609
Views
40
CrossRef citations to date
0
Altmetric
Reviews

Anti-Inflammatory Effect of Exercise Mediated by Toll-Like Receptor Regulation in Innate Immune Cells – A Review

Anti-inflammatory effect of exercise mediated by Toll-like receptor regulation in innate immune cells

ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 39-52 | Received 05 Apr 2019, Accepted 08 Oct 2019, Published online: 04 Nov 2019

References

  • Pal M, Febbraio MA, Lancaster GI. The roles of c-Jun NH2-terminal kinases (JNKs) in obesity and insulin resistance. J Physiol. 2016;594(2):267–279. Jandoi:10.1113/JP271457.
  • Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9945):766–781. Augdoi:10.1016/S0140-6736(14)60460-8.
  • Klop B, Elte JW, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients. 2013;5(4):1218–1240. Aprdoi:10.3390/nu5041218.
  • Colberg SR, Sigal RJ, Fernhall B, et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care. 2010;33(12):e147–67. Decdoi:10.2337/dc10-9990.
  • Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol (1985). 2005;98(4):1154–1162. Aprdoi:10.1152/japplphysiol.00164.2004.
  • Gleeson M, Bishop NC, Stensel DJ, et al. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011;11(9):607–615. 08doi:10.1038/nri3041.
  • Pedersen BK. The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease control. Essays Biochem. 2006;42:105–117. doi:10.1042/bse0420105.
  • Balducci S, Zanuso S, Nicolucci A, et al. Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutr Metab Cardiovasc Dis. 2010;20(8):608–617. Octdoi:10.1016/j.numecd.2009.04.015.
  • Calder PC, Ahluwalia N, Brouns F, et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr. 2011;106(S3):S5–S78. Decdoi:10.1017/S0007114511005460.
  • Dasu MR, Ramirez S, Isseroff RR. Toll-like receptors and diabetes: a therapeutic perspective. Clin Sci.. 2012;122(5):203–214. Mardoi:10.1042/CS20110357.
  • Jialal I, Kaur H, Devaraj S. Toll-like receptor status in obesity and metabolic syndrome: a translational perspective. J Clin Endocrinol Metab. 2014;99(1):39–48. Jandoi:10.1210/jc.2013-3092.
  • Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91. Jandoi:10.1126/science.7678183.
  • Hotamisligil GS, Arner P, Caro JF, et al. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest. 1995;95(5):2409–2415. doi:10.1172/JCI117936.
  • Uysal KT, Wiesbrock SM, Marino MW, et al. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature. 1997;389(6651):610–614. Octdoi:10.1038/39335.
  • Cousin B, Munoz O, Andre M, et al. A role for preadipocytes as macrophage-like cells. FASEB J. 1999;13(2):305–312. Febdoi:10.1096/fasebj.13.2.305.
  • Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–1808. Decdoi:10.1172/JCI200319246.
  • Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175–184. Jandoi:10.1172/JCI29881.
  • Nguyen MT, Favelyukis S, Nguyen AK, et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem. 2007;282(48):35279–35292. Novdoi:10.1074/jbc.M706762200.
  • Ghanim H, Aljada A, Hofmeyer D, et al. Circulating mononuclear cells in the obese are in a proinflammatory state. Circulation. 2004;110(12):1564–1571. Sepdoi:10.1161/01.CIR.0000142055.53122.FA.
  • Dicker D, Salook MA, Marcoviciu D, et al. Role of peripheral blood mononuclear cells in the predisposition of obese individuals to inflammation and infection. Obes Facts. 2013;6(2):146–151. doi:10.1159/000350775.
  • Takeda K, Akira S. TLR signaling pathways. Semin Immunol. 2004;16(1):3–9. Febdoi:10.1016/j.smim.2003.10.003.
  • Könner AC, Brüning JC. Toll-like receptors: linking inflammation to metabolism. Trends Endocrinol Metab. 2011;22(1):16–23. Jandoi:10.1016/j.tem.2010.08.007.
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–384. doi:10.1038/ni.1863.
