Treg-mediated modulation of Igs and induces IL-17 secretion in Treg:B cell co-cultures. Innate Immun. 2014;20(1):12–23.
  • Walsh Kevin B, Teijaro John R, Zuniga Elina I, et al. Toll-like Receptor 7 is required for effective adaptive immune responses that prevent persistent virus infection. Cell Host Microbe. 2012;11(6):643–653.
  • Clingan JM, Matloubian M. B cell-intrinsic TLR7 signaling is required for optimal B cell responses during chronic viral infection. J Immunol. 2013;191(2):810–818.
  • Ma K, Li J, Fang Y, et al. Roles of B cell-intrinsic TLR signals in Systemic Lupus Erythematosus. Int J Mol Sci. 2015;16(6):13084–13105.
  • Petterson T, Jendholm J, Mansson A, et al. Effects of NOD-like receptors in human B lymphocytes and crosstalk between NOD1/NOD2 and Toll-like receptors. J Leukoc Biol. 2011;89(2):177–187.
  • Franz KM, Kagan JC. Innate immune receptors as competitive determinants of cell fate. Mol Cell 2017;66(6):750–760.
  • Netea MG, Ferwerda G, de Jong DJ, et al. Nucleotide-binding oligomerization domain-2 modulates specific TLR pathways for the induction of cytokine release. J Immunol. 2005;174(10):6518–6523.
  • Selvanantham T, Escalante NK, Cruz Tleugabulova M, et al. Nod1 and Nod2 enhance TLR-mediated invariant NKT cell activation during bacterial infection. J Immunol. 2013;191(11):5646–5654.
  • Lai RP, Meintjes G, Wilkinson KA, et al. HIV-tuberculosis-associated immune reconstitution inflammatory syndrome is characterized by Toll-like receptor and inflammasome signalling. Nat Commun. 2015;6:8451.
  • Odendall C, Kagan JC. Activation and pathogenic manipulation of the sensors of the innate immune system. Microbes Infect. 2017;19(4,5):229–237.
  • Lamkanfi M, Dixit VM. Modulation of inflammasome pathways by bacterial and viral pathogens. J Immunol. 2011;187(2):597–602.
  • Stewart MK, Cookson BT. Evasion and interference: intracellular pathogens modulate caspase-dependent inflammatory responses. Nat Rev Micro. 2016;14(6):346–359.
  • Sanchez C. Viral immune evasion: NLR identity theft. Nat Rev Micro. 2011;9(3):148–149.
  • Qin J, Zhang G, Zhang X, et al. TLR-activated gap junction channels protect mice against bacterial infection through extracellular UDP release. J Immunol. 2016;196(4):1790–1798.
  • Toldo S, Quader M, Salloum FN, et al. Targeting the innate immune response to improve cardiac graft recovery after heart transplantation: implications for the donation after cardiac death. Int J Mol Sci. 2016;17(6) pii: E958.
  • Penack O, Smith OM, Cunningham-Bussel A, et al. NOD2 regulates hematopoietic cell function during graft-versus-host disease. J Exp Med. 2009;206(10):2101–2110.
  • Braza F, Brouard S, Chadban S, et al. Role of TLRs and DAMPs in allograft inflammation and transplant outcomes. Nat Rev Nephrol. 2016;12(5):281–290.
  • Capolunghi F, Rosado MM, Cascioli S, et al. Pharmacological inhibition of TLR9 activation blocks autoantibody production in human B cells from SLE patients. Rheumatology 2010;49(12):2281–2289.
  • Blohmke CJ, Victor RE, Hirschfeld AF, et al. Innate immunity mediated by TLR5 as a novel antiinflammatory target for Cystic Fibrosis lung disease. J Immunol. 2008;180(11):7764–7773.
  • Savva A, Roger T. Targeting Toll-Like Receptors: promising therapeutic strategies for the management of sepsis-associated pathology and infectious diseases. Front Immunol. 2013;4:387.
  • Di Virgilio F. The therapeutic potential of modifying inflammasomes and NOD-like receptors. Pharmacol Rev. 2013;65(3):872–905.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.