497
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Many Ways–One Destination: Different Types of Neutrophils Death

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 18-32 | Received 22 Aug 2018, Accepted 14 Oct 2018, Published online: 05 Dec 2018

References

  • Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol Mech Dis 2014;9(1):181–218.
  • Demetri GD, Griffin JD. Granulocyte colony-stimulating factor and its receptor. Blood 1991;78(11):2791–2808.
  • Chakravarti A, Rusu D, Flamand N, et al. Reprogramming of a subpopulation of human blood neutrophils by prolonged exposure to cytokines. Lab Invest 2009;89(10):1084–1099.
  • White MK, Cinti C. A morphologic approach to detect apoptosis based on electron microscopy. Methods Mol Biol 2004;285:105–111.
  • Zucker RM, Hunter ES III, Rogers JM. Confocal laser scanning microscopy of morphology and apoptosis in organogenesis-stage mouse embryos. Methods Mol Biol 2000;135:191–202.
  • Kennedy AD, DeLeo FR. Neutrophil apoptosis and the resolution of infection. Immunol Res 2009;43(1–3):25–61.
  • Bratton DL, Henson PM. Neutrophil clearance: when the party is over, the clean-up begins. Trends Immunol 2011;32(8):350–357.
  • Kamohara H, Matsuyama W, Shimozato O. Regulation of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and TRAIL receptor expression in human neutrophils. Immunology 2004;111(2):186–194.
  • Liles WC, Kiener PA, Ledbetter JA, et al. Differential expression of Fas (CD95) and Fas ligand on normal human phagocytes: implications for the regulation of apoptosis in neutrophils. J Exp Med 1996;184(2):429–440.
  • Geering B, Simon H-U. Peculiarities of cell death mechanisms in neutrophils. Cell Death Differ 2011;18(9):1457–1469.
  • Iwaniuk A, Jabłońska E, Jabłoński J, et al. Expression of selected proteins of the extrinsic and intrinsic pathways of apoptosis in human leukocytes exposed to N-nitrosodimethylamine. Hum Exp Toxicol 2015;34(6):591–600.
  • Moulding DA, Akgul C, Derouet M, et al. BCL-2 family expression in human neutrophils during delayed and accelerated apoptosis. J Leukoc Biol 2001;70(5):783–792.
  • Croker BA, O’Donnell JA, Nowell CJ. Fas-mediated neutrophil apoptosis is accelerated by Bid, Bak, and Bax and inhibited by Bcl-2 and Mcl-1. Proc Natl Acad Sci USA 2011;108(32):13135–13140.
  • van Loo G, van Gurp M, Depuydt B, et al. The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ 2002;9(1):20–26.
  • Altznauer F, Conus S, Cavalli A, et al. Calpain-1 regulates Bax and subsequent Smac-dependent caspase-3 activation in neutrophil apoptosis. J Biol Chem 2004;279(7):5947–5957.
  • Blink E, Maianski N, Alnemri ES, et al. Intramitochondrial serine protease activity of Omi/HtrA2 is required for caspase-independent cell death of human neutrophils. Cell Death Differ 2004;11(8):937–939.
  • Candé C, Cohen I, Daugas E, et al. Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie 2002;84(2–3):215–222.
  • Murphy BM, O’Neill AJ, Adrain C, et al. The apoptosome pathway to caspase activation in primary human neutrophils exhibits dramatically reduced requirements for cytochrome c. J Exp Med 2003;197(5):625–632.
  • van Raam BJ, Verhoeven AJ, Kuijpers TW. Mitochondria in neutrophil apoptosis. Int J Hematol 2006;84(3):199–204.
  • Luo X, Budihardjo I, Zou H, et al. Bid, a Bcl-2 interacting protein mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998;94(4):481–490.
  • Esposti MD. The roles of Bid. Apoptosis 2002;7(5):433–440.
  • Fox S, Leitch AE, Duffin R, et al. Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J Innate Immun 2010;2(3):216–227.
  • Kobayashi SD, Braughton KR, Whitney AR, et al. Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc Natl Acad Sci USA 2003;100(19):10948–10953.
  • Zhang B, Hirahashi J, Cullere X, Mayadas TN. Elucidation of molecular events leading to neutrophil apoptosis following phagocytosis: cross-talk between caspase 8, reactive oxygen species, and MAPK/ERK activation. J Biol Chem 2003; 278(31):28443–28454.