  • Jialal I, Kaur H. The Role of Toll-Like Receptors in Diabetes-Induced Inflammation: Implications for Vascular Complications. Curr Diab Rep. 2012;12(2):172. Feb. doi:10.1007/s11892-012-0258-7.
  • Rodriguez-Miguelez P, Fernandez-Gonzalo R, Almar M, et al. Role of Toll-like receptor 2 and 4 signaling pathways on the inflammatory response to resistance training in elderly subjects. Age (Dordr). 2014;36(6):9734. doi:10.1007/s11357-014-9734-0.
  • Shi H, Kokoeva MV, Inouye K, et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116(11):3015–3025. Novdoi:10.1172/JCI28898.
  • Lancaster GI, Langley KG, Berglund NA, et al. Evidence that TLR4 Is Not a Receptor for Saturated Fatty Acids but Mediates Lipid-Induced Inflammation by Reprogramming Macrophage Metabolism. Cell Metab. 2018; 27(5):1096–1110.e5. doi:10.1016/j.cmet.2018.03.014.
  • Cottam DR, Mattar SG, Barinas-Mitchell E, et al. The chronic inflammatory hypothesis for the morbidity associated with morbid obesity: implications and effects of weight loss. Obes Surg. 2004;14(5):589–600. doi:10.1381/096089204323093345.
  • Ahmad R, Al-Mass A, Atizado V, et al. Elevated expression of the toll like receptors 2 and 4 in obese individuals: its significance for obesity-induced inflammation. J Inflamm. 2012;9(1):48.doi:10.1186/1476-9255-9-48.
  • O'Shea JJ, Ma A, Lipsky P. Cytokines and autoimmunity. Nat Rev Immunol. 2002;2(1):37–45. doi:10.1038/nri702.
  • De Nardo D, De Nardo CM, Nguyen T, et al. Signaling crosstalk during sequential TLR4 and TLR9 activation amplifies the inflammatory response of mouse macrophages. J Immunol. 2009;183(12):8110–8118. doi:10.4049/jimmunol.0901031.
  • Yang HT, Wang Y, Zhao X, et al. NF-κB1 inhibits TLR-induced IFN-β production in macrophages through TPL-2-dependent ERK activation. J Immunol. 2011;186(4):1989–1996. doi:10.4049/jimmunol.1001003.
  • Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75(1):50–83. Mardoi:10.1128/MMBR.00031-10.
  • Imajo M, Tsuchiya Y, Nishida E. Regulatory mechanisms and functions of MAP kinase signaling pathways. IUBMB Life. 2006;58(5-6):312–317. doi:10.1080/15216540600746393.
  • Peroval MY, Boyd AC, Young JR, et al. A critical role for MAPK signalling pathways in the transcriptional regulation of toll like receptors. PLoS One. 2013;8(2):e51243. doi:10.1371/journal.pone.0051243.
  • Paz K, Hemi R, LeRoith D, et al. A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem. 1997;272(47):29911–29918. Nov
  • Gual P, Le Marchand-Brustel Y, Tanti JF. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie. 2005;87(1):99–109. Jandoi:10.1016/j.biochi.2004.10.019.
  • Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–867. Decdoi:10.1038/nature05485.
  • Holland WL, Bikman BT, Wang LP, et al. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest. 2011;121(5):1858–1870. doi:10.1172/JCI43378.
  • Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011;121(6):2111–2117. doi:10.1172/JCI57132.
  • Jang HJ, Kim HS, Hwang DH, et al. Toll-like receptor 2 mediates high-fat diet-induced impairment of vasodilator actions of insulin. Am J Physiol Endocrinol Metab. 2013;304(10):E1077–88. doi:10.1152/ajpendo.00578.2012.
  • Mathur N, Pedersen BK. Exercise as a mean to control low-grade systemic inflammation. Mediators Inflamm. 2008;2008:1. doi:10.1155/2008/109502.
  • Rada I, Deldicque L, Francaux M, et al. Toll like receptor expression induced by exercise in obesity and metabolic syndrome: A systematic review. Exerc Immunol Rev. 2018;24:60–71.
