658
Views
33
CrossRef citations to date
0
Altmetric
Review

Reactive oxygen species and immune regulation

, &
Pages 292-298 | Received 10 Feb 2020, Accepted 06 May 2020, Published online: 18 May 2020

References

  • Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis. Cell. 2015;163(3):560–569. doi:10.1016/j.cell.2015.10.001.
  • Babior BM, Lambeth JD, Nauseef W. The neutrophil NADPH oxidase. Arch Biochem Biophys. 2002;397(2):342–344. doi:10.1006/abbi.2001.2642.
  • Ushio-Fukai M. Localizing NADPH oxidase-derived ROS. Sci Stke. 2006;2006(349):re8. doi:10.1126/stke.3492006re8.
  • Ushio-Fukai M. VEGF signaling through NADPH oxidase-derived ROS. Antioxid Redox Signal. 2007;9(6):731–739. doi:10.1089/ars.2007.1556.
  • Jeon YJ, Kim HJ. Duox2-induced innate immune responses in the respiratory epithelium and intranasal delivery of Duox2 DNA using polymer that mediates immunization. Appl Microbiol Biotechnol. 2018;102(10):4339–4343. doi:10.1007/s00253-018-8956-y.
  • Di Marco E, Gray SP, Chew P, et al. Pharmacological inhibition of NOX reduces atherosclerotic lesions, vascular ROS and immune-inflammatory responses in diabetic Apoe(-/-) mice. Diabetologia. 2014;57(3):633–642. doi:10.1007/s00125-013-3118-3.
  • Schieven GL, Kirihara JM, Myers DE, et al. Reactive oxygen intermediates activate NF-kappa B in a tyrosine kinase-dependent mechanism and in combination with vanadate activate the p56lck and p59fyn tyrosine kinases in human lymphocytes. Blood. 1993;82(4):1212–1220. doi:10.1182/blood.V82.4.1212.1212.
  • Brumell JH, Burkhardt AL, Bolen JB, Grinstein S. Endogenous reactive oxygen intermediates activate tyrosine kinases in human neutrophils. J Biol Chem. 1996;271(3):1455–1461. doi:10.1074/jbc.271.3.1455.
  • Pelicci PG, Dalton P, Giorgio M. The other face of ROS: a driver of stem cell expansion in colorectal cancer. Cell Stem Cell. 2013;12(6):635–636. doi:10.1016/j.stem.2013.05.023.
  • Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. Embo J. 1991;10(8):2247–2258.
  • Reddy SS, Chauhan P, Maurya P, et al. Coagulin-L ameliorates TLR4 induced oxidative damage and immune response by regulating mitochondria and NOX-derived ROS. Toxicol Appl Pharmacol. 2016;309:87–100. doi:10.1016/j.taap.2016.08.022.
  • Turillazzi E, Neri M, Cerretani D, et al. Lipid peroxidation and apoptotic response in rat brain areas induced by long-term administration of nandrolone: the mutual crosstalk between ROS and NF-kB. J Cell Mol Med. 2016;20(4):601–612. doi:10.1111/jcmm.12748.
  • Zhang Y, Xiao F, Liu X, et al. Cr(VI) induces cytotoxicity in vitro through activation of ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction via the PI3K/Akt signaling pathway. Toxicol in Vitro. 2017;41:232–244. doi:10.1016/j.tiv.2017.03.003.
  • Lu XL, Zhao CH, Yao XL, Zhang H. Quercetin attenuates high fructose feeding-induced atherosclerosis by suppressing inflammation and apoptosis via ROS-regulated PI3K/AKT signaling pathway. Biomed Pharmacother. 2017;85:658–671. doi:10.1016/j.biopha.2016.11.077.
  • Liu Q, Lei Z, Zhou K, et al. N-O reduction and ROS-mediated AKT/FOXO1 and AKT/P53 pathways are involved in growth promotion and cytotoxicity of cyadox. Chem Res Toxicol. 2018;31(11):1219–1229. doi:10.1021/acs.chemrestox.8b00194.
  • Xie C, Yi J, Lu J, et al. N-acetylcysteine reduces ROS-mediated oxidative DNA damage and PI3K/Akt pathway activation induced by helicobacter pylori infection. Oxid Med Cell Longev. 2018;2018:1874985doi:10.1155/2018/1874985.
  • Dai H, Wang M, Patel PN, et al. Preconditioning with the BKCa channel activator NS-1619 prevents ischemia-reperfusion-induced inflammation and mucosal barrier dysfunction: roles for ROS and heme oxygenase-1. Am J Physiol Heart Circ Physiol. 2017;313(5):H988–h99. doi:10.1152/ajpheart.00620.2016.
