207
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Characteristics and the role of purinergic receptors in pathophysiology with focus on immune response

Purinergic receptors are widely expressed in immune cells and regulate high variety of their functions, taking part in pathogenesis of many diseases

ORCID Icon & ORCID Icon
Pages 97-117 | Received 11 Jul 2019, Accepted 21 Jan 2020, Published online: 09 Feb 2020

References

  • Stagg J, Smyth MJ. Extracellular adenosine triphosphate and adenosine in cancer. Oncogene. 2010;29(39):5346–5358. doi:10.1038/onc.2010.292.
  • Burnstock G. Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev. 2007;87(2):659–797. doi:10.1152/physrev.00043.2006.
  • Dal Ben D, Marchenkova A, Thomas A, et al. 2′,3′-O-substituted ATP derivatives as potent antagonists of purinergic P2X3 receptors and potential analgesic agents. Purinergic Signal. 2017;13(1):61–74. doi:10.1007/s11302-016-9539-y.
  • Nakata H, Suzuki T, Namba K, et al. Dimerization of G protein-coupled purinergic receptors: increasing the diversity of purinergic receptor signal responses and receptor functions. J Recept Signal Transduct. 2010;30(5):337–346. doi:10.3109/10799893.2010.509729.
  • Burnstock G, Brouns I, Adriaensen D, et al. Purinergic signaling in the airways. Pharmacol Rev. 2012;64(4):834–868. doi:10.1124/pr.111.005389.
  • Burnstock G. Overview: purinergic mechanisms. Ann NY Acad Sci. 1990;603:1–17. doi:10.1111/j.1749-6632.1990.tb37657.x.
  • Burnstock G. Purine and pyrimidine receptors. Cell Mol Life Sci. 2007;64(12):1471–1483. doi:10.1007/s00018-007-6497-0.
  • Kolachala VL, Bajaj R, Chalasani M, et al. Purinergic receptors in gastrointestinal inflammation. Am J Physiol-Gastrointest Liver Physiol. 2008;294(2):G401–G410. doi:10.1152/ajpgi.00454.2007.
  • Haskó G, Linden J, Cronstein B, et al. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov. 2008;7(9):759–770. doi:10.1038/nrd2638.
  • Hechler B, Gachet C. Purinergic receptors in thrombosis and inflammation. Arterioscler Thromb Vasc Biol. 2015;35(11):2307–2315. doi:10.1161/ATVBAHA.115.303395.
  • Novak I, Solini A. P2X receptor-ion channels in the inflammatory response in adipose tissue and pancreas — potential triggers in onset of type 2 diabetes? Curr Opin Immunol. 2018;52:1–7. doi:10.1016/j.coi.2018.02.002.
  • Haskó G, Cronstein B. Regulation of inflammation by adenosine. Front Immunol. 2013;4:85.
  • Deuchars SA, Brooke RE, Deuchars J. Adenosine A1 receptors reduce release from excitatory but not inhibitory synaptic inputs onto lateral horn neurons. J Neurosci. 2001;21(16):6308–6320. doi:10.1523/JNEUROSCI.21-16-06308.2001.
  • Novitskiy SV, Ryzhov S, Zaynagetdinov R, et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood. 2008;112(5):1822–1831. doi:10.1182/blood-2008-02-136325.
  • Gessi S, Merighi S, Sacchetto V, et al. Adenosine receptors and cancer. Biochim Biophys Acta BBA - Biomembr. 2011;1808(5):1400–1412. doi:10.1016/j.bbamem.2010.09.020.
  • Burnstock G. Purine and purinergic receptors. Brain Neurosci Adv. 2018;2:1–10. doi:10.1177/2398212818817494.
  • Haskó G, Csóka B, Németh ZH, et al. A2B adenosine receptors in immunity and inflammation. Trends Immunol. 2009;30(6):263–270. doi:10.1016/j.it.2009.04.001.
  • Kasama H, Sakamoto Y, Kasamatsu A, et al. Adenosine A2b receptor promotes progression of human oral cancer. BMC Cancer. 2015;15:563. doi:10.1186/s12885-015-1577-2.
  • Corona SP, Sobhani N, Generali D. Adenosine A2B receptor: novel anti-cancer therapeutic implications. JCMT. 2017;3(9):206. doi:10.20517/2394-4722.2017.50.
  • Koussémou M, Lorenz K, Klotz K-N. The A2B adenosine receptor in MDA-MB-231 breast cancer cells diminishes ERK1/2 phosphorylation by activation of MAPK-phosphatase-1. PLoS ONE. 2018;13(8):e0202914. doi:10.1371/journal.pone.0202914.