  • Dekker MJ, Lee S, Hudson R, et al. An exercise intervention without weight loss decreases circulating interleukin-6 in lean and obese men with and without type 2 diabetes mellitus. Metabolism. 2007;56(3):332–338. Mardoi:10.1016/j.metabol.2006.10.015.
  • Fisher G, Hyatt TC, Hunter GR, et al. Effect of diet with and without exercise training on markers of inflammation and fat distribution in overweight women. Obesity (Silver Spring). 2011;19(6):1131–1136. doi:10.1038/oby.2010.310.
  • Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88(4):1379–1406. Octdoi:10.1152/physrev.90100.2007.
  • Steensberg A, Fischer CP, Keller C, et al. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab. 2003;285(2):E433–7. doi:10.1152/ajpendo.00074.2003.
  • Schindler R, Mancilla J, Endres S, et al. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood. 1990;75(1):40–47. doi:10.1182/blood.V75.1.40.bloodjournal75140.
  • Flynn MG, McFarlin BK, Phillips MD, et al. Toll-like receptor 4 and CD14 mRNA expression are lower in resistive exercise-trained elderly women. J Appl Physiol (1985). 2003;95(5):1833–1842. doi:10.1152/japplphysiol.00359.2003.
  • McFarlin BK, Flynn MG, Campbell WW, et al. TLR4 is lower in resistance-trained older women and related to inflammatory cytokines. Med Sci Sports Exerc. 2004;36(11):1876–1883. doi:10.1249/01.MSS.0000145465.71269.10.
  • McFarlin BK, Flynn MG, Campbell WW, et al. Physical activity status, but not age, influences inflammatory biomarkers and toll-like receptor 4. J Gerontol A Biol Sci Med Sci. 2006;61(4):388–393. doi:10.1093/gerona/61.4.388.
  • Lancaster GI, Khan Q, Drysdale P, et al. The physiological regulation of toll-like receptor expression and function in humans. J Physiol. 2005;563(3):945–955. doi:10.1113/jphysiol.2004.081224.
  • Stewart LK, Flynn MG, Campbell WW, et al. Influence of exercise training and age on CD14+ cell-surface expression of toll-like receptor 2 and 4. Brain Behav Immun. 2005;19(5):389–397. doi:10.1016/j.bbi.2005.04.003.
  • Simpson RJ, McFarlin BK, McSporran C, et al. Toll-like receptor expression on classic and pro-inflammatory blood monocytes after acute exercise in humans. Brain Behav Immun. 2009;23(2):232–239. doi:10.1016/j.bbi.2008.09.013.
  • Oliveira M, Gleeson M. The influence of prolonged cycling on monocyte Toll-like receptor 2 and 4 expression in healthy men. Eur J Appl Physiol. 2010; 109(2):251–257. doi:10.1007/s00421-009-1350-9.
  • Durrer C, Francois M, Neudorf H, et al. Acute high-intensity interval exercise reduces human monocyte Toll-like receptor 2 expression in type 2 diabetes. Am J Physiol Regul Integr Comp Physiol. 2017;312(4):R529–R38. doi:10.1152/ajpregu.00348.2016.
  • Perandini LA, Sales-de-Oliveira D, Almeida DC, et al. Effects of acute aerobic exercise on leukocyte inflammatory gene expression in systemic lupus erythematosus. Exerc Immunol Rev. 2016;22:64–81.
  • Sepehri Z, Kiani Z, Javadian F, et al. TLR3 and its roles in the pathogenesis of type 2 diabetes. Cell Mol Biol (Noisy-le-grand). 2015; 61(3):46–50.
  • Timmerman KL, Flynn MG, Coen PM, Markofski MM, et al. Exercise training-induced lowering of inflammatory (CD14 + CD16+) monocytes: a role in the anti-inflammatory influence of exercise?. J Leukoc Biol. 2008;84(5):1271–1278. doi:10.1189/jlb.0408244.
