281
Views
3
CrossRef citations to date
0
Altmetric
Review

Innate Lymphoid Cells and Adaptive Immune Cells Cross-Talk: A Secret Talk Revealed in Immune Homeostasis and Different Inflammatory Conditions

ORCID Icon
Pages 217-251 | Received 17 Dec 2020, Accepted 21 Feb 2021, Published online: 18 Mar 2021

References

  • Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol. 2020;20(2):95–112. doi:10.1038/s41577-019-0215-7.
  • Kumar V. Phagocytosis: phenotypically simple yet a mechanistically complex process. Int Rev Immunol. 2020;39(3):118–150. doi:10.1080/08830185.2020.1732958.
  • Youssef LA, Rebbaa A, Pampou S, et al. Increased erythrophagocytosis induces ferroptosis in red pulp macrophages in a mouse model of transfusion. Blood. 2018;131(23):2581–2593. doi:10.1182/blood-2017-12-822619.
  • Klöditz K, Fadeel B. Three cell deaths and a funeral: macrophage clearance of cells undergoing distinct modes of cell death. Cell Death Discov. 2019;5:65. doi:10.1038/s41420-019-0146-x.
  • Sun Y, Chen P, Zhai B, et al. The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 2020;127:110108. doi:10.1016/j.biopha.2020.110108.
  • Meunier E, Neyrolles O. Die another way: ferroptosis drives tuberculosis pathology. J Exp Med. 2019;216(3):471–473. doi:10.1084/jem.20190038.
  • Amaral EP, Costa DL, Namasivayam S, et al. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J Exp Med. 2019;216(3):556–570. doi:10.1084/jem.20181776.
  • Kumar V. The complement system, toll-like receptors and inflammasomes in host defense: three musketeers’ one target. International Reviews of Immunology. 2019;38(1):1–26. doi:10.1080/08830185.2019.1595481.
  • Woo SR, Corrales L, Gajewski TF. Innate immune recognition of cancer. Annu Rev Immunol. 2015;33:445–474. doi:10.1146/annurev-immunol-032414-112043.
  • Shi F-D, Ljunggren H-G, Sarvetnick N. Innate immunity and autoimmunity: from self-protection to self-destruction. Trends Immunol. 2001;22(2):97–101. doi:10.1016/S1471-4906(00)01821-4.
  • Corrales L, Matson V, Flood B, Spranger S, Gajewski TF. Innate immune signaling and regulation in cancer immunotherapy. Cell Res. 2017;27(1):96–108. doi:10.1038/cr.2016.149.
  • Gasteiger G, Fan X, Dikiy S, Lee SY, Rudensky AY. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science (New York, N.Y.). 2015;350(6263):981–985. doi:10.1126/science.aac9593.
  • Dutton EE, Gajdasik DW, Willis C, et al. Peripheral lymph nodes contain migratory and resident innate lymphoid cell populations. Sci Immunol. 2019;4(35):eaau8082. doi:10.1126/sciimmunol.aau8082.
  • Kumar V. Innate lymphoid cells: new paradigm in immunology of inflammation. Immunol Lett. 2014;157(1–2):23–37. doi:10.1016/j.imlet.2013.11.003.
  • Kumar V. Innate lymphoid cells: immunoregulatory cells of mucosal inflammation. Eur J Inflamm. 2014;12(1):11–20. doi:10.1177/1721727X1401200102.
  • Hagerling C, Casbon AJ, Werb Z. Balancing the innate immune system in tumor development. Trends Cell Biol. 2015;25(4):214–220. doi:10.1016/j.tcb.2014.11.001.
  • Kobayashi T, Ricardo-Gonzalez RR, Moro K. Skin-resident innate lymphoid cells - cutaneous innate guardians and regulators. Trends Immunol. 2020;41(2):100–112. doi:10.1016/j.it.2019.12.004.
  • Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–899. doi:10.1016/j.cell.2010.01.025.
  • O’Reilly LA, Putoczki TL, Mielke LA, et al. Loss of NF-κB1 causes gastric cancer with aberrant inflammation and expression of immune checkpoint regulators in a STAT-1-dependent manner. Immunity. 2018;48(3):570–583.e8., doi:10.1016/j.immuni.2018.03.003.