  • Kraaij MD, Koekkoek KM, Gelderman KA, van Kooten C. The NOX2-mediated ROS producing capacity of recipient cells is associated with reduced T cell infiltrate in an experimental model of chronic renal allograft inflammation. Transpl Immunol. 2014;30(2-3):65–70. doi:10.1016/j.trim.2013.12.001.
  • Bryk D, Zapolska-Downar D, Malecki M, et al. Trans-fatty acids induce a proinflammatory response in endothelial cells through ROS-dependent nuclear factor Kappa B activation. J Physiol Pharmacol. 2011;62(2):229–238.
  • Zhang R, Yin X, Shi H, et al. Adiponectin modulates DCA-induced inflammation via the ROS/NF-κ B signaling pathway in esophageal adenocarcinoma cells. Dig Dis Sci. 2014;59(1):89–97. doi:10.1007/s10620-013-2877-5.
  • Di A, Gao XP, Qian F, et al. The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation. Nat Immunol. 2011;13(1):29–34. doi:10.1038/ni.2171.
  • Koyama T, Kume S, Koya D, et al. SIRT3 attenuates palmitate-induced ROS production and inflammation in proximal tubular cells. Free Radic Biol Med. 2011;51(6):1258–1267. doi:10.1016/j.freeradbiomed.2011.05.028.
  • Zhang H, Chen MK, Li K, et al. Eupafolin nanoparticle improves acute renal injury induced by LPS through inhibiting ROS and inflammation. Biomed Pharmacother. 2017;85:704–711. doi:10.1016/j.biopha.2016.11.083.
  • Le J, Vilcek J. Tumor necrosis factor and interleukin 1: cytokines with multiple overlapping biological activities. Lab Invest. 1987;56(3):234–248.
  • Wang H, Han X, Wittchen ES, Hartnett ME. TNF-alpha mediates choroidal neovascularization by upregulating VEGF expression in RPE through ROS-dependent beta-catenin activation. Mol Vision. 2016;22:116–128.
  • Xia L, Mo P, Huang W, et al. The TNF-α/ROS/HIF-1-induced upregulation of FoxMI expression promotes HCC proliferation and resistance to apoptosis. Carcinogenesis. 2012;33(11):2250–2259. doi:10.1093/carcin/bgs249.
  • Fatma N, Kubo E, Sen M, et al. Peroxiredoxin 6 delivery attenuates TNF-alpha-and glutamate-induced retinal ganglion cell death by limiting ROS levels and maintaining Ca2+ homeostasis. Brain Res. 2008;1233:63–78. doi:10.1016/j.brainres.2008.07.076.
  • Wang LJ, Lee YC, Huang CH, et al. Non-mitotic effect of albendazole triggers apoptosis of human leukemia cells via SIRT3/ROS/p38 MAPK/TTP axis-mediated TNF-α upregulation. Biochem Pharmacol. 2019;162:154–168. doi:10.1016/j.bcp.2018.11.003.
  • Yuan M, Meng W, Liao W, Lian S. Andrographolide antagonizes TNF-α-induced IL-8 via inhibition of NADPH oxidase/ROS/NF-κB and Src/MAPKs/AP-1 axis in human colorectal cancer HCT116 cells. J Agric Food Chem. 2018;66(20):5139–5148. doi:10.1021/acs.jafc.8b00810.
  • Lin CC, Lin WN, Cho RL, et al. Induction of HO-1 by mevastatin mediated via a Nox/ROS-dependent c-Src/PDGFRalpha/PI3K/Akt/Nrf2/ARE cascade suppresses TNF-alpha-induced lung inflammation. JCM. 2020;9(1):226. doi:10.3390/jcm9010226.
  • Ohtsu A, Shibutani Y, Seno K, et al. Advanced glycation end products and lipopolysaccharides stimulate interleukin-6 secretion via the RAGE/TLR4-NF-kappaB-ROS pathways and resveratrol attenuates these inflammatory responses in mouse macrophages. Exp Ther Med. 2017;14(5):4363–4370. doi:10.3892/etm.2017.5045.
  • Zheng T, Xu C, Mao C, et al. Increased interleukin-23 in hashimoto's thyroiditis disease induces autophagy suppression and reactive oxygen species accumulation. Front Immunol. 2018;9:96doi:10.3389/fimmu.2018.00096.