  • Child M, Leggate M, Gleeson M. Effects of Two Weeks of High-intensity Interval Training (HIIT) on Monocyte TLR2 and TLR4 Expression in High BMI Sedentary Men. Int J Exerc Sci. 2013;6(1):10.
  • Reyna SM, Tantiwong P, Cersosimo E, et al. Short-term exercise training improves insulin sensitivity but does not inhibit inflammatory pathways in immune cells from insulin-resistant subjects. J Diabetes Res. 2013;2013:1. doi:10.1155/2013/107805.
  • Robinson E, Durrer C, Simtchouk S, et al. Short-term high-intensity interval and moderate-intensity continuous training reduce leukocyte TLR4 in inactive adults at elevated risk of type 2 diabetes. J Appl Physiol (1985). 2015;119(5):508–516. doi:10.1152/japplphysiol.00334.2015.
  • Frellstedt L, Waldschmidt I, Gosset P, et al. Training modifies innate immune responses in blood monocytes and in pulmonary alveolar macrophages. Am J Respir Cell Mol Biol. 2014;51(1):135–142. doi:10.1165/rcmb.2013-0341OC.
  • Flynn MG, McFarlin BK. Toll-like receptor 4: link to the anti-inflammatory effects of exercise?. Exerc Sport Sci Rev. 2006;34(4):176–181. doi:10.1249/01.jes.0000240027.22749.14.
  • Kilmartin B, Reen DJ. HSP60 induces self-tolerance to repeated HSP60 stimulation and cross-tolerance to other pro-inflammatory stimuli. Eur J Immunol. 2004;34(7):2041–2051. doi:10.1002/eji.200425108.
  • Asea A, Rehli M, Kabingu E, et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem. 2002;277(17):15028–15034. doi:10.1074/jbc.M200497200.
  • Locke M, Noble EG, Tanguay RM, et al. Activation of heat-shock transcription factor in rat heart after heat shock and exercise. Am J Physiol. 1995;268(6):C1387–94. doi:10.1152/ajpcell.1995.268.6.C1387.
  • Samelman TR. Heat shock protein expression is increased in cardiac and skeletal muscles of Fischer 344 rats after endurance training. Exp Physiol. 2000;85(1):92–102.
  • Walsh RC, Koukoulas I, Garnham A, et al. Exercise increases serum Hsp72 in humans. Cell Stress Chaper.. 2001;6(4):386–393. doi:10.1379/1466-1268(2001)006<0386:EISHIH>2.0.CO;2.
  • Weber MH, da Rocha RF, Schnorr CE, et al. Changes in lymphocyte HSP70 levels in women handball players throughout 1 year of training: the role of estrogen levels. J Physiol Biochem. 2012;68(3):365–375. doi:10.1007/s13105-012-0148-0.
  • Harris MB, Starnes JW. Effects of body temperature during exercise training on myocardial adaptations. Am J Physiol Heart Circ Physiol. 2001;280(5):H2271–80. doi:10.1152/ajpheart.2001.280.5.H2271.
  • Milne KJ, Noble EG. Exercise-induced elevation of HSP70 is intensity dependent. J Appl Physiol (1985). 2002;93(2):561–568. doi:10.1152/japplphysiol.00528.2001.
  • Schell MT, Spitzer AL, Johnson JA, Lee D, et al. Heat shock inhibits NF-kB activation in a dose- and time-dependent manner. J Surg Res. 2005;129(1):90–93. doi:10.1016/j.jss.2005.05.025.
  • Weiss YG, Bromberg Z, Raj N, et al. Enhanced heat shock protein 70 expression alters proteasomal degradation of IkappaB kinase in experimental acute respiratory distress syndrome. Crit Care Med. 2007;35(9):2128–2138. doi:10.1097/01.CCM.0000278915.78030.74.
  • Pockley AG, Calderwood SK, Multhoff G. The atheroprotective properties of Hsp70: a role for Hsp70-endothelial interactions?. Cell Stress Chaperones. 2009;14(6):545–553. doi:10.1007/s12192-009-0113-1.