  • Montinaro A, Walczak H. Sterile inflammation fuels gastric cancer. Immunity. 2018;48(3):481–483. doi:10.1016/j.immuni.2018.03.011.
  • Arakelyan A, Nersisyan L, Poghosyan D, et al. Autoimmunity and autoinflammation: a systems view on signaling pathway dysregulation profiles. PLoS One. 2017;12(11):e0187572. doi:10.1371/journal.pone.0187572.
  • Bayersdorf R, Fruscalzo A, Catania F. Linking autoimmunity to the origin of the adaptive immune system. Evol Med Public Health. 2018;2018(1):2–12. doi:10.1093/emph/eoy001.
  • Gajewski TF, Schreiber H, Fu Y-X. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014–1022. doi:10.1038/ni.2703.
  • Bar-Ephraim YE, Mebius RE. Innate lymphoid cells in secondary lymphoid organs. Immunol Rev. 2016;271(1):185–199. doi:10.1111/imr.12407.
  • Kiessling R, Klein E, Pross H, Wigzell H. “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol. 1975;5(2):117–121. doi:10.1002/eji.1830050209.
  • Mebius RE, Rennert P, Weissman IL. Developing lymph nodes collect CD4 + CD3- LTbeta + cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity. 1997;7(4):493–504. doi:10.1016/S1074-7613(00)80371-4.
  • Sabin FR. 1913. The Origin and Development of the Lymphatic System. Baltimore, MD: Johns Hopkins Press.
  • Randall TD, Carragher DM, Rangel-Moreno J. Development of secondary lymphoid organs. Annu Rev Immunol. 2008;26:627–650. doi:10.1146/annurev.immunol.26.021607.090257.
  • Bar-Ephraim YE, Koning JJ, Burniol Ruiz E, et al. CD62L is a functional and phenotypic marker for circulating innate lymphoid cell precursors. J Immunol. 2018;2018:ji1701153.
  • Bal SM, Golebski K, Spits H. Plasticity of innate lymphoid cell subsets. Nat Rev Immunol. 2020;20(9):552–565. doi:10.1038/s41577-020-0282-9.
  • Ricardo-Gonzalez RR, Schneider C, Liao C, Lee J, Liang HE, Locksley RM. Tissue-specific pathways extrude activated ILC2s to disseminate type 2 immunity. J Exp Med. 2020;217(4):e20191172. doi:10.1084/jem.20191172.
  • Gury-BenAri M, Thaiss CA, Serafini N, et al. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell. 2016;166(5):1231–1246.e13. doi:10.1016/j.cell.2016.07.043.
  • Klose CS, Artis D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol. 2016;17(7):765–774. doi:10.1038/ni.3489.
  • Wilkinson B, Chen JY, Han P, Rufner KM, Goularte OD, Kaye J. TOX: an HMG box protein implicated in the regulation of thymocyte selection. Nat Immunol. 2002;3(3):272–280. doi:10.1038/ni767.
  • Aliahmad P, Kaye J. Development of all CD4 T lineages requires nuclear factor TOX. J Exp Med. 2008;205(1):245–256. doi:10.1084/jem.20071944.
  • Aliahmad P, de la Torre B, Kaye J. Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue-inducer cell and NK cell lineages. Nat Immunol. 2010;11(10):945–952. doi:10.1038/ni.1930.
  • Seehus CR, Aliahmad P, de la Torre B, et al. The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor. Nat Immunol. 2015;16(6):599–608. doi:10.1038/ni.3168.
  • Spits H. TOX sets the stage for innate lymphoid cells. Nat Immunol. 2015;16(6):594–595. doi:10.1038/ni.3177.
  • Diefenbach A, Colonna M, Koyasu S. Development, differentiation, and diversity of innate lymphoid cells. Immunity. 2014;41(3):354–365. doi:10.1016/j.immuni.2014.09.005.
  • Herbrand H, Pabst O. Cryptopatches and isolated lymphoid follicles: aspects of development, homeostasis and function. In: Balogh P, editor. Developmental Biology of Peripheral Lymphoid Organs. Berlin, Heidelberg: Springer; 2011. p. 107–117.