  • Borea PA, Varani K, Vincenzi F, et al. The A3 adenosine receptor: history and perspectives. Pharmacol Rev. 2015;67(1):74–102. doi:10.1124/pr.113.008540.
  • Koscsó B, Csóka B, Pacher P, et al. Investigational A3 adenosine receptor targeting agents. Expert Opin Investig Drugs. 2011;20(6):757–768. doi:10.1517/13543784.2011.573785.
  • Burnstock G. P2X ion channel receptors and inflammation. Purinergic Signal. 2016;12(1):59–67. doi:10.1007/s11302-015-9493-0.
  • Brass D, Grably MR, Bronstein-Sitton N, et al. Using antibodies against P2Y and P2X receptors in purinergic signaling research. Purinergic Signal. 2012;8(S1):61–79. doi:10.1007/s11302-011-9278-z.
  • Sluyter R, Barden JA, Wiley JS. Detection of P2X purinergic receptors on human B lymphocytes. Cell Tissue Res. 2001;304(2):231–236. doi:10.1007/s004410100372.
  • Prado FC, Araldi D, Vieira AS, et al. Neuronal P2X3 receptor activation is essential to the hyperalgesia induced by prostaglandins and sympathomimetic amines released during inflammation. Neuropharmacology. 2013;67:252–258. doi:10.1016/j.neuropharm.2012.11.011.
  • Woehrle T, Yip L, Elkhal A, et al. Pannexin-1 hemichannel-mediated ATP release together with P2X1 and P2X4 receptors regulate T-cell activation at the immune synapse. Blood. 2010;116(18):3475–3484. doi:10.1182/blood-2010-04-277707.
  • Gorini S, Callegari G, Romagnoli G, et al. ATP secreted by endothelial cells blocks CX3CL1-elicited natural killer cell chemotaxis and cytotoxicity via P2Y11 receptor activation. Blood. 2010;116(22):4492–4500. doi:10.1182/blood-2009-12-260828.
  • Wang L, Jacobsen SEW, Bengtsson A, et al. P2 receptor mRNA expression profiles in human lymphocytes, monocytes and CD34+ stem and progenitor cells. BMC Immunol. 2004;5(1):16.
  • Ferrari D, Idzko M, Dichmann S, et al. P2 purinergic receptors of human eosinophils: characterization and coupling to oxygen radical production. FEBS Lett. 2000;486(3):217–224. doi:10.1016/S0014-5793(00)02306-1.
  • Tsuda M, Masuda T, Tozaki-Saitoh H, et al. P2X4 receptors and neuropathic pain. Front Cell Neurosci. 2013;7:191. doi:10.3389/fncel.2013.00191.
  • Jp de R V, Bastien D, Yurcisin G, et al. P2X4 receptors influence inflammasome activation after spinal cord injury. J Neurosci. 2012;32(9):3058–3066. doi:10.1523/JNEUROSCI.4930-11.2012.
  • Burnstock G. Introduction and perspective, historical note. Front Cell Neurosci. 2013;7:227.
  • Haynes SE, Hollopeter G, Yang G, et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci. 2006;9(12):1512–1519. doi:10.1038/nn1805.
  • Vaughan KR, Stokes L, Prince LR, et al. Inhibition of neutrophil apoptosis by ATP is mediated by the P2Y11 receptor. J Immunol. 2007;179(12):8544–8553. doi:10.4049/jimmunol.179.12.8544.
  • Kim H, Walsh MC, Takegahara N, et al. The purinergic receptor P2X5 regulates inflammasome activity and hyper-multinucleation of murine osteoclasts. Sci Rep. 2017;7(1):196. doi:10.1038/s41598-017-00139-2.
  • Kim H, Walsh MC, Yu J, et al. Methylosome protein 50 associates with the purinergic receptor P2X5 and is involved in osteoclast maturation. FEBS Lett. 2020;594(1):144–152. doi:10.1002/1873-3468.13581.
  • Walsh MC, Takegahara N, Kim H, et al. Updating osteoimmunology: regulation of bone cells by innate and adaptive immunity. Nat Rev Rheumatol. 2018;14(3):146–156. doi:10.1038/nrrheum.2017.213.
  • Abramowski P, Ogrodowczyk C, Martin R, et al. A truncation variant of the cation channel P2RX5 is upregulated during T cell activation. PLOS ONE. 2014;9(9):e104692. doi:10.1371/journal.pone.0104692.
  • Di Virgilio F, Vuerich M. Purinergic signaling in the immune system. Auton Neurosci. 2015;191:117–123. doi:10.1016/j.autneu.2015.04.011.
  • Vijayan D, Smyth MJ, Teng M. Purinergic receptors: novel targets for cancer immunotherapy. In: Zitvogel L, Kroemer G, editors. Oncoimmunology: A Practical Guide for Cancer Immunotherapy. Cham: Springer International Publishing; 2018:115–141.