  • Rodriguez-Miguelez P, Fernandez-Gonzalo R, Collado PS, et al. Whole-body vibration improves the anti-inflammatory status in elderly subjects through toll-like receptor 2 and 4 signaling pathways. Mech Ageing Dev. 2015;150:12–19. doi:10.1016/j.mad.2015.08.002.
  • Murphy G, Murthy A, Khokha R. Clipping, shedding and RIPping keep immunity on cue. Trends Immunol. 2008;29(2):75–82. doi:10.1016/j.it.2007.10.009.
  • Langjahr P, Díaz-Jiménez D, De la Fuente M, et al. Metalloproteinase-dependent TLR2 ectodomain shedding is involved in soluble toll-like receptor 2 (sTLR2) production. PLoS One. 2014;9(12):e104624. doi:10.1371/journal.pone.0104624.
  • Rullman E, Olsson K, Wågsäter D, et al. Circulating MMP-9 during exercise in humans. Eur J Appl Physiol. 2013;113(5):1249–1255. doi:10.1007/s00421-012-2545-z.
  • Yang M, Chen T, Han C, et al. Rab7b, a novel lysosome-associated small GTPase, is involved in monocytic differentiation of human acute promyelocytic leukemia cells. Biochem Biophys Res Commun. 2004;318(3):792–799. Jundoi:10.1016/S0006-291X(04)00820-4.
  • Feng Y, Press B, Wandinger-Ness A. Rab 7: an important regulator of late endocytic membrane traffic. J Cell Biol. 1995;131(6):1435–1452. doi:10.1083/jcb.131.6.1435.
  • Mukhopadhyay A, Funato K, Stahl PD. Rab7 regulates transport from early to late endocytic compartments in Xenopus oocytes. J Biol Chem. 1997;272(20):13055–13059. doi:10.1074/jbc.272.20.13055.
  • Wang Y, Chen T, Han C, et al. Lysosome-associated small Rab GTPase Rab7b negatively regulates TLR4 signaling in macrophages by promoting lysosomal degradation of TLR4. Blood. 2007;110(3):962–971. doi:10.1182/blood-2007-01-066027.
  • Hayden MS, West AP, Ghosh S. NF-kappaB and the immune response. Oncogene. 2006;25(51):6758–6780. doi:10.1038/sj.onc.1209943.
  • Abbasi A, Hauth M, Walter M, et al. Exhaustive exercise modifies different gene expression profiles and pathways in LPS-stimulated and un-stimulated whole blood cultures. Brain Behav Immun. 2014;39:130–141. doi:10.1016/j.bbi.2013.10.023.
  • Ulven SM, Foss SS, Skjølsvik AM, Stadheim HK, et al. An acute bout of exercise modulate the inflammatory response in peripheral blood mononuclear cells in healthy young men. Arch Physiol Biochem. 2015;121(2):41–49. doi:10.3109/13813455.2014.1003566.
  • Nickel T, Emslander I, Sisic Z, et al. Modulation of dendritic cells and toll-like receptors by marathon running. Eur J Appl Physiol. 2012;112(5):1699–1708. doi:10.1007/s00421-011-2140-8.
  • Fernandez-Gonzalo R, De Paz JA, Rodriguez-Miguelez P, et al. Effects of eccentric exercise on toll-like receptor 4 signaling pathway in peripheral blood mononuclear cells. J Appl Physiol (1985). 2012;112(12):2011–2018. doi:10.1152/japplphysiol.01499.2011.
  • Fernandez-Gonzalo R, De Paz JA, Rodriguez-Miguelez P, et al. TLR4-mediated blunting of inflammatory responses to eccentric exercise in young women. Mediators Inflamm. 2014;2014:1. doi:10.1155/2014/479395.
  • Cerdá B, Pérez M, Pérez-Santiago JD, et al. Gut Microbiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health?. Front Physiol. 2016;7:51.
  • Boulangé CL, Neves AL, Chilloux J, et al. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016;8(1):42.doi:10.1186/s13073-016-0303-2.