  • Lorenz RG, Newberry RD. Isolated lymphoid follicles can function as sites for induction of mucosal immune responses. Ann N Y Acad Sci. 2004;1029:44–57. doi:10.1196/annals.1309.006.
  • Yokota Y, Mansouri A, Mori S, et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature. 1999;397(6721):702–706. doi:10.1038/17812.
  • Yokota Y, Mori S, Nishikawa SI, et al. The Helix-Loop-Helix Inhibitor Id2 and Cell Differentiation Control in Lymphoid Organogenesis. Berlin, Heidelberg: Springer; 2000.
  • Constantinides MG, McDonald BD, Verhoef PA, Bendelac A. A committed precursor to innate lymphoid cells. Nature. 2014;508(7496):397–401. doi:10.1038/nature13047.
  • Constantinides MG, Gudjonson H, McDonald BD, et al. PLZF expression maps the early stages of ILC1 lineage development. Proc Natl Acad Sci USA. 2015;112(16):5123–5128. doi:10.1073/pnas.1423244112.
  • Oherle K, Acker E, Bonfield M, et al. Insulin-like growth factor 1 supports a pulmonary niche that promotes type 3 innate lymphoid cell development in newborn lungs. Immunity. 2020;52(2):275–294.e9. doi:10.1016/j.immuni.2020.01.005.
  • Delconte RB, Shi W, Sathe P, et al. The helix-loop-helix protein ID2 governs NK cell fate by tuning their sensitivity to interleukin-15. Immunity. 2016;44(1):103–115. doi:10.1016/j.immuni.2015.12.007.
  • Huntington ND, Puthalakath H, Gunn P, et al. Interleukin 15-mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nat Immunol. 2007;8(8):856–863. doi:10.1038/ni1487.
  • Spits H, Artis D, Colonna M, et al. Innate lymphoid cells-a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13(2):145–149. doi:10.1038/nri3365.
  • Serafini N, Vosshenrich CA, Di Santo JP. Transcriptional regulation of innate lymphoid cell fate. Nat Rev Immunol. 2015;15(7):415–428. doi:10.1038/nri3855.
  • Simoni Y, Fehlings M, Kloverpris HN, et al. Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity. 2017;46(1):148–161. doi:10.1016/j.immuni.2016.11.005.
  • Bjorklund AK, Forkel M, Picelli S, et al. The heterogeneity of human CD127(+) innate lymphoid cells revealed by single-cell RNA sequencing. Nat Immunol. 2016;17(4):451–460. doi:10.1038/ni.3368.
  • Spits H, Cupedo T. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu Rev Immunol. 2012;30:647–675. doi:10.1146/annurev-immunol-020711-075053.
  • Silver JS, Kearley J, Copenhaver AM, et al. Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat Immunol. 2016;17(6):626–635. doi:10.1038/ni.3443.
  • Bal SM, Bernink JH, Nagasawa M, et al. IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat Immunol. 2016;17(6):636–645. doi:10.1038/ni.3444.
  • Ohne Y, Silver JS, Thompson-Snipes L, et al. IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nat Immunol. 2016;17(6):646–655. doi:10.1038/ni.3447.
  • Lim AI, Menegatti S, Bustamante J, et al. IL-12 drives functional plasticity of human group 2 innate lymphoid cells. J Exp Med. 2016;213(4):569–583. doi:10.1084/jem.20151750.
  • Cella M, Gamini R, Secca C, et al. Subsets of ILC3-ILC1-like cells generate a diversity spectrum of innate lymphoid cells in human mucosal tissues. Nat Immunol. 2019;20(8):980–991. doi:10.1038/s41590-019-0425-y.
  • Mazzurana L, Forkel M, Rao A, et al. Suppression of Aiolos and Ikaros expression by lenalidomide reduces human ILC3-ILC1/NK cell transdifferentiation. Eur J Immunol. 2019;49(9):1344–1355. doi:10.1002/eji.201848075.
  • Fan Y, Lu D. The Ikaros family of zinc-finger proteins. Acta Pharm Sin B. 2016;6(6):513–521. doi:10.1016/j.apsb.2016.06.002.
  • Holmes ML, Huntington ND, Thong RP, et al. Peripheral natural killer cell maturation depends on the transcription factor Aiolos. EMBO J. 2014;33(22):2721–2734. doi:10.15252/embj.201487900.
