282
Views
7
CrossRef citations to date
0
Altmetric
Review

The biological function and the regulatory roles of wild-type p53-induced phosphatase 1 in immune system

, , , &
Pages 280-291 | Received 19 Feb 2020, Accepted 29 Jun 2020, Published online: 22 Jul 2020

References

  • Fiscella M, Zhang H, Fan S, et al. Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci USA. 1997;94(12):6048–6053. doi:10.1073/pnas.94.12.6048.
  • Li J, Yang Y, Peng Y, et al. Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. Nat Genet. 2002;31(2):133–134. doi:10.1038/ng888.
  • Lopez-Guerra M, Trigueros-Motos L, Molina-Arcas M, et al. Identification of TIGAR in the equilibrative nucleoside transporter 2-mediated response to fludarabine in chronic lymphocytic leukemia cells. Haematologica. 2008;93(12):1843–1851. doi:10.3324/haematol.13186.
  • Wang B, Li D, Sidler C, et al. A suppressive role of ionizing radiation-responsive miR-29c in the development of liver carcinoma via targeting WIP1. Oncotarget. 2015;6(12):9937–9950. doi:10.18632/oncotarget.3157.
  • Milosevic J, Fransson S, Treis D, et al. The PPM1D-encoded WIP1-phosphatase is a candidate oncogene on 17q contributing to neuroblastoma development and providing a novel therapeutic target. Pediatr Blood Cancer. 2016;63:S82.
  • Wu B, Guo BM, Kang J, et al. PPM1D exerts its oncogenic properties in human pancreatic cancer through multiple mechanisms. Apoptosis. 2016;21(3):365–378. doi:10.1007/s10495-015-1211-4.
  • Zhao M, Zhang H, Zhu G, et al. Association between overexpression of Wip1 and prognosis of patients with non-small cell lung cancer. Oncol Lett. 2016;11(4):2365–2370. doi:10.3892/ol.2016.4245.
  • Wang P, Su H, Zhang L, et al. Phosphatase wild-type p53-induced phosphatase 1 controls the development of TH9 cells and allergic airway inflammation. J Allergy Clin Immunol. 2018;141(6):2168–2181. doi:10.1016/j.jaci.2017.06.026.
  • Li K, Chen W, Tan Y, Zhang Y. p38 MAPK signaling pathway activation by phenyl benzoxime in SNU-306 cells causes induction of apoptosis. Mol Cell Proteom. 2019;126:74–78. doi:10.1016/j.micpath.2018.10.021.
  • Rasmussen MK, Nielsen J, Kjellerup RB, et al. Protein phosphatase 2Cδ/Wip1 regulates phospho-p90RSK2 activity in lesional psoriatic skin. J Inflamm Res. 2017;10:169–180. doi:10.2147/JIR.S152869.
  • Torii S, Yoshida T, Arakawa S, Honda S, Nakanishi A, Shimizu S. Identification of PPM1D as an essential Ulk1 phosphatase for genotoxic stress-induced autophagy. EMBO Rep. 2016;17(11):1552–1564. doi:10.15252/embr.201642565.
  • Wamsley JJ, Issaeva N, An H, Lu X, Donehower LA, Yarbrough WG. LZAP is a novel Wip1 binding partner and positive regulator of its phosphatase activity in vitro. Cell Cycle. 2017;16(2):213–223. doi:10.1080/15384101.2016.1261767.
  • Choi BK, Fujiwara K, Dayaram T, et al. WIP1 dephosphorylation of p27(Kip1) serine 140 destabilizes p27(Kip1) and reverses anti-proliferative effects of ATM phosphorylation. Cell Cycle. 2020;19(4):479–491. doi:10.1080/15384101.2020.1717025.
  • Takekawa M, Adachi M, Nakahata A, et al. p53-inducible Wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. Embo J. 2000;19(23):6517–6526. doi:10.1093/emboj/19.23.6517.
  • Bulavin DV, Phillips C, Nannenga B, et al. Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nat Genet. 2004;36(4):343–350. doi:10.1038/ng1317.