  • Harakeh SM, Khan I, Kumosani T, et al. Gut Microbiota: A Contributing Factor to. Obesity. Front Cell Infect Microbiol. 2016;6:95.
  • Baothman OA, Zamzami MA, Taher I, et al. The role of Gut Microbiota in the development of obesity and Diabetes. Lipids Health Dis. 2016;15(1):108.doi:10.1186/s12944-016-0278-4.
  • Musso G, Gambino R, Cassader M. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded?. Diabetes Care. 2010;33(10):2277–2284. Octdoi:10.2337/dc10-0556.
  • Choi JJ, Eum SY, Rampersaud E, et al. Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ Health Perspect. 2013;121(6):725–730. doi:10.1289/ehp.1306534.
  • Petriz BA, Castro AP, Almeida JA, et al. Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genomics. 2014;15(1):511.doi:10.1186/1471-2164-15-511.
  • Evans CC, LePard KJ, Kwak JW, et al. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One. 2014;9(3):e92193. doi:10.1371/journal.pone.0092193.
  • Clarke SF, Murphy EF, O'Sullivan O, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63(12):1913–1920. doi:10.1136/gutjnl-2013-306541.
  • Yiu JH, Dorweiler B, Woo CW. Interaction between gut microbiota and toll-like receptor: from immunity to metabolism. J Mol Med. 2017;95(1):13–20. doi:10.1007/s00109-016-1474-4.
  • Kasubuchi M, Hasegawa S, Hiramatsu T, et al. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 2015;7(4):2839–2849. doi:10.3390/nu7042839.
  • Liu WY, Lu DJ, Du XM, et al. Effect of aerobic exercise and low carbohydrate diet on pre-diabetic non-alcoholic fatty liver disease in postmenopausal women and middle aged men–the role of gut microbiota composition: study protocol for the AELC randomized controlled trial. BMC Public Health. 2014;14(1):48.
  • Bressa C, Bailén-Andrino M, Pérez-Santiago J, et al. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS One. 2017;12(2):e0171352. doi:10.1371/journal.pone.0171352.
  • Estaki M, Pither J, Baumeister P, et al. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome. 2016;4(1):42.doi:10.1186/s40168-016-0189-7.
  • Hsu YJ, Chiu CC, Li YP, et al. Effect of intestinal microbiota on exercise performance in mice. J Strength Cond Res. 2015;29(2):552–558. doi:10.1519/JSC.0000000000000644.
  • Queipo-Ortuño MI, Seoane LM, Murri M, et al. Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PLoS One. 2013;8(5):e65465. doi:10.1371/journal.pone.0065465.
  • Kang SS, Jeraldo PR, Kurti A, et al. Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Mol Neurodegeneration. 2014;9(1):36.doi:10.1186/1750-1326-9-36.
  • Doyle A, Zhang G, Abdel Fattah EA, et al. Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. FASEB J. 2011;25(1):99–110. Jandoi:10.1096/fj.10-164152.
  • Bäckhed F, Manchester JK, Semenkovich CF, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. PNAS. 2007;104(3):979–984. doi:10.1073/pnas.0605374104.
  • Hagio M, Matsumoto M, Yajima T, et al. Voluntary wheel running exercise and dietary lactose concomitantly reduce proportion of secondary bile acids in rat feces. J Appl Physiol (1985). 2010;109(3):663–668. doi:10.1152/japplphysiol.00777.2009.
  • Viloria M, Lara-Padilla E, Campos-Rodríguez R, et al. Effect of moderate exercise on IgA levels and lymphocyte count in mouse intestine. Immunol Invest. 2011;40(6):640–656. doi:10.3109/08820139.2011.575425.
  • Turnbaugh PJ, Bäckhed F, Fulton L, et al. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3(4):213–223. doi:10.1016/j.chom.2008.02.015.
  • Oettlé GJ. Effect of moderate exercise on bowel habit. Gut. 1991;32(8):941–944. doi:10.1136/gut.32.8.941.