  • Quintana FJ, Jin H, Burns EJ, et al. Aiolos promotes TH17 differentiation by directly silencing Il2 expression. Nat Immunol. 2012;13(8):770–777. doi:10.1038/ni.2363.
  • Cortés M, Georgopoulos K. Aiolos is required for the generation of high affinity bone marrow plasma cells responsible for long-term immunity. J Exp Med. 2004;199(2):209–219. doi:10.1084/jem.20031571.
  • Gandhi R, Kumar D, Burns EJ, et al. Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3(+) regulatory T cells. Nat Immunol. 2010;11(9):846–853. doi:10.1038/ni.1915.
  • Bernink JH, Peters CP, Munneke M, et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol. 2013;14(3):221–229. doi:10.1038/ni.2534.
  • Bernink JH, Krabbendam L, Germar K, et al. Interleukin-12 and -23 control plasticity of CD127(+) group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity. 2015;43(1):146–160. doi:10.1016/j.immuni.2015.06.019.
  • Klose CS, Kiss EA, Schwierzeck V, et al. A T-bet gradient controls the fate and function of CCR6-RORγt + innate lymphoid cells. Nature. 2013;494(7436):261–265. doi:10.1038/nature11813.
  • Vonarbourg C, Mortha A, Bui VL, et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt(+) innate lymphocytes. Immunity. 2010;33(5):736–751. doi:10.1016/j.immuni.2010.10.017.
  • Mjösberg J, Bernink J, Golebski K, et al. The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity. 2012;37(4):649–659. doi:10.1016/j.immuni.2012.08.015.
  • Golebski K, Ros XR, Nagasawa M, et al. IL-1β, IL-23, and TGF-β drive plasticity of human ILC2s towards IL-17-producing ILCs in nasal inflammation. Nat Commun. 2019;10(1):2162. doi:10.1038/s41467-019-09883-7.
  • Chen L, Youssef Y, Robinson C, et al. CD56 expression marks human group 2 innate lymphoid cell divergence from a shared NK cell and group 3 innate lymphoid cell developmental pathway. Immunity. 2018;49(3):464–476.e4. doi:10.1016/j.immuni.2018.08.010.
  • Maier E, Duschl A, Horejs-Hoeck J. STAT6-dependent and -independent mechanisms in Th2 polarization. Eur J Immunol. 2012;42(11):2827–2833. doi:10.1002/eji.201242433.
  • Zhu J. Transcriptional regulation of Th2 cell differentiation. Immunol Cell Biol. 2010;88(3):244–249. doi:10.1038/icb.2009.114.
  • Spits H, Bernink JH, Lanier L. NK cells and type 1 innate lymphoid cells: partners in host defense. Nat Immunol. 2016;17(7):758–764. doi:10.1038/ni.3482.
  • Daussy C, Faure F, Mayol K, et al. T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J Exp Med. 2014;211(3):563–577. doi:10.1084/jem.20131560.
  • Klose CSN, Flach M, Möhle L, et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell. 2014;157(2):340–356. doi:10.1016/j.cell.2014.03.030.
  • Fuchs A. ILC1s in tissue inflammation and infection. Front Immunol. 2016;7:104. doi:10.3389/fimmu.2016.00104.
  • Weizman OE, Adams NM, Schuster IS, et al. ILC1 confer early host protection at initial sites of viral infection. Cell. 2017;171(4):795–808.e12. doi:10.1016/j.cell.2017.09.052.
  • Vaine CA, Soberman RJ. The CD200-CD200R1 inhibitory signaling pathway: immune regulation and host-pathogen interactions. Adv Immunol. 2014;121:191–211. doi:10.1016/B978-0-12-800100-4.00005-2.
  • Caserta S, Nausch N, Sawtell A, et al. Chronic infection drives expression of the inhibitory receptor CD200R, and its ligand CD200, by mouse and human CD4 T cells. PLoS One. 2012;7(4):e35466. doi:10.1371/journal.pone.0035466.
  • Snelgrove RJ, Goulding J, Didierlaurent AM, et al. A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat Immunol. 2008;9(9):1074–1083. doi:10.1038/ni.1637.
