222
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Novel Methods to Improve the Efficiency of Radioimmunotherapy for Non-Hodgkin Lymphoma

, , , &
Pages 79-91 | Received 17 Aug 2016, Accepted 12 Feb 2019, Published online: 31 Mar 2019

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015;65(1):5–29. doi:10.3322/caac.21254.
  • Vose JM. Molecular pathogenesis in non-Hodgkin lymphoma: implications for therapy. Transfus Apher Sci 2013;49(2):155–156. doi:10.1016/j.transci.2013.07.019.
  • McLaughlin P, Grillo-Lopez AJ, Link BK. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 1998;16(8):2825–2833. doi:10.1200/JCO.1998.16.8.2825.
  • Vose JM. Current approaches to the management of non-Hodgkin's lymphoma. Semin Oncol. 1998;25(4):483–491.
  • Kaminski MS, Zelenetz AD, Press OW. Pivotal study of iodine I 131 tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin's lymphomas. J Clin Oncol 2001;19(19):3918–3928. doi:10.1200/JCO.2001.19.19.3918.
  • Witzig TE, Gordon LI, Cabanillas F. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin's lymphoma. J Clin Oncol 2002;20(10):2453–2463.
  • Martinez A, Martinez-Ramirez M, Martinez-Caballero D, et al. Radioimmunotherapy for non-Hodgkin's lymphoma; positioning, safety, and efficacy of 90Y-Ibritumomab. 10 years of experience and follow-up. Rev Esp Med Nucl Imagen Mol 2017;36(1):13–19.
  • Eskian M, Khorasanizadeh M, Kraeber-Bodere F, Rezaei N. Radioimmunotherapy in non-Hodgkin lymphoma: prediction and assessment of response. Crit Rev Oncol/Hematol 2016;107:182–189. doi:10.1016/j.critrevonc.2016.10.005.
  • Witzig TE, Fishkin P, Gordon LI, et al. Treatment recommendations for radioimmunotherapy in follicular lymphoma: a consensus conference report. Leuk Lymphoma 2011;52(7):1188–1199. doi:10.3109/10428194.2011.570396.
  • Kaminski MS, Estes J, Zasadny KR, et al. Radioimmunotherapy with iodine (131)I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood 2000;96(4):1259–1266.
  • Meusers P, Hense J, Brittinger G. Mantle cell lymphoma: diagnostic criteria, clinical aspects and therapeutic problems. Leukemia 1997;11(Suppl 2):S60–S64.
  • Puvvada SD, Guillen-Rodriguez JM, Yan J, et al. Yttrium-90-ibritumomab tiuxetan (Zevalin®) radioimmunotherapy after cytoreduction with ESHAP chemotherapy in patients with relapsed follicular non-Hodgkin Lymphoma: final results of a phase II Study . Oncology 2018;94(5):274–280.
  • Cabrero M, Martin A, Briones J, et al. Phase II study of yttrium-90-ibritumomab tiuxetan as part of reduced-intensity conditioning (with melphalan, fludarabine +/- thiotepa) for allogeneic transplantation in relapsed or refractory aggressive B-cell lymphoma: a GELTAMO trial. Biol Blood Marrow Transplant 2017;23(1):53–59. doi:10.1016/j.bbmt.2016.10.003.
  • Eskian M, Khorasanizadeh M, Isidori A, Rezaei N. Radioimmunotherapy-based conditioning regimen prior to autologous stem cell transplantation in non-Hodgkin lymphoma. Int J Hematol Oncol 7 (1):IJH01.
  • Gopal AK, Gooley TA, Maloney DG, et al. High-dose radioimmunotherapy versus conventional high-dose therapy and autologous hematopoietic stem cell transplantation for relapsed follicular non-Hodgkin lymphoma: a multivariable cohort analysis. Blood 2003;102(7):2351–2357.
  • Press OW, Eary JF, Gooley T, et al. A phase I/II trial of iodine-131-tositumomab (anti-CD20), etoposide, cyclophosphamide, and autologous stem cell transplantation for relapsed B-cell lymphomas. Blood 2000;96(9):2934–2942.
  • Press OW, Eary JF, Appelbaum FR, et al. Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. N Engl J Med 1993;329(17):1219–1224.