  • Linden J, Koch-Nolte F, Dahl G. Purine release, metabolism, and signaling in the inflammatory response. Annu Rev Immunol. 2019;37(1):325–347. doi:10.1146/annurev-immunol-051116-052406.
  • Erb L, Weisman GA. Coupling of P2Y receptors to G proteins and other signaling pathways. WIREs Membr Transp Signal. 2012;1(6):789–803. doi:10.1002/wmts.62.
  • Hattori M, Gouaux E. Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature. 2012;485(7397):207–212. doi:10.1038/nature11010.
  • Nishimura A, Sunggip C, Oda S, et al. Purinergic P2Y receptors: molecular diversity and implications for treatment of cardiovascular diseases. Pharmacol Ther. 2017;180:113–128. doi:10.1016/j.pharmthera.2017.06.010.
  • Sakuma K, Nakagawa H, Oikawa T, Noda M, Ikeda S. Effects of 4(1H)-quinolinone derivative, a novel non-nucleotide allosteric purinergic P2Y 2 agonist, on cardiomyocytes in neonatal rats. Sci Rep. 2017;7(1):6050. doi:10.1038/s41598-017-06481-9.
  • Chen Y, Corriden R, Inoue Y, et al. ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science. 2006;314(5806):1792–1795. doi:10.1126/science.1132559.
  • Li H-Q, Chen C, Dou Y, et al. P2Y4 receptor-mediated pinocytosis contributes to amyloid beta-induced self-uptake by microglia. Mol Cell Biol. 2013;33(21):4282–4293. doi:10.1128/MCB.00544-13.
  • Horckmans M, Esfahani H, Beauloye C, et al. Loss of mouse P2Y4 nucleotide receptor protects against myocardial infarction through endothelin-1 downregulation. J Immunol. 2015;194(4):1874–1881. doi:10.4049/jimmunol.1401364.
  • Di Virgilio F, Ceruti S, Bramanti P, et al. Purinergic signalling in inflammation of the central nervous system. Trends Neurosci. 2009;32(2):79–87. doi:10.1016/j.tins.2008.11.003.
  • Scrivens M, Dickenson JM. Functional expression of the P2Y14 receptor in human neutrophils. Eur J Pharmacol. 2006;543(1–3):166–173. doi:10.1016/j.ejphar.2006.05.037.
  • Liverani E, Kilpatrick LE, Tsygankov AY, et al. The role of P2Y12 receptor and activated platelets during inflammation. CDT. 2014;15(7):720–728. doi:10.2174/1389450115666140519162133.
  • Amadio S, Tramini G, Martorana A, et al. Oligodendrocytes express P2Y12 metabotropic receptor in adult rat brain. Neuroscience. 2006;141(3):1171–1180. doi:10.1016/j.neuroscience.2006.05.058.
  • Gao Z-G, Ding Y, Jacobson KA. P2Y13 receptor is responsible for ADP-mediated degranulation in RBL-2H3 rat mast cells. Pharmacol Res. 2010;62(6):500–505. doi:10.1016/j.phrs.2010.08.003.
  • Gao Z-G, Ding Y, Jacobson KA. UDP-glucose acting at P2Y14 receptors is a mediator of mast cell degranulation. Biochem Pharmacol. 2010;79(6):873–879. doi:10.1016/j.bcp.2009.10.024.
  • Idzko M, Ferrari D, Eltzschig HK. Nucleotide signalling during inflammation. Nature. 2014;509(7500):310–317. doi:10.1038/nature13085.
  • Bai M. Dimerization of G-protein-coupled receptors: roles in signal transduction. Cell Signal. 2004;16(2):175–186. doi:10.1016/S0898-6568(03)00128-1.
  • Hiller C, Kühhorn J, Gmeiner P. Class A G-protein-coupled receptor (GPCR) dimers and bivalent ligands. J Med Chem. 2013;56(17):6542–6559. doi:10.1021/jm4004335.
  • Salim H, Ferré S, Dalal A, et al. Activation of adensine A1 and A2A receptors modulates dopamine D2 receptor-induced responses in stably transfected human neuroblastoma cells. J Neurochem. 2001;74(1):432–439. doi:10.1046/j.1471-4159.2000.0740432.x.
  • Ferré S, Fuxe K, von Euler G, et al. Commentary adenostne-dopamine interactions in the brain. Neuroscience. 1992;51(3):501–512. doi:10.1016/0306-4522(92)90291-9.
  • Sichardt K, Nieber K. Adenosine A1 receptor: functional receptor-receptor interactions in the brain. Purinergic Signal. 2007;3(4):285–298. doi:10.1007/s11302-007-9065-z.