  • Fujimoto H, Onishi N, Kato N, et al. Regulation of the antioncogenic Chk2 kinase by the oncogenic Wip1 phosphatase. Cell Death Differ. 2006;13(7):1170–1180. doi:10.1038/sj.cdd.4401801.
  • Oliva-Trastoy M, Berthonaud V, Chevalier A, et al. The Wip1 phosphatase (PPM1D) antagonizes activation of the Chk2 tumour suppressor kinase. Oncogene. 2007;26(10):1449–1458. doi:10.1038/sj.onc.1209927.
  • Belova GI, Demidov ON, Fornace AJ, Jr, Bulavin DV. Chemical inhibition of Wip1 phosphatase contributes to suppression of tumorigenesis. Cancer Biol Ther. 2005;4(10):1154–1158. doi:10.4161/cbt.4.10.2204.
  • Shreeram S, Demidov ON, Hee WK, et al. Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol Cell. 2006;23(5):757–764. doi:10.1016/j.molcel.2006.07.010.
  • Bhattacharya D, Hiregange D, Rao BJ. ATR kinase regulates its attenuation via PPM1D phosphatase recruitment to chromatin during recovery from DNA replication stress signalling. J. Biosci. 2018;43(1):25–47. doi:10.1007/s12038-018-9736-7.
  • Lu X, Nguyen TA, Moon SH, Darlington Y, Sommer M, Donehower LA. The type 2C phosphatase Wip1: an oncogenic regulator of tumor suppressor and DNA damage response pathways. Cancer Metastasis Rev. 2008;27(2):123–135. doi:10.1007/s10555-008-9127-x.
  • Zhang X, Lin L, Guo H, et al. Phosphorylation and degradation of MdmX is inhibited by Wip1 phosphatase in the DNA damage response. Cancer Res. 2009;69(20):7960–7968. doi:10.1158/0008-5472.CAN-09-0634.
  • Cha H, Lowe JM, Li H, et al. Wip1 directly dephosphorylates gamma-H2AX and attenuates the DNA damage response. Cancer Res. 2010;70(10):4112–4122. doi:10.1158/0008-5472.CAN-09-4244.
  • Macůrek L, Lindqvist A, Voets O, Kool J, Vos HR, Medema RH. Wip1 phosphatase is associated with chromatin and dephosphorylates gammaH2AX to promote checkpoint inhibition. Oncogene. 2010;29(15):2281–2291. doi:10.1038/onc.2009.501.
  • Moon SH, Lin L, Zhang X, et al. Wild-type p53-induced phosphatase 1 dephosphorylates histone variant gamma-H2AX and suppresses DNA double strand break repair. J Biol Chem. 2010;285(17):12935–12947. doi:10.1074/jbc.M109.071696.
  • Salminen A, Kaarniranta K. Control of p53 and NF-κB signaling by WIP1 and MIF: role in cellular senescence and organismal aging . Cell Signal. 2011;23(5):747–752. doi:10.1016/j.cellsig.2010.10.012.
  • Chew J, Biswas S, Shreeram S, et al. WIP1 phosphatase is a negative regulator of NF-kappaB signalling. Nat Cell Biol. 2009;11(5):659–666. doi:10.1038/ncb1873.
  • Nguyen TA, Slattery SD, Moon SH, Darlington YF, Lu X, Donehower LA. The oncogenic phosphatase WIP1 negatively regulates nucleotide excision repair. DNA Repair. 2010;9(7):813–823. doi:10.1016/j.dnarep.2010.04.005.
  • Zhang L, Liu L, He Z, et al. Inhibition of wild-type p53-induced phosphatase 1 promotes liver regeneration in mice by direct activation of mammalian target of rapamycin. Hepatology. 2015;61(6):2030–2041. doi:10.1002/hep.27755.
  • Li D, Zhang L, Xu L, et al. WIP1 phosphatase is a critical regulator of adipogenesis through dephosphorylating PPARγ serine 112. Cell Mol Life Sci. 2017;74(11):2067–2079. doi:10.1007/s00018-016-2450-4.