  • Andrade-Campos MM, Lievano P, Espinosa-Lara N, et al. Long-term complication in follicular lymphoma: assessing the risk of secondary neoplasm in 242 patients treated or not with 90-yttrium-ibritumomab-tiuxetan. Eur J Haematol 2016;97(6):576–582.
  • Liu SY, Eary JF, Petersdorf SH, et al. Follow-up of relapsed B-cell lymphoma patients treated with iodine-131-labeled anti-CD20 antibody and autologous stem-cell rescue. J Clin Oncol 1998;16(10):3270–3278. doi:10.1200/JCO.1998.16.10.3270.
  • Ginn C, Khalili H, Lever R, Brocchini S. PEGylation and its impact on the design of new protein-based medicines. Future Med Chem 2014;6(16):1829–1846. doi:10.4155/fmc.14.125.
  • Chapman AP. PEGylated antibodies and antibody fragments for improved therapy: a review. Adv Drug Deliv Rev 2002;54(4):531–545.
  • Weber T, Botticher B, Arndt MA, et al. Preclinical evaluation of a diabody-based (177)Lu-radioimmunoconjugate for CD22-directed radioimmunotherapy in a non-Hodgkin lymphoma mouse model. Cancer Lett 2016;381(2):296–304. doi:10.1016/j.canlet.2016.08.007.
  • Vallera DA, Sicheneder AR, Taras EP, et al. Radiotherapy of CD45-expressing Daudi tumors in nude mice with yttrium-90-labeled, PEGylated anti-CD45 antibody. Cancer Biother Radiopharm 2007;22(4):488–500. doi:10.1089/cbr.2007.366.
  • He W, Yu Q, Zhou Z, Wang P. CpG oligonucleotides induce an immune response of odontoblasts through the TLR9, MyD88 and NF-kappaB pathways. Biochem Biophys Res Commun 2010;399(2):274–278.
  • Gaudreault E, Gosselin J. Leukotriene B4 potentiates CpG signaling for enhanced cytokine secretion by human leukocytes. J Immunol 2009;183(4):2650–2658. doi:10.4049/jimmunol.0804135.
  • Witzig TE, Wiseman GA, Maurer MJ, et al. A phase I trial of immunostimulatory CpG 7909 oligodeoxynucleotide and 90 yttrium ibritumomab tiuxetan radioimmunotherapy for relapsed B-cell non-Hodgkin lymphoma. Am J Hematol 2013;88(7):589–593. doi:10.1002/ajh.23460.
  • Witzig TE, Flinn IW, Gordon LI, et al. Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin's lymphoma. J Clin Oncol 2002;20(15):3262–3269. doi:10.1200/JCO.2002.11.017.
  • Horning SJ, Younes A, Jain V, et al. Efficacy and safety of tositumomab and iodine-131 tositumomab (Bexxar) in B-cell lymphoma, progressive after rituximab. J Clin Oncol 2005;23(4):712–719. doi:10.1200/JCO.2005.07.040.
  • Weiden PL, Breitz HB, Press O, et al. Pretargeted radioimmunotherapy (PRIT) for treatment of non-Hodgkin's lymphoma (NHL): initial phase I/II study results. Cancer Biother Radiopharm 2000;15(1):15–29. doi:10.1089/cbr.2000.15.15.
  • Sharkey RM, Behr TM, Mattes MJ, et al. Advantage of residualizing radiolabels for an internalizing antibody against the B-cell lymphoma antigen, CD22. Cancer Immunol Immunother 1997;44(3):179–188.
  • Postema EJ, Frielink C, Oyen WJ, et al. Biodistribution of 131I-, 186Re-, 177Lu-, and 88Y-labeled hLL2 (Epratuzumab) in nude mice with CD22-positive lymphoma. Cancer Biother Radiopharm 2003;18(4):525–533. doi:10.1089/108497803322287592.
  • Kameswaran M, Pandey U, Dhakan C, et al. Synthesis and preclinical evaluation of (177)Lu-CHX-A"-DTPA-rituximab as a radioimmunotherapeutic agent for non-Hodgkin's lymphoma. Cancer Biother Radiopharm 2015;30(6):240–246. doi:10.1089/cbr.2015.1836.
  • Milenic DE, Brady ED, Brechbiel MW. Antibody-targeted radiation cancer therapy. Nat Rev Drug Discov. 2004;3(6):488–499. doi:10.1038/nrd1413.