  • Feltmann K, Borroto-Escuela DO, Rüegg J, et al. Effects of long-term alcohol drinking on the dopamine D2 receptor: gene expression and heteroreceptor complexes in the striatum in rats. Alcohol Clin Exp Res. 2018;42(2):338–351. doi:10.1111/acer.13568.
  • Ciruela F. Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci. 2006;26(7):2080–2087. doi:10.1523/JNEUROSCI.3574-05.2006.
  • Hinz S, Navarro G, Borroto-Escuela D, et al. Adenosine A2A receptor ligand recognition and signaling is blocked by A2B receptors. Oncotarget. 2018;9(17):13593–13611. doi:10.18632/oncotarget.24423.
  • Chandrasekera PC, Wan TC, Gizewski ET, et al. Adenosine A1 receptors heterodimerize with β1- and β2-adrenergic receptors creating novel receptor complexes with altered G protein coupling and signaling. Cell Signal. 2013;25(4):736–742. doi:10.1016/j.cellsig.2012.12.022.
  • Choi RCY, Simon J, Tsim KWK, et al. Constitutive and agonist-induced dimerizations of the P2Y 1 receptor: relationship to internalization and scaffolding. J Biol Chem. 2008;283(16):11050–11063. doi:10.1074/jbc.M709266200.
  • D’Ambrosi N, Iafrate M, Vacca F, et al. The P2Y4 receptor forms homo-oligomeric complexes in several CNS and PNS neuronal cells. Purinergic Signal. 2006;2(4):575–582. doi:10.1007/s11302-006-9014-2.
  • D’Ambrosi N, Iafrate M, Saba E, et al. Comparative analysis of P2Y4 and P2Y6 receptor architecture in native and transfected neuronal systems. Biochim Biophys Acta BBA - Biomembr. 2007;1768(6):1592–1599. doi:10.1016/j.bbamem.2007.03.020.
  • Ribeiro-Filho AC, Buri MV, Barros CC, et al. Functional and molecular evidence for heteromeric association of P2Y1 receptor with P2Y2 and P2Y4 receptors in mouse granulocytes. BMC Pharmacol Toxicol. 2016;17(1):29. doi:10.1186/s40360-016-0072-y.
  • Smith TH, Li JG, Dores MR, et al. Protease-activated receptor-4 and purinergic receptor P2Y12 dimerize, co-internalize, and activate Akt signaling via endosomal recruitment of β-arrestin. J Biol Chem. 2017;292(33):13867–13878. doi:10.1074/jbc.M117.782359.
  • Burnstock G. Purinergic receptors and pain. CPD. 2009;15(15):1717–1735. doi:10.2174/138161209788186335.
  • Burnstock G. Purinergic Mechanisms and Pain. In: James E. Barrett, Editor. Advances in Pharmacology Vol. 75. Massachusetts: Academic Press; 2016. Pages 91–137.
  • Stoop R, Thomas S, Rassendren F, et al. Contribution of individual subunits to the multimeric P2X 2 receptor: estimates based on methanethiosulfonate block at T336C. Mol Pharmacol. 1999;56(5):973–981. doi:10.1124/mol.56.5.973.
  • Burnstock G, Knight GE, Greig A. Purinergic signaling in healthy and diseased skin. J Invest Dermatol. 2012;132(3):526–546. doi:10.1038/jid.2011.344.
  • Tantama M, Yellen G. Imaging Changes in the Cytosolic ATP-to-ADP Ratio. In: Anne N. Murphy, David C. Chan, Editors. Methods in Enzymology, Vol. 547. Massachusetts: Academic Press; 2014. pp. 355–371.
  • Du F, Zhu X-H, Zhang Y, et al. Tightly coupled brain activity and cerebral ATP metabolic rate. Proc Natl Acad Sci USA. 2008;105(17):6409–6414. doi:10.1073/pnas.0710766105.
  • Cisneros-Mejorado A, Pérez-Samartín A, Gottlieb M, et al. ATP signaling in brain: release, excitotoxicity and potential therapeutic targets. Cell Mol Neurobiol. 2015;35(1):1–6. doi:10.1007/s10571-014-0092-3.
  • Park Y-J, Ryu H, Choi G, et al. IL-27 confers a protumorigenic activity of regulatory T cells via CD39. Proc Natl Acad Sci USA. 2019;116(8):3106–3111. doi:10.1073/pnas.1810254116.
  • Antonioli L, Pacher P, Vizi ES, et al. CD39 and CD73 in immunity and inflammation. Trends Mol Med. 2013;19(6):355–367. doi:10.1016/j.molmed.2013.03.005.