  • Kobayashi SD, Voyich JM, Braughton KR, et al. Gene expression profiling provides insight into the pathophysiology of chronic granulomatous disease. J Immunol 2004;172(1):636–643.
  • McCaffrey RL, Schwartz JT, Lindemann SR, et al. Multiple mechanisms of NADPH oxidase inhibition by type A and type B Francisella tularensis. J Leukoc Biol 2010;88(4):791–805.
  • McCracken JM, Kinkead LC, McCaffrey RL, Allen L-AH. Francisella tularensis modulates a distinct subset of regulatory factors and sustains mitochondrial integrity to impair human neutrophil apoptosis. J Innate Immun 2016;8(3):299–313.
  • Chen A, Seifert HS. Neisseria gonorrhoeae-mediated inhibition of apoptotic signalling in polymorphonuclear leukocytes. Infect Immun 2011;79(11):4447–4458.
  • Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 2000;1(2):120–129.
  • Famularo G, De Simone C, Marcellini S. Apoptosis: mechanisms and relation to AIDS. Med Hypoth 1997;48(5):423–429.
  • Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 2011;30(1):87.
  • Eguchi K. Apoptosis in autoimmune diseases. Intern Med 2001;40(4):275–284.
  • Jerome KR, Fox R, Chen Z, et al. Herpes simplex virus inhibits apoptosis through the action of two genes, Us5 and Us3. J Virol 1999;73(11):8950–8957.
  • Syntichaki P, Tavernarakis N. Death by necrosis: uncontrollable catastrophe, or is there order behind the chaos? EMBO Rep 2002;3(7):604–609.
  • Trump BF, Berezesky IK. Calcium-mediated cell injury and cell death. Faseb J. 1995;9(2):219–228.
  • Trump BF, Berezesky IK, Chang SH, Phelps PC. The pathways of cell death: oncosis, apoptosis, and necrosis. Toxicol Pathol 1997;25(1):82–88.
  • Bano D, Young KW, Guerin CJ, et al. Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 2005;120(2):275–285.
  • Ricci MS, Zong WX. Chemotherapeutic approaches for targeting cell death pathways. Oncologist 2006;11(4):342–357.
  • Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012;19(1):107–120.
  • Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 2005;1(2):112–119.
  • Wicki S, Gurzeler U, Wei-Lynn Wong W, et al. Loss of XIAP facilitates switch to TNFα-induced necroptosis in mouse neutrophils. Cell Death Dis 2016;7(10):e2422.
  • Mihalache CC, Yousefi S, Conus S, et al. Inflammation-associated autophagy-related programmed necrotic death of human neutrophils characterized by organelle fusion events. J Immunol 2011;186(11):6532–6542.
  • Wang X, He Z, Liu H, et al. Neutrophil necroptosis is triggered by ligation of adhesion molecules following GM-CSF priming. J Immunol 2016;197(10):4090–4100.
  • Mizushima N. Autophagy: process and function. Genes Dev 2007;21(22):2861–2873.
  • Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol 2010;221(1):3–12.
  • Mitroulis I, Kourtzelis I, Kambas K, et al. Regulation of the autophagic machinery in human neutrophils. Eur J Immunol 2010;40(5):1461–1472.
  • Rinchai D, Riyapa D, Buddhisa S, et al. Macroautophagy is essential for killing of intracellular Burkholderia pseudomallei in human neutrophils. Autophagy 2015;11(5):748–755.
  • Ramachandran G, Gade P, Tsai P, et al. Potential role of autophagy in the bactericidal activity of human PMNs for Bacillus anthracis. Pathog Dis 2015;73(9):ftv080.
  • Rožman S, Yousefi S, Oberson K, et al. The generation of neutrophils in the bone marrow is controlled by autophagy. Cell Death Differ 2015;22(3):445–456.
  • Bhattacharya A, Wei Q, Shin JN, et al. Autophagy is required for neutrophil-mediated inflammation. Cell Rep 2015;12(11):1731–1739.
  • Riffelmacher T, Clarke A, Richter FC, et al. Autophagy-dependent generation of free fatty acids is critical for normal neutrophil differentiation. Immunity 2017;47(3):466–480.
  • Iula L, Keitelman IA, Sabbione F, et al. Autophagy mediates interleukin-1β secretion in human neutrophils. Front Immunol 2018;9:269.