  • Weber T, Botticher B, Mier W, et al. High treatment efficacy by dual targeting of Burkitt's lymphoma xenografted mice with a Lu-based CD22-specific radioimmunoconjugate and rituximab. Eur J Nucl Med Mol Imaging 2016;43:489–498.
  • Kameswaran M, Pandey U, Dash A, et al. Preparation & in vitro evaluation of Y-DOTA-rituximab . Indian J Med Res 2016;143(1):57–65.
  • Johari Doha F, Rahmani S, Rikhtechi P, et al. Development of DOTA-rituximab to be labeled with (90)Y for radioimmunotherapy of B-cell non-Hodgkin lymphoma. Iran J Pharm Res 2017;16(2):619–629.
  • Massicano A, Pujatti P, Alcarde L, et al. Development and biological studies of (1)(7)(7)Lu-DOTA-rituximab for the treatment of Non-Hodgkin's lymphoma. Curr Radiopharm 2016;9(1):54–63. doi:10.2174/1874471008666150313103849.
  • Dahle J, Borrebaek J, Melhus KB, et al. Initial evaluation of (227)Th-p-benzyl-DOTA-rituximab for low-dose rate alpha-particle radioimmunotherapy. Nucl Med Biol 2006;33(2):271–279. doi:10.1016/j.nucmedbio.2005.12.004.
  • Berinstein NL, Grillo-Lopez AJ, White CA, et al. Association of serum Rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin's lymphoma. Ann Oncol 1998;9(9):995–1001.
  • Sharkey RM, Brenner A, Burton J, et al. Radioimmunotherapy of non-Hodgkin's lymphoma with 90Y-DOTA humanized anti-CD22 IgG (90Y-Epratuzumab): do tumor targeting and dosimetry predict therapeutic response? J Nucl Med 2003;44(12):2000–2018.
  • Carter PJ. Potent antibody therapeutics by design. Nat Rev Immunol 2006;6(5):343–357. doi:10.1038/nri1837.
  • Griffiths GL, Govindan SV, Sharkey RM, et al. 90Y-DOTA-hLL2: an agent for radioimmunotherapy of non-Hodgkin's lymphoma. J Nucl Med 2003;44(1):77–84.
  • Cole WC, DeNardo SJ, Meares CF, et al. Comparative serum stability of radiochelates for antibody radiopharmaceuticals. J Nucl Med 1987;28(1):83–90.
  • Kukis DL, Diril H, Greiner DP, et al. A comparative study of copper-67 radiolabeling and kinetic stabilities of antibody-macrocycle chelate conjugates. Cancer 1994;73(S3):779–786.
  • O'Donnell RT, DeNardo GL, Kukis DL, et al. 67Copper-2-iminothiolane-6-[p-(bromoacetamido)benzyl-TETA-Lym-1 for radioimmunotherapy of non-Hodgkin's lymphoma. Clin Cancer Res 1999;5(10 Suppl):3330s–3336s.
  • Mattes MJ, Shih LB, Govindan SV, et al. The advantage of residualizing radiolabels for targeting B-cell lymphomas with a radiolabeled anti-CD22 monoclonal antibody. Int J Cancer 1997;71(3):429–435.
  • Michel RB, Ochakovskaya R, Mattes MJ. Antibody localization to B-cell lymphoma xenografts in immunodeficient mice: importance of using residualizing radiolabels. Clin Cancer Res 2002;8(8):2632–2639.
  • Viala J, Vanel D, Meingan P, et al. Phases IB and II multidose trial of gadolinium texaphyrin, a radiation sensitizer detectable at MR imaging: preliminary results in brain metastases. Radiology 1999;212(3):755–759. doi:10.1148/radiology.212.3.r99se10755.
  • Magda D, Lepp C, Gerasimchuk N, et al. Redox cycling by motexafin gadolinium enhances cellular response to ionizing radiation by forming reactive oxygen species. Int J Radiat Oncol Biol Phys 2001;51(4):1025–1036.
  • Osterloh J, Vicente MGH. Mechanisms of porphyrinoid localization in tumors. J Porphyr Phthalocyanines 2002;06(05):305–324. doi:10.1142/S1088424602000373.
  • Evens AM, Spies WG, Helenowski IB, et al. The novel expanded porphyrin, motexafin gadolinium, combined with [90Y]ibritumomab tiuxetan for relapsed/refractory non-Hodgkin's lymphoma: preclinical findings and results of a phase I trial. Clin Cancer Res 2009;15(20):6462–6471. doi:10.1158/1078-0432.CCR-09-0905.