  • Peng B, Wang J, Hu Y, et al. Modulation of LSD1 phosphorylation by CK2/WIP1 regulates RNF168-dependent 53BP1 recruitment in response to DNA damage. Nucleic Acids Res. 2015;43(12):5936–5947. doi:10.1093/nar/gkv528.
  • Lu ZW, Wen D, Wei WJ, et al. Silencing of PPM1D inhibits cell proliferation and invasion through the p38 MAPK and p53 signaling pathway in papillary thyroid carcinoma. Oncol Rep. 2020;43(3):783–794. doi:10.3892/or.2020.7458.
  • Choi J, Nannenga B, Demidov ON, et al. Mice deficient for the wild-type p53-induced phosphatase gene (Wipl) exhibit defects in reproductive organs, immune function, and cell cycle control. MCB. 2002;22(4):1094–1105. doi:10.1128/MCB.22.4.1094-1105.2002.
  • Goloudina AR, Kochetkova EY, Pospelova TV, Demidov ON. Wip1 phosphatase: between p53 and MAPK kinases pathways. Oncotarget. 2016;7(21):31563–31571. doi:10.18632/oncotarget.7325.
  • Shen XF, Zhao Y, Jiang JP, Guan WX, Du JF. Phosphatase Wip1 in immunity: an overview and update. Front Immunol. 2017;8:8. doi:10.3389/fimmu.2017.00008.
  • Liu G, Hu X, Sun B, et al. Phosphatase Wip1 negatively regulates neutrophil development through p38 MAPK-STAT1. Blood. 2013;121(3):519–529. doi:10.1182/blood-2012-05-432674.
  • Sun B, Hu X, Liu G, et al. Phosphatase Wip1 negatively regulates neutrophil migration and inflammation. J Immunol. 2014;192(3):1184–1195. doi:10.4049/jimmunol.1300656.
  • Yi W, Hu X, Chen Z, et al. Phosphatase Wip1 controls antigen-independent B-cell development in a p53-dependent manner. Blood. 2015;126(5):620–628. doi:10.1182/blood-2015-02-624114.
  • Mumby MC, Walter G. Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev. 1993;73(4):673–699. doi:10.1152/physrev.1993.73.4.673.
  • Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi:10.1146/annurev.bi.58.070189.002321.
  • Bulavin DV, Demidov ON, Saito S, et al. Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet. 2002;31(2):210–215. doi:10.1038/ng894.
  • Choi J, Appella E, Donehower LA. The structure and expression of the murine wildtype p53-induced phosphatase 1 (Wip1) gene. Genomics. 2000;64(3):298–306. doi:10.1006/geno.2000.6134.
  • Lowe J, Cha H, Lee MO, Mazur SJ, Appella E, Fornace AJ. Jr. Regulation of the Wip1 phosphatase and its effects on the stress response. Front Biosci. 2012;17:1480–1498. doi:10.2741/3999.
  • Rossi M, Demidov ON, Anderson CW, Appella E, Mazur SJ. Induction of PPM1D following DNA-damaging treatments through a conserved p53 response element coincides with a shift in the use of transcription initiation sites. Nucleic Acids Res. 2008;36(22):7168–7180. doi:10.1093/nar/gkn888.
  • Jansen S, Geuer S, Pfundt R, et al. De novo truncating mutations in the last and penultimate exons of PPM1D cause an intellectual disability syndrome. Am J Hum Genet. 2017;100(4):650–658. doi:10.1016/j.ajhg.2017.02.005.
  • Liu S, Jiang J, Huang L, et al. iNOS is associated with tumorigenicity as an independent prognosticator in human intrahepatic cholangiocarcinoma. Cancer Manage Res. 2019;11:8005–8022. doi:10.2147/CMAR.S208773.
  • Chock K, Allison JMS, Elshamy WM. BRCA1-IRIS overexpression abrogates UV-induced p38MAPK/p53 and promotes proliferation of damaged cells. Oncogene. 2010;29(38):5274–5285. doi:10.1038/onc.2010.262.
  • Zhang X, Wan G, Mlotshwa S, et al. Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res. 2010;70(18):7176–7186. doi:10.1158/0008-5472.CAN-10-0697.