  • Lv X-X, Liu S-S, Li K, et al. Cigarette smoke promotes COPD by activating platelet-activating factor receptor and inducing neutrophil autophagic death in mice. Oncotarget 2017;8(43):74720–74735.
  • Takei H, Araki A, Watanabe H, et al. Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J Leukoc Biol 1996;59(2):229–240.
  • Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science 2004;303(5663):1532–1535.
  • Urban CF, Ermert D, Schmid M, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 2009;5(10):e1000639.
  • Urban CF, Reichard U, Brinkmann V, Zychlinsky A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol 2006;8(4):668–676.
  • Abi Abdallah DS, Lin C, Ball CJ, et al. Toxoplasma gondii triggers release of human and mouse neutrophil extracellular traps. Infect Immun 2012;80(2):768–777.
  • Saitoh T, Komano J, Saitoh Y, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 2012;12(1):109–116.
  • Kessenbrock K, Krumbholz M, Schönermarck U, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 2009;15(6):623–635.
  • Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 2010;107(36):15880–15885.
  • Borissoff JI, Joosen IA, Versteylen MO, et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol 2013;33(8):2032–2040.
  • Fuchs T, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 2007;176(2):231–241.
  • Pilsczek FH, Salina D, Poon KK, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol 2010;185(12):7413–7425.
  • Yousefi S, Mihalache C, Kozlowski E, et al. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ 2009;16(11):1438–1444.
  • Hakkim A, Fuchs TA, Martinez NE, et al. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol 2011;7(2):75–77.
  • Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophils elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 2010;191(3):677–691.
  • Metzler KD, Goosmann C, Lubojemska A, et al. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep 2014;8(3):883–896.
  • Wang Y, Li M, Stadler S, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 2009;184(2):205–213.
  • Remijsen Q, Vanden Berghe T, Wirawan E, et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res 2011;21(2):290–304.
  • Bianchi M, Hakkim A, Brinkmann V, et al. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 2009;114(13):2619–2622.
  • Ostafin M, Pruchniak MP, Ciepiela O, et al. Different procedures of diphenyleneiodonium chloride addition affect neutrophil extracellular trap formation. Anal Biochem 2016;509:60–66.
  • Brinkmann V, Zychlinsky A. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Micro 2007;5(8):577–582.
  • Lim MB, Kuiper JW, Katchky A, et al. Rac2 is required for the formation of neutrophil extracellular traps. J Leukoc Biol 2011;90(4):771–776.
  • Röhm M, Grimm MJ, D’Auria AC, et al. NADPH oxidase promotes neutrophil extracellular trap formation in pulmonary aspergillosis. Infect Immun 2014;82(5):1766–1777.
  • Björnsdottir H, Welin A, Michaëlsson E, et al. Neutrophil NET formation is regulated from the inside by myeloperoxidase-processed reactive oxygen species. Free Radic Biol Med 2015;89:1024–1035.
  • Hagiwara T, Nakashima K, Hirano H, et al. Deimination of arginine residues in nucleophosmin/B23 and histones in HL-60 granulocytes. Biochem Biophys Res Commun 2002;290(3):979–983.
  • Anzilotti C, Pratesi F, Tommasi C, Migliorini P. Peptidylarginine deiminase 4 and citrullination in health and disease. Autoimmun Rev 2010; 9(3):158–160.
  • Nakashima K, Hagiwara T, Yamada M. Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J Biol Chem 2002;277(51):49562–49568.
  • Li P, Li M, Lindberg MR, et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 2010;207(9):1853–1862.
  • Biron BM, Chung CS, O’Brien XM, et al. Cl-amidine prevents histone 3 citrullination and neutrophil extracellular trap formation, and improves survival in a murine sepsis model. J Innate Immun 2017;9(1):22–32.
  • Neeli I, Radic M. Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin release. Front Immunol 2013;4:38.
  • Gavillet M, Martinod K, Wagner DD, Williams DA. The role of Rac and Pak in neutrophil histone hypercitrullination and neutrophil extracellular traps formation. Blood 2014;124(21):462.
  • Kambas K, Mitroulis I, Apostolidou E, et al. Autophagy mediates the delivery of thrombogenic tissue factor to neutrophil extracellular traps in human sepsis. PLoS One 2012;7(9):e45427.