  • Cusack JC, Jr., Liu R, Houston M, et al. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res 2001;61(9):3535–3540.
  • Lee SJ, Dimtchev A, Lavin MF, et al. A novel ionizing radiation-induced signaling pathway that activates the transcription factor NF-kappaB. Oncogene 1998;17(14):1821–1826. doi:10.1038/sj.onc.1202088.
  • Elstrom RL, Ruan J, Christos PJ, et al. Phase 1 study of radiosensitization using bortezomib in patients with relapsed non-Hodgkin lymphoma receiving radioimmunotherapy with 131I-tositumomab. Leuk Lymphoma 2015;56(2):342–346. doi:10.3109/10428194.2014.914195.
  • Gibson A, Jain VK, Zelenetz A, Leonard J. Iodine-131 Tositumomab(Bexxar) in relapsed/refractory non-Hodgkin's lymphoma: update from the 2001 American Society of Hematology meeting. Clin Lymphoma 2002;2(4):209–211. doi:10.1016/S1526-9655(11)70233-0.
  • Vose JM, Wahl RL, Saleh M, et al. Multicenter phase II study of iodine-131 tositumomab for chemotherapy-relapsed/refractory low-grade and transformed low-grade B-cell non-Hodgkin's lymphomas. J Clin Oncol 2000;18(6):1316–1323. doi:10.1200/JCO.2000.18.6.1316.
  • Beaven AW, Shea TC, Moore DT, et al. A phase I study evaluating ibritumomab tiuxetan (Zevalin(R)) in combination with bortezomib (Velcade(R)) in relapsed/refractory mantle cell and low grade B-cell non-Hodgkin lymphoma. Leuk Lymphoma 2012;53(2):254–258. doi:10.3109/10428194.2011.608445.
  • Wang M, Oki Y, Pro B, et al. Phase II study of yttrium-90-ibritumomab tiuxetan in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol 2009;27(31):5213–5218.
  • Roy R, Evens AM, Patton D, et al. Bortezomib may be safely combined with Y-90-ibritumomab tiuxetan in patients with relapsed/refractory follicular non-Hodgkin lymphoma: a phase I trial of combined induction therapy and bortezomib consolidation. Leuk Lymphoma 2013;54(3):497–502. doi:10.3109/10428194.2012.722215.
  • Bienert M, Reisinger I, Srock S, et al. Radioimmunotherapy using 131I-rituximab in patients with advanced stage B-cell non-Hodgkin's lymphoma: initial experience. Eur J Nucl Med Mol Imaging 2005;32(10):1225–1233. doi:10.1007/s00259-005-1770-7.
  • Kang HJ, Lee SS, Kim KM, et al. Radioimmunotherapy with (131)I-rituximab for patients with relapsed/refractory B-cell non-Hodgkin's lymphoma (NHL). Asia Pac J Clin Oncol 2011;7(2):136–145.
  • DeNardo GL, Hok S, Van Natarajan A, et al. Characteristics of dimeric (bis) bidentate selective high affinity ligands as HLA-DR10 beta antibody mimics targeting non-Hodgkin's lymphoma. Int J Oncol 2007;31(4):729–740.
  • Hok S, Natarajan A, Balhorn R, et al. Synthesis and radiolabeling of selective high-affinity ligands designed to target non-Hodgkin's lymphoma and leukemia. Bioconjug Chem 2007;18(3):912–921. doi:10.1021/bc060305o.
  • Shuker SB, Hajduk PJ, Meadows RP, Fesik SW. Discovering high-affinity ligands for proteins: SAR by NMR. Science 1996;274(5292):1531–1534.
  • Balhorn R, Hok S, Burke PA, et al. Selective high-affinity ligand antibody mimics for cancer diagnosis and therapy: initial application to lymphoma/leukemia. Clin Cancer Res 2007;13(18):5621s–5628s. doi:10.1158/1078-0432.CCR-07-1128.
  • Linden O, Kurkus J, Garkavij M, et al. A. novel platform for radioimmunotherapy: extracorporeal depletion of biotinylated and 90Y-labeled rituximab in patients with refractory B-cell lymphoma. Cancer Biother Radiopharm 2005;20(4):457–466. doi:10.1089/cbr.2005.20.457.