  • Dwyer KM, Deaglio S, Gao W, et al. CD39 and control of cellular immune responses. Purinergic Signal. 2007;3(1–2):171–180. doi:10.1007/s11302-006-9050-y.
  • Freissmuth M, Klotz K-N. Adenosine receptor biology in the central nervous system. In: David Blum, Luísa V. Lopes, Editors. Adenosine Receptors in Neurodegenerative Diseases. Massachusetts: Academic Press; 2017. pp 3–22.
  • Dunwiddie TV, Masino SA. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci. 2001;24(1):31–55. doi:10.1146/annurev.neuro.24.1.31.
  • Ribeiro JA, Sebastião AM, de Mendonça A. Adenosine receptors in the nervous system: pathophysiological implications. Prog Neurobiol. 2002;68(6):377–392. doi:10.1016/S0301-0082(02)00155-7.
  • Cass CE, Young JD, Baldwin SA, et al. Nucleoside transporters of mammalian cells. Pharm Biotechnol. 1999;12:313–352. doi:10.1007/0-306-46812-3_12.
  • Kumar V, Sharma A. Adenosine: an endogenous modulator of innate immune system with therapeutic potential. Eur J Pharmacol. 2009;616(1–3):7–15. doi:10.1016/j.ejphar.2009.05.005.
  • Elmenhorst E-M, Elmenhorst D, Benderoth S, et al. Cognitive impairments by alcohol and sleep deprivation indicate trait characteristics and a potential role for adenosine A 1 receptors. Proc Natl Acad Sci USA. 2018;115(31):8009–8014. doi:10.1073/pnas.1803770115.
  • Przybyła T, Sakowicz-Burkiewicz M, Pawełczyk T. Purinergic signalling in B cells. Acta Biochim Pol. 2018;65(1):1–7. doi:10.18388/abp.2017_1588.
  • Savio LEB, Coutinho-Silva R. Purinergic signaling in infection and autoimmune disease. Biomed J. 2016;39(5):304–305. doi:10.1016/j.bj.2016.09.002.
  • Balboa MA, de Pablo N, Meana C, et al. The role of lipins in innate immunity and inflammation. Biochim Biophys Acta BBA - Mol Cell Biol Lipids. 2019;1864(10):1328–1337. doi:10.1016/j.bbalip.2019.06.003.
  • Rayah A, Kanellopoulos JM, Di Virgilio F. Di Virgilio F. P2 receptors and immunity. Microbes Infect Inst Pasteur. 2012;14(14):1254–1262. doi:10.1016/j.micinf.2012.07.006.
  • Antonioli L, Blandizzi C, Fornai M, et al. P2X4 receptors, immunity, and sepsis. Curr Opin Pharmacol. 2019;47:65–74. doi:10.1016/j.coph.2019.02.011.
  • Layhadi JA, Turner J, Crossman D, et al. Evokes Ca2+ responses and CXCL5 secretion via P2X 4 receptor activation in human monocyte-derived macrophages. J Immunol. 2018;200(3):1159–1168. doi:10.4049/jimmunol.1700965.
  • Yang Y, Wang H, Kouadir M, et al. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis. 2019;10(2):1–11. doi:10.1038/s41419-019-1413-8.
  • Albalawi F, Lu W, Beckel JM, et al. The P2X7 receptor primes IL-1β and the NLRP3 inflammasome in astrocytes exposed to mechanical strain. Front Cell Neurosci. 2017;11:227.
  • Di Virgilio F, Dal Ben D, Sarti AC, et al. The P2X7 receptor in infection and inflammation. Immunity. 2017;47(1):15–31. doi:10.1016/j.immuni.2017.06.020.
  • Lee A, Ledderose C, Li X, et al. Adenosine triphosphate release is required for toll-like receptor-induced monocyte/macrophage activation, inflammasome signaling, interleukin-1β production, and the host immune response to infection. Crit Care Med. 2018;46(12):e1183–e1189.
  • Sueyoshi K, Ledderose C, Shen Y, et al. Lipopolysaccharide suppresses T cells by generating extracellular ATP that impairs their mitochondrial function via P2Y11 receptors. J Biol Chem. 2019;294(16):6283–6293. doi:10.1074/jbc.RA118.007188.
  • Woehrle T, Ledderose C, Rink J, et al. Autocrine stimulation of P2Y1 receptors is part of the purinergic signaling mechanism that regulates T cell activation. Purinergic Signal. 2019;15(2):127–137.
  • Petit-Jentreau L, Tailleux L, Coombes JL. Purinergic signaling: a common path in the macrophage response against Mycobacterium tuberculosis and Toxoplasma gondii. Front Cell Infect Microbiol. 2017;7:347.
  • Ohta A, Sitkovsky M. Extracellular adenosine-mediated modulation of regulatory T cells. Front Immunol. 2014;5:304.