  • Gu Y, Wang XD, Lu JJ, Lei YY, Zou JY, Luo HH. Effect of mir-16 on proliferation and apoptosis in human A549 lung adenocarcinoma cells. Int J Clin Exp Med. 2015;8(3):3227–3233.
  • Issler MVC, Mombach JCM. MicroRNA-16 feedback loop with p53 and Wip1 can regulate cell fate determination between apoptosis and senescence in DNA damage response. PLoS One. 2017;12(10):e0185794. doi:10.1371/journal.pone.0185794.
  • Zhan XH, Xu QY, Tian R, et al. MicroRNA16 regulates glioma cell proliferation, apoptosis and invasion by targeting Wip1-ATM-p53 feedback loop. Oncotarget. 2017;8(33):54788–54798. doi:10.18632/oncotarget.18510.
  • Gao X, Wang M, Zhang Y, Xu Z, Ding J, Tang J. MicroRNA-16 sensitizes drug-resistant breast cancer cells to Adriamycin by targeting Wip1 and Bcl-2. Oncol Lett. 2019;18(3):2897–2906. doi:10.3892/ol.2019.10637.
  • Long X, Lin XJ. P65-mediated miR-590 inhibition modulates the chemoresistance of osteosarcoma to doxorubicin through targeting wild-type p53-induced phosphatase 1. J Cell Biochem. 2019;120(4):5652–5665. doi:10.1002/jcb.27849.
  • Chuman Y, Kurihashi W, Mizukami Y, Nashimoto T, Yagi H, Sakaguchi K. PPM1D430, a novel alternative splicing variant of the human PPM1D, can dephosphorylate p53 and exhibits specific tissue expression. J. Biochem. 2009;145(1):1–12. doi:10.1093/jb/mvn135.
  • Sun L, Li H, Luo H, et al. Phosphatase Wip1 is essential for the maturation and homeostasis of medullary thymic epithelial cells in mice. J Immunol. 2013;191(6):3210–3220. doi:10.4049/jimmunol.1300363.
  • Schito ML, Demidov ON, Saito S, Ashwell JD, Appella E. Wip1 phosphatase-deficient mice exhibit defective T cell maturation due to sustained p53 activation. J Immunol. 2006;176(8):4818–4825. doi:10.4049/jimmunol.176.8.4818.
  • Uyanik B, Grigorash BB, Goloudina AR, Demidov ON. DNA damage-induced phosphatase Wip1 in regulation of hematopoiesis, immune system and inflammation. Cell Death Discov. 2017;3:17018. doi:10.1038/cddiscovery.2017.18.
  • Li Y, Wang W, Yang F, Xu Y, Feng C, Zhao Y. The regulatory roles of neutrophils in adaptive immunity. Cell Commun Signal. 2019;17(1):147. doi:10.1186/s12964-019-0471-y.
  • Hu X, Wang P, Du J, et al. Phosphatase Wip1 masters IL-17-producing neutrophil-mediated colitis in mice. Inflamm Bowel Dis. 2016;22(6):1316–1325. doi:10.1097/MIB.0000000000000751.
  • Du J, Shen X, Zhao Y, et al. Wip1-deficient neutrophils significantly promote intestinal ischemia/reperfusion injury in mice. Curr Mol Med. 2015;15(1):100–108. doi:10.2174/1566524015666150114122929.
  • Zhong H, Cui L, Xu F, et al. Up-regulation of Wip1 involves in neuroinflammation of retinal astrocytes after optic nerve crush via NF-κB signaling pathway. Inflamm Res. 2016;65(9):709–715. doi:10.1007/s00011-016-0952-z.
  • Shen X, Du J, Zhao Y, Guan W. Phosphatase Wip1 as a new therapeutic target for intestinal ischemia-reperfusion injury. Expert Rev Clin Immunol. 2014;10(12):1591–1595. doi:10.1586/1744666X.2014.975211.
  • Li Y, Zhu L, Chu Z, et al. Characterization and biological significance of IL-23-induced neutrophil polarization. Cell Mol Immunol. 2018;15(5):518–530. doi:10.1038/cmi.2017.39.