  • Pagel JM, Lin Y, Hedin N, et al. Comparison of a tetravalent single-chain antibody-streptavidin fusion protein and an antibody-streptavidin chemical conjugate for pretargeted anti-CD20 radioimmunotherapy of B-cell lymphomas. Blood 2006;108(1):328–336.
  • Weiden PL. Pretargeted radioimmunotherapy (PRIT) using an antibody-streptavidin fusion protein in non-Hodgkin's lymphoma. Leuk Lymphoma 2002;43(10):1971–1973.
  • Subbiah K, Hamlin DK, Pagel JM, et al. Comparison of immunoscintigraphy, efficacy, and toxicity of conventional and pretargeted radioimmunotherapy in CD20-expressing human lymphoma xenografts. J Nucl Med 2003;44(3):437–445.
  • Press OW, Corcoran M, Subbiah K, et al. A comparative evaluation of conventional and pretargeted radioimmunotherapy of CD20-expressing lymphoma xenografts. Blood 2001;98(8):2535–2543.
  • Kawashima H. Radioimmunotherapy: a specific treatment protocol for cancer by cytotoxic radioisotopes conjugated to antibodies. ScientificWorldJournal 2014;2014:492061.doi:10.1155/2014/492061.
  • Koppe MJ, Postema EJ, Aarts F, et al. Antibody-guided radiation therapy of cancer. Cancer Metastasis Rev. 2005;24(4):539–567. doi:10.1007/s10555-005-6195-z.
  • Pagel JM, Orgun N, Hamlin DK, et al. A comparative analysis of conventional and pretargeted radioimmunotherapy of B-cell lymphomas by targeting CD20, CD22, and HLA-DR singly and in combinations. Blood 2009;113(20):4903–4913.
  • Pagel JM, Pantelias A, Hedin N, et al. Evaluation of CD20, CD22, and HLA-DR targeting for radioimmunotherapy of B-cell lymphomas. Cancer Res 2007;67(12):5921–5928.
  • Park SI, Shenoi J, Pagel JM, et al. Conventional and pretargeted radioimmunotherapy using bismuth-213 to target and treat non-Hodgkin lymphomas expressing CD20: a preclinical model toward optimal consolidation therapy to eradicate minimal residual disease. Blood 2010;116(20):4231–4239.
  • Sharkey RM, Karacay H, Johnson CR, et al. Pretargeted versus directly targeted radioimmunotherapy combined with anti-CD20 antibody consolidation therapy of non-Hodgkin lymphoma. J Nucl Med 2009;50(3):444–453. doi:10.2967/jnumed.108.058602.
  • Weiden PL, Breitz HB. Pretargeted radioimmunotherapy (PRIT) for treatment of non-Hodgkin's lymphoma (NHL). Crit Rev Oncol Hematol 2001;40(1):37–51. doi:10.1016/S1040-8428(01)00133-0.
  • Palumbo G, Grana CM, Cocca F, et al. Pretargeted antibody-guided radioimmunotherapy in a child affected by resistant anaplastic large cell lymphoma. Eur J Haematol 2007;79(3):258–262. doi:10.1111/j.1600-0609.2007.00910.x.
  • Green DJ, Pagel JM, Pantelias A, et al. Pretargeted radioimmunotherapy for B-cell lymphomas. Clin Cancer Res 2007;13(18):5598s–5603s. doi:10.1158/1078-0432.CCR-07-1223.
  • Pagel JM, Hedin N, Subbiah K, et al. Comparison of anti-CD20 and anti-CD45 antibodies for conventional and pretargeted radioimmunotherapy of B-cell lymphomas. Blood 2003;101(6):2340–2348.
  • Pantelias A, Pagel JM, Hedin N, et al. Comparative biodistributions of pretargeted radioimmunoconjugates targeting CD20, CD22, and DR molecules on human B-cell lymphomas. Blood 2007;109(11):4980–4987.
  • O'Steen S, Green DJ, Gopal AK, et al. Venetoclax synergizes with radiotherapy for treatment of B-cell lymphomas. Cancer Res 2017;77(14):3885–3893.
  • Goldenberg DM, Chang CH, Sharkey RM, et al. Radioimmunotherapy: is avidin-biotin pretargeting the preferred choice among pretargeting methods? Eur J Nucl Med Mol Imaging 2003;30(5):777–780. doi:10.1007/s00259-002-1089-6.