  • Bottari NB, Pillat MM, Schetinger MRC, et al. Resveratrol-mediated reversal of changes in purinergic signaling and immune response induced by Toxoplasma gondii infection of neural progenitor cells. Purinergic Signal. 2019;15(1):77–84. doi:10.1007/s11302-018-9634-3.
  • Brown RA, Spina D, Page CP. Adenosine receptors and asthma. Br J Pharmacol. 2009;153(S1):S446–S456. doi:10.1038/bjp.2008.22.
  • Wilson CN, Nadeem A, Spina D, et al. Adenosine receptors and asthma. Handb Exp Pharmacol. 2009;(193):329–362.
  • Yuryeva K, Saltykova I, Ogorodova L, et al. Expression of adenosine receptors in monocytes from patients with bronchial asthma. Biochem Biophys Res Commun. 2015;464(4):1314–1320. doi:10.1016/j.bbrc.2015.07.141.
  • Rudich N, Dekel O, Sagi-Eisenberg R. Down-regulation of the A3 adenosine receptor in human mast cells upregulates mediators of angiogenesis and remodeling. Mol Immunol. 2015;65(1):25–33. doi:10.1016/j.molimm.2014.12.015.
  • Kim S-H, Kim Y-K, Park H-W, et al. Adenosine deaminase and adenosine receptor polymorphisms in aspirin-intolerant asthma. Respir Med. 2009;103(3):356–363. doi:10.1016/j.rmed.2008.10.008.
  • Garcia M, Santos‐Dias A, Bachi ALL, et al. Creatine supplementation impairs airway inflammation in an experimental model of asthma involving P2 × 7 receptor. Eur J Immunol. 2019;49(6):928–939. doi:10.1002/eji.201847657.
  • Chetty A, Sharda A, Warburton R, et al. A purinergic P2Y6 receptor agonist prodrug modulates airway inflammation, remodeling, and hyperreactivity in a mouse model of asthma. JAA. 2018;11:159–171. doi:10.2147/JAA.S151849.
  • Garcia-Sastre A. Type 1 interferons and the virus-host relationship: a lesson in detente. Science. 2006;312(5775):879–882. doi:10.1126/science.1125676.
  • Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005;5(5):375–386. doi:10.1038/nri1604.
  • Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol. 2014;32(1):513–545. doi:10.1146/annurev-immunol-032713-120231.
  • Zhang C, He H, Wang L, et al. Virus-triggered ATP release limits viral replication through facilitating IFN-β production in a P2X7-dependent manner. J Immunol. 2017;199(4):1372–1381. doi:10.4049/jimmunol.1700187.
  • Leyva-Grado VH, Ermler ME, Schotsaert M, et al. Contribution of the purinergic receptor P2X7 to development of lung immunopathology during influenza virus infection. mBio. 2017;8(2):e00229–17. doi:10.1128/mBio.00229-17.
  • Gavala ML, Liu Y-P, Lenertz LY, et al. Nucleotide receptor P2RX7 stimulation enhances LPS‐induced interferon‐β production in murine macrophages. J Leukoc Biol. 2013;94(4):759–768. doi:10.1189/jlb.0712351.
  • Shin A, Toy T, Rothenfusser S, et al. P2Y receptor signaling regulates phenotype and IFN- secretion of human plasmacytoid dendritic cells. Blood. 2008;111(6):3062–3069. doi:10.1182/blood-2007-02-071910.
  • Li R, Tan B, Yan Y, et al. Extracellular UDP and P2Y6 function as a danger signal to protect mice from vesicular stomatitis virus infection through an increase in IFN-β production. J Immunol. 2014;193(9):4515–4526. doi:10.4049/jimmunol.1301930.
  • Zhang C, Yan Y, He H, et al. IFN-stimulated P2Y13 protects mice from viral infection by suppressing the cAMP/EPAC1 signaling pathway. Su B, editor. J Mol Cell Biol. 2019;11(5):395–407. doi:10.1093/jmcb/mjy045.
  • Ingwersen J, Wingerath B, Graf J, et al. Dual roles of the adenosine A2a receptor in autoimmune neuroinflammation. J Neuroinflamm. 2016;13(1):48. doi:10.1186/s12974-016-0512-z.
  • Wojcik M, Zieleniak A, Mac‐Marcjanek K, et al. The elevated gene expression level of the A2B adenosine receptor is associated with hyperglycemia in women with gestational diabetes mellitus. Diabetes Metab Res Rev. 2014;30(1):42–53. doi:10.1002/dmrr.2446.