  • Ritzel RM, Al Mamun A, Crapser J, et al. CD200-CD200R1 inhibitory signaling prevents spontaneous bacterial infection and promotes resolution of neuroinflammation and recovery after stroke. J Neuroinflammation. 2019;16(1):40. doi:10.1186/s12974-019-1426-3.
  • Liu C, Shen Y, Tang Y, Gu Y. The role of N-glycosylation of CD200-CD200R1 interaction in classical microglial activation. J Inflamm (Lond)). 2018;15:28. doi:10.1186/s12950-018-0205-8.
  • Chen Z, Yu K, Zhu F, Gorczynski R. Over-expression of CD200 protects mice from dextran sodium sulfate induced colitis. PloS One. 2016;11(2):e0146681. doi:10.1371/journal.pone.0146681.
  • Romero-Suárez S, Del Rio Serrato A, Bueno RJ, et al. The central nervous system contains ILC1s that differ from NK cells in the response to inflammation. Front Immunol. 2019;10:2337. doi:10.3389/fimmu.2019.02337.
  • Rijkers ES, de Ruiter T, Baridi A, Veninga H, Hoek RM, Meyaard L. The inhibitory CD200R is differentially expressed on human and mouse T and B lymphocytes. Mol Immunol. 2008;45(4):1126–1135. doi:10.1016/j.molimm.2007.07.013.
  • Freud AG, Keller KA, Scoville SD, et al. NKp80 defines a critical step during human natural killer cell development. Cell Rep. 2016;16(2):379–391. doi:10.1016/j.celrep.2016.05.095.
  • Mavilio D, Benjamin J, Kim D, et al. Identification of NKG2A and NKp80 as specific natural killer cell markers in rhesus and pigtailed monkeys. Blood. 2005;106(5):1718–1725. doi:10.1182/blood-2004-12-4762.
  • Vitale M, Falco M, Castriconi R, et al. Identification of NKp80, a novel triggering molecule expressed by human NK cells. Eur J Immunol. 2001;31(1):233–242. doi:10.1002/1521-4141(200101)31:1<233::AID-IMMU233>3.0.CO;2-4.
  • Ebihara T, Song C, Ryu SH, et al. Runx3 specifies lineage commitment of innate lymphoid cells. Nat Immunol. 2015;16(11):1124–1133. doi:10.1038/ni.3272.
  • Ebihara T, Taniuchi I. Transcription factors in the development and function of group 2 innate lymphoid cells. IJMS. 2019;20(6):1377. doi:10.3390/ijms20061377.
  • Rothhammer V, Quintana FJ. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat Rev Immunol. 2019;19(3):184–197. doi:10.1038/s41577-019-0125-8.
  • Barroso A, Mahler JV, Fonseca-Castro PH, Quintana FJ. The aryl hydrocarbon receptor and the gut–brain axis. Cell Mol Immunol. 2021;18(2):259–268. doi:10.1038/s41423-020-00585-5.
  • Sagebiel AF, Steinert F, Lunemann S, et al. Tissue-resident Eomes + NK cells are the major innate lymphoid cell population in human infant intestine. Nat Commun. 2019;10(1):975. doi:10.1038/s41467-018-08267-7.
  • Zhang J, Marotel M, Fauteux-Daniel S, et al. T-bet and Eomes govern differentiation and function of mouse and human NK cells and ILC1. Eur J Immunol. 2018;48(5):738–750. doi:10.1002/eji.201747299.
  • Kim CH, Hashimoto-Hill S, Kim M. Migration and tissue tropism of innate lymphoid cells. Trends Immunol. 2016;37(1):68–79. doi:10.1016/j.it.2015.11.003.
  • Vosshenrich CAJ, García-Ojeda ME, Samson-Villéger SI, et al. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat Immunol. 2006;7(11):1217–1224. doi:10.1038/ni1395.
  • Vivier E, Artis D, Colonna M, et al. Innate lymphoid cells: 10 years on. Cell. 2018;174(5):1054–1066. doi:10.1016/j.cell.2018.07.017.
  • Fuchs A, Vermi W, Lee JS, et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity. 2013;38(4):769–781. doi:10.1016/j.immuni.2013.02.010.