  • Paganelli G, Chinol M. Radioimmunotherapy: is avidin-biotin pretargeting the preferred choice among pretargeting methods? Eur J Nucl Med Mol Imaging 2003;30(5):773–776. doi:10.1007/s00259-002-1090-0.
  • Au KM, Tripathy A, Lin CP, et al. Bespoke pretargeted nanoradioimmunotherapy for the treatment of non-Hodgkin lymphoma. ACS Nano 2018;12(2):1544–1563. doi:10.1021/acsnano.7b08122.
  • Park SI, Shenoi J, Frayo SM, et al. Pretargeted radioimmunotherapy using genetically engineered antibody-streptavidin fusion proteins for treatment of non-hodgkin lymphoma. Clin Cancer Res 2011;17(23):7373–7382. doi:10.1158/1078-0432.CCR-11-1204.
  • Green DJ, O’Steen S, Lin Y, et al. CD38-bispecific antibody pretargeted radioimmunotherapy for multiple myeloma and other B-cell malignancies. Blood 2018;131(6):611–620. doi:10.1182/blood-2017-09-807610.
  • Green DJ, Frayo SL, Lin Y, et al. Comparative analysis of bispecific antibody and streptavidin-targeted radioimmunotherapy for B-cell cancers. Cancer Res 2016;76(22):6669–6679.
  • Forero A, Weiden PL, Vose JM, et al. Phase 1 trial of a novel anti-CD20 fusion protein in pretargeted radioimmunotherapy for B-cell non-Hodgkin lymphoma. Blood 2004;104(1):227–236.
  • Schultz J, Lin Y, Sanderson J, et al. A tetravalent single-chain antibody-streptavidin fusion protein for pretargeted lymphoma therapy. Cancer Res 2000;60(23):6663–6669.
  • Barbet J, Kraeber-Bodéré F, Vuillez JP, et al. Pretargeting with the affinity enhancement system for radioimmunotherapy. Cancer Biother Radiopharm 1999;14(3):153–166.
  • Hillairet de Boisferon M, Raguin O, Dussaillant M, et al. Enhanced targeting specificity to tumor cells by simultaneous recognition of two antigens. Bioconjug Chem 2000;11(4):452–460. doi:10.1021/bc9901090.
  • Sharkey RM, Karacay H, Litwin S, et al. Improved therapeutic results by pretargeted radioimmunotherapy of non-Hodgkin's lymphoma with a new recombinant, trivalent, anti-CD20, bispecific antibody. Cancer Res 2008;68(13):5282–5290.
  • Schliemann C, Palumbo A, Zuberbühler K, et al. Complete eradication of human B-cell lymphoma xenografts using rituximab in combination with the immunocytokine L19-IL2. Blood 2009;113(10):2275–2283.
  • Erba PA, Sollini M, Orciuolo E, et al. Radioimmunotherapy with radretumab in patients with relapsed hematologic malignancies. J Nucl Med 2012;53(6):922–927. doi:10.2967/jnumed.111.101006.
  • Witzig TE. Efficacy and safety of 90Y ibritumomab tiuxetan (Zevalin) radioimmunotherapy for non-Hodgkin's lymphoma. Semin Oncol 2003;30(6 Suppl 17):11–16. doi:10.1053/j.seminoncol.2003.10.007.
  • Eskian M, Khorasanizadeh M, Zinzani PL, Rezaei N. Radioimmunotherapy as the first line of treatment in non-Hodgkin lymphoma. Immunotherapy 2018;10(8):699–711.
  • Lemaire M, D'Huyvetter M, Lahoutte T, et al. Imaging and radioimmunotherapy of multiple myeloma with anti-idiotypic nanobodies. Leukemia 2014;28(2):444–447.
  • De Vos J, Devoogdt N, Lahoutte T, Muyldermans S. Camelid single-domain antibody-fragment engineering for (pre)clinical in vivo molecular imaging applications: adjusting the bullet to its target. Expert Opin Biol Ther 2013;13(8):1149–1160. doi:10.1517/14712598.2013.800478.
  • Krasniqi A, D'Huyvetter M, Xavier C, et al. Theranostic radiolabeled anti-CD20 sdAb for targeted radionuclide therapy of non-Hodgkin lymphoma. Mol Cancer Ther 2017;16(12):2828–2839. doi:10.1158/1535-7163.MCT-17-0554.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.