  • Itakura A, McCarty OJT. Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy. Am J Physiol Cell Physiol 2013;305(3):C348–C354.
  • McInturff AM, Cody MJ, Elliott EA, et al. Mammalian target of rapamycin regulates neutrophil extracellular trap formation via induction of hypoxia-inducible factor 1 alpha. Blood 2012;120(15):3118–3125.
  • Xu F, Zhang C, Zou Z, et al. Aging-related Atg5 defect impairs neutrophil extracellular traps formation. Immunology 2017;151(4):417–432.
  • Clark SR, Ma AC, Tavener SA, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007;13(4):463–469.
  • Yipp BG, Petri B, Salina D, et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med 2012;18(9):1386–1393.
  • Byrd AS, O’Brien XM, Johnson CM, et al. An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. J Immunol 2013;190(8):4136–4148.
  • Rochael NC, Guimarães-Costa AB, Nascimento MT, et al. Classical ROS-dependent and early/rapid ROS-independent release of neutrophil extracellular traps triggered by leishmania parasites. Sci Rep 2015;5:18302.
  • Parker H, Dragunow M, Hampton MB, et al. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J Leukoc Biol 2012;92(4):841–849.
  • Douda DN, Khan MA, Grasemann H, Palaniyar N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc Natl Acad Sci USA 2015;112(9):2817–2822.
  • Wang H, Li T, Chen S, et al. Neutrophil extracellular trap mitochondrial DNA and its autoantibody in systemic lupus erythematosus and a proof-of-concept trial of metformin. Arthritis Rheumatol 2015;67(12):3190–3200.
  • D’Cruz AA, Bliss-Moreau M, Ericcson M, Croker BA. Mlkl pores release neutrophil extracellular traps in necroptotic neutrophils. Blood 2015;126(23):2200.
  • Desai J, Kumar SV, Mulay SR, et al. PMA and crystal-induced neutrophil extracellular trap formation involves RIPK1-RIPK3-MLKL signaling. Eur J Immunol 2016;46(1):223–229.
  • Amini P, Stojkov D, Wang X, et al. NET formation can occur independently of RIPK3 and MLKL signaling. Eur J Immunol 2016;46(1):178–184.
  • Desai J, Foresto-Neto O, Honarpisheh M, et al. Particles of different sizes and shapes induce neutrophil necroptosis followed by the release of neutrophil extracellular trap-like chromatin. Sci Rep 2017;7:15003.
  • Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens. Immunol Rev 2015;265(1):130–142.
  • Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Micro 2009;7(2):99–109.
  • Miao EA, Rajan JV, Aderem A. Caspase-1-induced pyroptotic cell death. Immunol Rev 2011;243(1):206–214.
  • Miao EA, Leaf IA, Treuting PM, et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 2010;11(12):1136–1142.
  • Chen KW, Groß CJ, Sotomayor FV, et al. The neutrophil NLRC4 inflammasome selectively promotes IL-1β maturation without pyroptosis during acute Salmonella challenge. Cell Rep 2014;8(2):570–582.
  • Cho JS, Guo Y, Ramos RI, et al. Neutrophil-derived IL-1β is sufficient for abscess formation in immunity against Staphylococcus aureus in mice. PLoS Pathog 2012;8(11):e1003047.
  • Mankan AK, Dau T, Jenne D, Hornung V. The NLRP3/ASC/Caspase-1 axis regulates IL-1β processing in neutrophils. Eur J Immunol 2012;42(3):710–715.
  • He WT, Wan H, Hu L, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res 2015;25(12):1285–1298.
  • Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015;526(7575):660–665.
  • Sborgi L, Rühl S, Mulvihill E, et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J 2016;35(16):1766–1778.
  • Kambara H, Liu F, Zhang X, et al. Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death. Cell Rep 2018;22(11):2924–2936.
  • Karmakar M, Katsnelson M, Malak HA, et al. Neutrophil IL-1β processing induced by pneumolysin is mediated by the NLRP3/ASC inflammasome and caspase-1 activation, and is dependent on K+ efflux. J Immunol 2015;194(4):1763–1775.
  • Ryu JC, Kim MJ, Kwon Y, et al. Neutrophil pyroptosis mediates pathology of P. aeruginosa lung infection in the absence of the NADPH oxidase NOX2. Mucosal Immunol 2017;10(3):757–774.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.