  • Sun B, Zhu L, Tao Y, et al. Characterization and allergic role of IL-33-induced neutrophil polarization. Cell Mol Immunol. 2018;15(8):782–793. doi:10.1038/cmi.2017.163.
  • Tan X, Zhang J, Jin W, et al. Wip1 phosphatase involved in lipopolysaccharide-induced neuroinflammation. J Mol Neurosci. 2013;51(3):959–966. doi:10.1007/s12031-013-0080-y.
  • Le Guezennec X, Brichkina A, Huang YF, Kostromina E, Han W, Bulavin DV. Wip1-dependent regulation of autophagy, obesity, and atherosclerosis. Cell Metab. 2012;16(1):68–80. doi:10.1016/j.cmet.2012.06.003.
  • Tang Y, Pan B, Zhou X, et al. Wip1-dependent modulation of macrophage migration and phagocytosis. Redox Biol. 2017;13:665–673. doi:10.1016/j.redox.2017.08.006.
  • Hayashi R, Tanoue K, Durell SR, et al. Optimization of a cyclic peptide inhibitor of ser/thr phosphatase PPM1D (Wip1). Biochemistry. 2011;50(21):4537–4549. doi:10.1021/bi101949t.
  • Rayter S, Elliott R, Travers J, et al. A chemical inhibitor of PPM1D that selectively kills cells overexpressing PPM1D. Oncogene. 2008;27(8):1036–1044. doi:10.1038/sj.onc.1210729.
  • Shen XF, Zhao Y, Cao K, et al. Wip1 deficiency promotes neutrophil recruitment to the infection site and improves sepsis outcome. Front Immunol. 2017;8:1023. doi:10.3389/fimmu.2017.01023.
  • Gilmartin AG, Faitg TH, Richter M, et al. Allosteric Wip1 phosphatase inhibition through flap-subdomain interaction. Nat Chem Biol. 2014;10(3):181–187. doi:10.1038/nchembio.1427.
  • Pechackova S, Burdova K, Benada J, Kleiblova P, Jenikova G, Macurek L. Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3. Oncotarget. 2016;7(12):14458–14475. doi:10.18632/oncotarget.7363.
  • Sriraman A, Radovanovic M, Wienken M, Najafova Z, Li Y, Dobbelstein M. Cooperation of nutlin-3a and a Wip1 inhibitor to induce p53 activity. Oncotarget. 2016;7(22):31623–31638. doi:10.18632/oncotarget.9302.
  • Wu CE, Esfandiari A, Ho YH, et al. Targeting negative regulation of p53 by MDM2 and WIP1 as a therapeutic strategy in cutaneous melanoma. Br J Cancer. 2018;118(4):495–508. doi:10.1038/bjc.2017.433.
  • Tagad HD, Debnath S, Clausse V, et al. Chemical features important for activity in a class of inhibitors targeting the Wip1 flap subdomain. ChemMedChem. 2018;13(9):894–901. doi:10.1002/cmdc.201700779.
  • Liu Y, Xu J, Choi HH, et al. Targeting 17q23 amplicon to overcome the resistance to anti-HER2 therapy in HER2+ breast cancer. Nat Commun. 2018;9(1):4718. doi:10.1038/s41467-018-07264-0.
  • Chen W, Tan Y, Zhang Y. p38 MAPK signaling pathway activation by phenyl benzoxime in SNU-306 cells causes induction of apoptosis. Microb Pathog. 2019;126:74–78. doi:10.1016/j.micpath.2018.10.021.
  • Clausse V, Tao D, Debnath S, et al. Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens. J Biol Chem. 2019;294(46):17654–17668. doi:10.1074/jbc.RA119.010201.
  • Cheeseman MD, Faisal A, Rayter S, et al. Targeting the PPM1D phenotype; 2,4-bisarylthiazoles cause highly selective apoptosis in PPM1D amplified cell-lines. Bioorg Med Chem Lett. 2014;24(15):3469–3474. doi:10.1016/j.bmcl.2014.05.067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.