  • Simoni Y, Newell EW. Dissecting human ILC heterogeneity: more than just three subsets. Immunology. 2018;153(3):297–303. doi:10.1111/imm.12862.
  • Cella M, Fuchs A, Vermi W, et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature. 2009;457(7230):722–725. doi:10.1038/nature07537.
  • Cupedo T, Crellin NK, Papazian N, et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC + CD127+ natural killer-like cells. Nat Immunol. 2009;10(1):66–74. doi:10.1038/ni.1668.
  • Crellin NK, Trifari S, Kaplan CD, Cupedo T, Spits H. Human NKp44 + IL-22+ cells and LTi-like cells constitute a stable RORC + lineage distinct from conventional natural killer cells. J Exp Med. 2010;207(2):281–290. doi:10.1084/jem.20091509.
  • Xu W, Domingues R G, Fonseca-Pereira D, et al. NFIL3 orchestrates the emergence of common helper innate lymphoid cell precursors. Cell Rep. 2015;10(12):2043–2054. doi:10.1016/j.celrep.2015.02.057.
  • Filtjens J, Keirsse J, Van Ammel E, et al. Expression of the inhibitory Ly49E receptor is not critically involved in the immune response against cutaneous, pulmonary or liver tumours. Sci Rep. 2016;6:30564. doi:10.1038/srep30564.
  • Van Acker A, Gronke K, Biswas A, et al. A murine intestinal intraepithelial NKp46-negative innate lymphoid cell population characterized by group 1 properties. Cell Rep. 2017;19(7):1431–1443. doi:10.1016/j.celrep.2017.04.068.
  • Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85–97. doi:10.1038/nri2921.
  • Roan F, Ziegler SF. Human Group 1 Innate Lymphocytes Are Negative for Surface CD3ε but Express CD5. Immunity. 2017;46(5):758–759. doi:10.1016/j.immuni.2017.04.024.
  • Nabekura T, Riggan L, Hildreth AD, O’Sullivan TE, Shibuya A. Type 1 innate lymphoid cells protect mice from acute liver injury via interferon-γ secretion for upregulating Bcl-xL expression in hepatocytes. Immunity. 2020;52(1):96–108.e9. doi:10.1016/j.immuni.2019.11.004.
  • Halim TY, Krauss RH, Sun AC, Takei F. Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity. 2012;36(3):451–463. doi:10.1016/j.immuni.2011.12.020.
  • Fort MM, Cheung J, Yen D, et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity. 2001;15(6):985–995. doi:10.1016/S1074-7613(01)00243-6.
  • Hurst SD, Muchamuel T, Gorman DM, et al. New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J Immunol. 2002;169(1):443–453. doi:10.4049/jimmunol.169.1.443.
  • Grencis RK. Immunity to helminths: resistance, regulation, and susceptibility to gastrointestinal nematodes. Annu Rev Immunol. 2015;33:201–225. doi:10.1146/annurev-immunol-032713-120218.
  • Bando JK, Gilfillan S, Di Luccia B, et al. ILC2s are the predominant source of intestinal ILC-derived IL-10. J Exp Med. 2020;217(2):e20191520. doi:10.1084/jem.20191520.
  • Moro K, Yamada T, Tanabe M, et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature. 2010;463(7280):540–544. doi:10.1038/nature08636.
  • Nussbaum JC, Van Dyken SJ, von Moltke J, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 2013;502(7470):245–248. doi:10.1038/nature12526.
  • Price AE, Liang HE, Sullivan BM, et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci U S A. 2010;107(25):11489–11494. doi:10.1073/pnas.1003988107.
  • Jones R, Cosway EJ, Willis C, et al. Dynamic changes in intrathymic ILC populations during murine neonatal development. Eur J Immunol. 2018;48(9):1481–1491. doi:10.1002/eji.201847511.
  • Cupedo T. ILC2: at home in the thymus. Eur J Immunol. 2018;48(9):1441–1444. doi:10.1002/eji.201847779.
  • Satoh-Takayama N, Kato T, Motomura Y, et al. Bacteria-induced group 2 innate lymphoid cells in the stomach provide immune protection through induction of IgA. Immunity. 2020;52(4):635–649.e4. doi:10.1016/j.immuni.2020.03.002.