  • Bae J, Park D, Lee YS, Jeoung D. Interleukin-2 promotes angiogenesis by activation of Akt and increase of ROS. J Microbiol Biotechnol. 2008;18(2):377–382.
  • Gabunia K, Ellison SP, Singh H, et al. Interleukin-19 (IL-19) induces heme oxygenase-1 (HO-1) expression and decreases reactive oxygen species in human vascular smooth muscle cells. J Biol Chem. 2012;287(4):2477–2484. doi:10.1074/jbc.M111.312470.
  • Li Y, Zhang H, Zhu X, et al. Interleukin-24 induces neuroblastoma SH-SY5Y cell differentiation, growth inhibition, and apoptosis by promoting ROS production. J Interferon Cytokine Res. 2013;33(11):709–714. doi:10.1089/jir.2013.0004.
  • Hwang YS, Jeong M, Park JS, et al. Interleukin-1beta stimulates IL-8 expression through MAP kinase and ROS signaling in human gastric carcinoma cells. Oncogene. 2004;23(39):6603–6611. doi:10.1038/sj.onc.1207867.
  • Yan J, Li Y, Yang H, et al. Interleukin-17A participates in podocyte injury by inducing IL-1β secretion through ROS-NLRP3 inflammasome-caspase-1 pathway. Scand J Immunol. 2018;87(4):e12645doi:10.1111/sji.12645.
  • Liu D, Zhang R, Cheng Y, et al. 378 Interleukin-17A promotes esophageal adenocarcinoma progression through ROS/NF-kB/MMP-2/9 signaling pathway activation. Gastroenterology. 2015;148(4):S-78. doi:10.1016/S0016-5085(15)30272-9.
  • Cooney R, Baker J, Brain O, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med. 2010;16(1):90–97. doi:10.1038/nm.2069.
  • Braciale TJ, Morrison LA, Sweetser MT, et al. Antigen presentation pathways to Class I and Class II MHC-restricted T lymphocytes. Immunol Rev. 1987;98(1):95–114. doi:10.1111/j.1600-065x.1987.tb00521.x.
  • Huang CH, Huang CY, Huang MH. Unsaturated squalene content in emulsion vaccine adjuvants plays a crucial role in ROS-mediated antigen uptake and cellular immunity. Mol Pharm. 2018;15(2):420–429. doi:10.1021/acs.molpharmaceut.7b00800.
  • Gong J, Chen SS. Polyphenolic antioxidants inhibit peptide presentation by antigen-presenting cells. Int Immunopharmacol. 2003;3(13–14):1841–1852. doi:10.1016/j.intimp.2003.08.010.
  • Chougnet CA, Thacker RI, Shehata HM, et al. Loss of phagocytic and antigen cross-presenting capacity in aging dendritic cells is associated with mitochondrial dysfunction. J Immunol. 2015;195(6):2624–2632. doi:10.4049/jimmunol.1501006.
  • Ma J, Wei K, Zhang H, et al. Mechanisms by which dendritic cells present tumor microparticle antigens to CD8+ T cells. Cancer Immunol Res. 2018;6(9):1057–1068. doi:10.1158/2326-6066.CIR-17-0716.
  • Battisti F, Napoletano C, Rahimi Koshkaki H, et al. Tumor-derived microvesicles modulate antigen cross-processing via reactive oxygen species-mediated alkalinization of phagosomal compartment in dendritic cells. Front Immunol. 2017;8:1179doi:10.3389/fimmu.2017.01179.
  • Hari A, Ganguly A, Mu L, et al. Redirecting soluble antigen for MHC class I cross-presentation during phagocytosis. Eur J Immunol. 2015;45(2):383–395. doi:10.1002/eji.201445156.
  • Halleen JM, Raisanen SR, Alatalo SL, Vaananen HK. Potential function for the ROS-generating activity of TRACP. J Bone Miner Res. 2003;18(10):1908–1911. doi:10.1359/jbmr.2003.18.10.1908.
  • Choi SH, Gonen A, Diehl CJ, et al. SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL. Autophagy. 2015;11(5):785–795. doi:10.1080/15548627.2015.1037061.
  • Maemura K, Zheng Q, Wada T, et al. Reactive oxygen species are essential mediators in antigen presentation by Kupffer cells. Immunol Cell Biol. 2005;83(4):336–343. doi:10.1111/j.1440-1711.2005.01323.x.
  • Tezel G, Yang X, Luo C, et al. Mechanisms of immune system activation in glaucoma: oxidative stress-stimulated antigen presentation by the retina and optic nerve head glia. Invest Ophthalmol Vis Sci. 2007;48(2):705–714. doi:10.1167/iovs.06-0810.