  • Cavallari JF, Schertzer JD. Intestinal Microbiota Contributes to Energy Balance, Metabolic Inflammation, and Insulin Resistance in Obesity. J Obes Metab Synd. 2017;26(3):161–171. doi:10.7570/jomes.2017.26.3.161.
  • He X, Jing Z, Cheng G. MicroRNAs: new regulators of Toll-like receptor signalling pathways. Biomed Res Int. 2014;2014:1. doi:10.1155/2014/945169.
  • Yates LA, Norbury CJ, Gilbert RJ. The long and short of microRNA. Cell. 2013;153(3):516–519. doi:10.1016/j.cell.2013.04.003.
  • Radom-Aizik S, Zaldivar F, Oliver S, et al. Evidence for microRNA involvement in exercise-associated neutrophil gene expression changes. J Appl Physiol (1985). 2010;109(1):252–261. doi:10.1152/japplphysiol.01291.2009.
  • Radom-Aizik S, Zaldivar F, Leu SY, et al. Effects of exercise on microRNA expression in young males peripheral blood mononuclear cells. Clin Transl Sci. 2012;5(1):32–38. doi:10.1111/j.1752-8062.2011.00384.x.
  • Radom-Aizik S, Zaldivar F, Haddad F, et al. Impact of brief exercise on peripheral blood NK cell gene and microRNA expression in young adults. J Appl Physiol (1985). 2013;114(5):628–636. doi:10.1152/japplphysiol.01341.2012.
  • Radom-Aizik S, Zaldivar FP, Haddad F, et al. Impact of brief exercise on circulating monocyte gene and microRNA expression: implications for atherosclerotic vascular disease. Brain Behav Immun. 2014;39:121–129. doi:10.1016/j.bbi.2014.01.003.
  • O'Neill LA, Sheedy FJ, McCoy CE. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol. 2011;11(3):163–175. doi:10.1038/nri2957.
  • Olivieri F, Rippo MR, Prattichizzo F, et al. Toll like receptor signaling in “inflammaging”: microRNA as new players. Immun Ageing. 2013;10(1):11.doi:10.1186/1742-4933-10-11.
  • Tonevitsky AG, Maltseva DV, Abbasi A, et al. Dynamically regulated miRNA-mRNA networks revealed by exercise. BMC Physiol. 2013;13(1):9.doi:10.1186/1472-6793-13-9.
  • Fernández-Sanjurjo M, de Gonzalo-Calvo D, Fernández-García B, et al. Circulating microRNA as Emerging Biomarkers of Exercise. Exerc Sport Sci Rev. 2018;46(3):160–171. doi:10.1249/JES.0000000000000148.
  • Baggish AL, Hale A, Weiner RB, et al. Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J Physiol. 2011;589(16):3983–3994. doi:10.1113/jphysiol.2011.213363.
  • Mooren FC, Viereck J, Krüger K, et al. Circulating microRNAs as potential biomarkers of aerobic exercise capacity. Am J Physiol Heart Circ Physiol. 2014;306(4):H557–63. doi:10.1152/ajpheart.00711.2013.
  • Clauss S, Wakili R, Hildebrand B, et al. MicroRNAs as Biomarkers for Acute Atrial Remodeling in Marathon Runners (The miRathon Study–A Sub-Study of the Munich Marathon Study). PLoS One. 2016;11(2):e0148599. doi:10.1371/journal.pone.0148599.
  • de Gonzalo-Calvo D, Dávalos A, Montero A, et al. Circulating inflammatory miRNA signature in response to different doses of aerobic exercise. J Appl Physiol (1985). 2015;119(2):124–134. doi:10.1152/japplphysiol.00077.2015.
  • Nielsen S, Åkerström T, Rinnov A, et al. The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLoS One. 2014;9(2):e87308. doi:10.1371/journal.pone.0087308.
  • Wardle SL, Bailey ME, Kilikevicius A, et al. Plasma microRNA levels differ between endurance and strength athletes. PLoS One. 2015;10(4):e0122107. doi:10.1371/journal.pone.0122107.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.