  • Kiers D, Wielockx B, Peters E, et al. Short-term hypoxia dampens inflammation in vivo via enhanced adenosine release and adenosine 2B receptor stimulation. EBioMedicine. 2018;33:144–156. doi:10.1016/j.ebiom.2018.06.021.
  • Young MT. P2X receptors: dawn of the post-structure era. Trends Biochem Sci. 2010;35(2):83–90. doi:10.1016/j.tibs.2009.09.006.
  • Cicko S, Köhler TC, Ayata CK, et al. Extracellular ATP is a danger signal activating P2X7 receptor in a LPS mediated inflammation (ARDS/ALI). Oncotarget. 2018;9(55):30635–30648. doi:10.18632/oncotarget.25761.
  • Xu X-Y, He X-T, Wang J, et al. Role of the P2X7 receptor in inflammation-mediated changes in the osteogenesis of periodontal ligament stem cells. Cell Death Dis. 2019;10(1). doi:10.1038/s41419-018-1253-y.
  • Di Virgilio F. Purines, purinergic receptors, and cancer. Cancer Res. 2012;72(21):5441–5447. doi:10.1158/0008-5472.CAN-12-1600.
  • Pellegatti P, Falzoni S, Pinton P, et al. A novel recombinant plasma membrane-targeted luciferase reveals a new pathway for ATP secretion. MBoC. 2005;16(8):3659–3665. doi:10.1091/mbc.e05-03-0222.
  • Di Virgilio F, Adinolfi E. Extracellular purines, purinergic receptors and tumor growth. Oncogene. 2017;36(3):293–303. doi:10.1038/onc.2016.206.
  • Yegutkin GG, Marttila-Ichihara F, Karikoski M, et al. Altered purinergic signaling in CD73-deficient mice inhibits tumor progression. Eur J Immunol. 2011;41(5):1231–1241. doi:10.1002/eji.201041292.
  • Montalbán del Barrio I, Penski C, Schlahsa L, et al. Adenosine-generating ovarian cancer cells attract myeloid cells which differentiate into adenosine-generating tumor associated macrophages – a self-amplifying, CD39- and CD73-dependent mechanism for tumor immune escape. J Immunother Cancer. 2016;4:49.
  • Schmid S, Kübler M, Korcan Ayata C, et al. Altered purinergic signaling in the tumor associated immunologic microenvironment in metastasized non-small-cell lung cancer. Lung Cancer. 2015;90(3):516–521. doi:10.1016/j.lungcan.2015.10.005.
  • Wang J, Lupo KB, Chambers AM, et al. Purinergic targeting enhances immunotherapy of CD73+ solid tumors with piggyBac-engineered chimeric antigen receptor natural killer cells. J Immunother Cancer. 2018;6(1):136. doi:10.1186/s40425-018-0441-8.
  • Waickman AT, Alme A, Senaldi L, et al. Enhancement of tumor immunotherapy by deletion of the A2A adenosine receptor. Cancer Immunol Immunother. 2012;61(6):917–926. doi:10.1007/s00262-011-1155-7.
  • Cekic C, Linden J. Adenosine A2A receptors intrinsically regulate CD8+ T cells in the tumor microenvironment. Cancer Res. 2014;74(24):7239–7249. doi:10.1158/0008-5472.CAN-13-3581.
  • Xia J, Yu X, Tang L, et al. P2X7 receptor stimulates breast cancer cell invasion and migration via the AKT pathway. Oncol Rep. 2015;34(1):103–110. doi:10.3892/or.2015.3979.
  • Raffaghello L, Chiozzi P, Falzoni S, et al. The P2X7 receptor sustains the growth of human neuroblastoma cells through a substance P–dependent mechanism. Cancer Res. 2006;66(2):907–914. doi:10.1158/0008-5472.CAN-05-3185.
  • Slater M, Danieletto S, Gidley-Baird A, et al. Early prostate cancer detected using expression of non-functional cytolytic P2X7 receptors. Histopathology. 2004;44(3):206–215. doi:10.1111/j.0309-0167.2004.01798.x.
  • Giannuzzo A, Saccomano M, Napp J, et al. Targeting of the P2X7 receptor in pancreatic cancer and stellate cells. Int J Cancer. 2016;139(11):2540–2552. doi:10.1002/ijc.30380.
  • Fu W, McCormick T, Qi X, et al. Activation of P2X7-mediated apoptosis Inhibits DMBA/TPA-induced formation of skin papillomas and cancer in mice. BMC Cancer. 2009;9(1):114. doi:10.1186/1471-2407-9-114.
  • Di Virgilio F, Ferrari D, Adinolfi E. P2X7: a growth-promoting receptor—implications for cancer. Purinergic Signal. 2009;5(2):251–256. doi:10.1007/s11302-009-9145-3.