  • Wang C, Li P, Liu L, et al. Self-adjuvanted nanovaccine for cancer immunotherapy: Role of lysosomal rupture-induced ROS in MHC class I antigen presentation. Biomaterials. 2016;79:88–100. doi:10.1016/j.biomaterials.2015.11.040.
  • Liang X, Duan J, Li X, et al. Improved vaccine-induced immune responses via a ROS-triggered nanoparticle-based antigen delivery system. Nanoscale. 2018;10(20):9489–9503. doi:10.1039/c8nr00355f.
  • Yang YW, Shen SS. Enhanced antigen delivery via cell death induced by the vaccine adjuvants. Vaccine. 2007;25(45):7763–7772. doi:10.1016/j.vaccine.2007.08.064.
  • Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79(1):541–566. doi:10.1146/annurev-physiol-022516-034339.
  • Benoit M, Desnues B, Mege J-L. Macrophage polarization in bacterial infections. J Immunol. 2008;181(6):3733–3739. doi:10.4049/jimmunol.181.6.3733.
  • Stöger JL, Gijbels MJJ, van der Velden S, et al. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis. 2012;225(2):461–468. doi:10.1016/j.atherosclerosis.2012.09.013.
  • Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–555. doi:10.1016/s1471-4906(02)02302-5.
  • Zhao Q, Chen H, Yang T, et al. Direct effects of airborne PM2.5 exposure on macrophage polarizations. Biochim Biophys Acta. 2016;1860(12):2835–2843. doi:10.1016/j.bbagen.2016.03.033.
  • Diaz-Gandarilla JA, Osorio-Trujillo C, Hernandez-Ramirez VI, Talamas-Rohana P. PPAR activation induces M1 macrophage polarization via cPLA₂-COX-2 inhibition, activating ROS production against Leishmania mexicana . Biomed Res Int. 2013;2013:215283doi:10.1155/2013/215283.
  • Formentini L, Santacatterina F, Nunez de Arenas C, et al. Mitochondrial ROS production Protects the intestine from inflammation through functional M2 macrophage polarization. Cell Rep. 2017;19(6):1202–1213. doi:10.1016/j.celrep.2017.04.036.
  • Shan M, Qin J, Jin F, et al. Autophagy suppresses isoprenaline-induced M2 macrophage polarization via the ROS/ERK and mTOR signaling pathway. Free Radic Biol Med. 2017;110:432–443. doi:10.1016/j.freeradbiomed.2017.05.021.
  • Khan Z, Cao DY, Giani JF, et al. Overexpression of the C-domain of angiotensin-converting enzyme reduces melanoma growth by stimulating M1 macrophage polarization. J Biol Chem. 2019;294(12):4368–4380. doi:10.1074/jbc.RA118.006275.
  • van Dalen FJ, van Stevendaal M, Fennemann FL, et al. Molecular repolarisation of tumour-associated macrophages. Molecules (Basel, Switzerland). 2018;24(1):9. doi:10.3390/molecules24010009.
  • Zhang J, Li H, Wu Q, et al. Tumoral NOX4 recruits M2 tumor-associated macrophages via ROS/PI3K signaling-dependent various cytokine production to promote NSCLC growth. Redox Biol. 2019;22:101116doi:10.1016/j.redox.2019.101116.
  • Zhang Y, Choksi S, Chen K, et al. ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res. 2013;23(7):898–914. doi:10.1038/cr.2013.75.
  • Liu L, He H, Liang R, et al. ROS-inducing micelles sensitize tumor-associated macrophages to TLR3 stimulation for potent immunotherapy. Biomacromolecules. 2018;19(6):2146–2155. doi:10.1021/acs.biomac.8b00239.
  • Peng H, Chen B, Huang W, et al. Reprogramming tumor-associated macrophages to reverse EGFRT790M resistance by dual-targeting codelivery of gefitinib/vorinostat. Nano Lett. 2017;17(12):7684–7690. doi:10.1021/acs.nanolett.7b03756.
  • Xiao M, Zhang J, Chen W, Chen W. M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma. J Exp Clin Cancer Res. 2018;37(1):143doi:10.1186/s13046-018-0815-2.
  • Chavez-Galan L, Olleros ML, Vesin D, Garcia I. Much more than M1 and M2 macrophages, There are also CD169(+) and TCR(+) macrophages. Front Immunol. 2015;6:263. doi:10.3389/fimmu.2015.00263.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.