  • Abidi A, Laurent T, Bériou G, et al. Characterization of rat ILCs reveals ILC2 as the dominant intestinal subset. Front Immunol. 2020;11:255. doi:10.3389/fimmu.2020.00255.
  • Huang Y, Guo L, Qiu J, et al. IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat Immunol. 2015;16(2):161–169. doi:10.1038/ni.3078.
  • Huang Y, Mao K, Chen X, et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science. 2018;359(6371):114–119. doi:10.1126/science.aam5809.
  • Huang Y, Paul WE. Inflammatory group 2 innate lymphoid cells. Int Immunol. 2016;28(1):23–28. doi:10.1093/intimm/dxv044.
  • Zhang K, Xu X, Pasha MA, et al. Cutting edge: notch signaling promotes the plasticity of group-2 innate lymphoid cells. JI. 2017;198(5):1798–1803. doi:10.4049/jimmunol.1601421.
  • Flamar A-L, Klose CSN, Moeller JB, et al. Interleukin-33 induces the enzyme tryptophan hydroxylase 1 to promote inflammatory group 2 innate lymphoid cell-mediated immunity. Immunity. 2020;52(4):606–619.e6. doi:10.1016/j.immuni.2020.02.009.
  • Kumar V. Innate lymphoid cell and adaptive immune cell cross-talk: a talk meant not to forget. J Leukoc Biol. 2020;108(1):397–417. doi:10.1002/JLB.4MIR0420-500RRR.
  • Maazi H, Patel N, Sankaranarayanan I, et al. ICOS:ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity. Immunity. 2015;42(3):538–551. doi:10.1016/j.immuni.2015.02.007.
  • Kim BS, Artis D. Group 2 innate lymphoid cells in health and disease. Cold Spring Harb Perspect Biol. 2015;7(5):a016337. doi:10.1101/cshperspect.a016337.
  • Spooner CJ, Lesch J, Yan D, et al. Specification of type 2 innate lymphocytes by the transcriptional determinant Gfi1. Nat Immunol. 2013;14(12):1229–1236. doi:10.1038/ni.2743.
  • Hosokawa H, Romero-Wolf M, Yang Q, et al. Cell type–specific actions of Bcl11b in early T-lineage and group 2 innate lymphoid cells. J Exp Med. 2020;217(1):e20190972. doi:10.1084/jem.20190972.
  • Califano D, Cho JJ, Uddin MN, et al. Transcription factor Bcl11b controls identity and function of mature type 2 innate lymphoid cells. Immunity. 2015;43(2):354–368. doi:10.1016/j.immuni.2015.07.005.
  • Zhang L, Ying Y, Chen S, et al. The transcription factor RelB restrains group 2 innate lymphoid cells and type 2 immune pathology in vivo. Cell Mol Immunol. 2021;18(1):230–242. doi:10.1038/s41423-020-0404-0.
  • Miyamoto C, Kojo S, Yamashita M, et al. Runx/Cbfβ complexes protect group 2 innate lymphoid cells from exhausted-like hyporesponsiveness during allergic airway inflammation. Nat Commun. 2019;10(1):447. doi:10.1038/s41467-019-08365-0.
  • Ebihara T, Taniuchi I. Exhausted-like group 2 innate lymphoid cells in chronic allergic inflammation. Trends Immunol. 2019;40(12):1095–1104. doi:10.1016/j.it.2019.10.007.
  • Bulek K, Swaidani S, Aronica M, Li X. Epithelium: the interplay between innate and Th2 immunity. Immunol Cell Biol. 2010;88(3):257–268. doi:10.1038/icb.2009.113.
  • Owyang AM, Zaph C, Wilson EH, et al. Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract. J Exp Med. 2006;203(4):843–849. doi:10.1084/jem.20051496.
  • Saenz SA, Taylor BC, Artis D. Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol Rev. 2008;226:172–190. doi:10.1111/j.1600-065X.2008.00713.x.
  • Ziegler SF, Artis D. Sensing the outside world: TSLP regulates barrier immunity. Nat Immunol. 2010;11(4):289–293. doi:10.1038/ni.1852.
  • Strober W. Immunology: The expanding T(H)2 universe. Nature. 2010;463(7280):434–435. doi:10.1038/463434a.