  • Bianchi G, Vuerich M, Pellegatti P, et al. ATP/P2X7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment. Cell Death Dis. 2014;5(3):e1135. doi:10.1038/cddis.2014.109.
  • Ghiringhelli F, Apetoh L, Tesniere A, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nat Med. 2009;15(10):1170–1178. doi:10.1038/nm.2028.
  • Hechler B, Gachet C. P2 receptors and platelet function. Purinergic Signal. 2011;7(3):293–303. doi:10.1007/s11302-011-9247-6.
  • Kamiyama M, Shirai T, Tamura S, et al. ASK1 facilitates tumor metastasis through phosphorylation of an ADP receptor P2Y12 in platelets. Cell Death Differ. 2017;24(12):2066–2076. doi:10.1038/cdd.2017.114.
  • Cattaneo M. The platelet P2 receptors in inflammation. Hamostaseologie. 2015;35(03):262–266. doi:10.5482/HAMO-14-09-0044.
  • Bekő K, Koványi B, Gölöncsér F, et al. Contribution of platelet P2Y12 receptors to chronic Complete Freund’s adjuvant-induced inflammatory pain. J Thromb Haemost. 2017;15(6):1223–1235. doi:10.1111/jth.13684.
  • Amison RT, Momi S, Morris A, et al. RhoA signaling through platelet P2Y1 receptor controls leukocyte recruitment in allergic mice. J Allergy Clin Immunol. 2015;135(2):528–538.e4. doi:10.1016/j.jaci.2014.09.032.
  • Urade Y, Eguchi N, Qu W-M, et al. Minireview: sleep regulation in adenosine A2A receptor-deficient mice. Neurology. 2003;61(11 suppl 6):S94–S96.
  • Wu L, Meng J, Shen Q, et al. Caffeine inhibits hypothalamic A1R to excite oxytocin neuron and ameliorate dietary obesity in mice. Nat Commun. 2017;8(1):15904. doi:10.1038/ncomms15904.
  • Sakata M, Ishibashi K, Imai M, et al. Initial evaluation of an adenosine A2A receptor ligand, 11C-preladenant, in healthy human subjects. J Nucl Med. 2017;58(9):1464–1470. doi:10.2967/jnumed.116.188474.
  • Stocchi F, Rascol O, Hauser RA, et al. Randomized trial of preladenant, given as monotherapy, in patients with early Parkinson disease. Neurology. 2017;88(23):2198–2206. doi:10.1212/WNL.0000000000004003.
  • Jackson S, Weingart J, Nduom EK, et al. The effect of an adenosine A2A agonist on intra-tumoral concentrations of temozolomide in patients with recurrent glioblastoma. Fluids Barriers CNS. 2018;15(1):2. doi:10.1186/s12987-017-0088-8.
  • Inoue K, Tsuda M. Microglia in neuropathic pain: cellular and molecular mechanisms and therapeutic potential. Nat Rev Neurosci. 2018;19(3):138–152. doi:10.1038/nrn.2018.2.
  • Mah W, Lee SM, Lee J, et al. A role for the purinergic receptor P2X 3 in astrocytes in the mechanism of craniofacial neuropathic pain. Sci Rep. 2017;7(1):13627. doi:10.1038/s41598-017-13561-3.
  • Stephan G, Huang L, Tang Y, et al. The ASIC3/P2X3 cognate receptor is a pain-relevant and ligand-gated cationic channel. Nat Commun. 2018;9(1):3351. doi:10.1038/s41467-018-05621-7.
  • Zhang H-H, Hu J, Zhou Y-L, et al. Promoted interaction of nuclear factor-kB with demethylated purinergic P2X3 receptor gene contributes to neuropathic pain in rats with diabetes. 2015;64:13. doi:10.2337/db15-0138.
  • Zhang Y-L, Chen D-J, Yang B-L, et al. Microencapsulated Schwann cell transplantation inhibits P2X3 receptor expression in dorsal root ganglia and neuropathic pain. Neural Regen Res. 2018;13(11):1961. doi:10.4103/1673-5374.238715.
  • Erlinge D, Burnstock G. P2 receptors in cardiovascular regulation and disease. Purinergic Signal. 2008;4(1):1–20. doi:10.1007/s11302-007-9078-7.
  • Kira S, Yoshiyama M, Tsuchiya S, et al. P2Y6-deficiency increases micturition frequency and attenuates sustained contractility of the urinary bladder in mice. Sci Rep. 2017;7(1):771. doi:10.1038/s41598-017-00824-2.
  • Lecut C, Frederix K, Johnson DM, et al. P2X1 ion channels promote neutrophil chemotaxis through Rho kinase activation. J Immunol. 2009;183(4):2801–2809. doi:10.4049/jimmunol.0804007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.