  • Neill DR, Wong SH, Bellosi A, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 2010;464(7293):1367–1370. doi:10.1038/nature08900.
  • Saenz SA, Siracusa MC, Perrigoue JG, et al. IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature. 2010;464(7293):1362–1366. doi:10.1038/nature08901.
  • Neill DR, McKenzie AN. Nuocytes and beyond: new insights into helminth expulsion. Trends Parasitol. 2011;27(5):214–221. doi:10.1016/j.pt.2011.01.001.
  • Saenz SA, Noti M, Artis D. Innate immune cell populations function as initiators and effectors in Th2 cytokine responses. Trends Immunol. 2010;31(11):407–413. doi:10.1016/j.it.2010.09.001.
  • Fonseca W, Rasky AJ, Ptaschinski C, et al. Group 2 innate lymphoid cells (ILC2) are regulated by stem cell factor during chronic asthmatic disease. Mucosal Immunol. 2019;12(2):445–456. doi:10.1038/s41385-018-0117-1.
  • Brestoff JR, Kim BS, Saenz SA, et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature. 2015;519(7542):242–246. doi:10.1038/nature14115.
  • Dalmas E, Lehmann FM, Dror E, et al. Interleukin-33-activated islet-resident innate lymphoid cells promote insulin secretion through myeloid cell retinoic acid production. Immunity. 2017;47(5):928–942.e7. doi:10.1016/j.immuni.2017.10.015.
  • Li S, Bostick JW, Ye J, et al. Aryl hydrocarbon receptor signaling cell intrinsically inhibits intestinal group 2 innate lymphoid cell function. Immunity. 2018;49(5):915–928.e5. doi:10.1016/j.immuni.2018.09.015.
  • Schneider C, Lee J, Koga S, et al. Tissue-resident group 2 innate lymphoid cells differentiate by layered ontogeny and in situ perinatal priming. Immunity. 2019;50(6):1425–1438.e5. doi:10.1016/j.immuni.2019.04.019.]
  • Germain RN, Huang Y. ILC2s - resident lymphocytes pre-adapted to a specific tissue or migratory effectors that adapt to where they move?Curr Opin Immunol. 2019;56:76–81. doi:10.1016/j.coi.2018.11.001.
  • Monticelli LA, Sonnenberg GF, Abt MC, et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol. 2011;12(11):1045–1054. doi:10.1038/ni.2131.
  • Monticelli LA, Osborne LC, Noti M, Tran SV, Zaiss DMW, Artis D. IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. Proc Natl Acad Sci U S A. 2015;112(34):10762–10767. doi:10.1073/pnas.1509070112.
  • Le Goffic R, Arshad MI, Rauch M, et al. Infection with influenza virus induces IL-33 in murine lungs. Am J Respir Cell Mol Biol. 2011;45(6):1125–1132. doi:10.1165/rcmb.2010-0516OC.
  • Zhang K, Jin Y, Lai D, et al. RAGE-induced ILC2 expansion in acute lung injury due to haemorrhagic shock. Thorax. 2020;75(3):209–219. doi:10.1136/thoraxjnl-2019-213613.
  • Karagiannis F, Masouleh SK, Wunderling K, et al. Lipid-droplet formation drives pathogenic group 2 innate lymphoid cells in airway inflammation. Immunity. 2020;52(4):620–634.e6. doi:10.1016/j.immuni.2020.03.003.
  • Sui P, Wiesner DL, Xu J, et al. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science. 2018;360(6393):eaan8546. doi:10.1126/science.aan8546.
  • Barrios J, Kho AT, Aven L, et al. Pulmonary neuroendocrine cells secrete γ-aminobutyric acid to induce goblet cell hyperplasia in primate models. Am J Respir Cell Mol Biol. 2019;60(6):687–694. doi:10.1165/rcmb.2018-0179OC.
  • Roediger B, Kyle R, Yip KH, et al. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat Immunol. 2013;14(6):564–573. doi:10.1038/ni.2584.
  • Klose CSN, Mahlakoiv T, Moeller JB, et al. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature. 2017;549(7671):282–286. doi:10.1038/nature23676.
  • Cardoso V, Chesne J, Ribeiro H, et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature. 2017;549(7671):277–281. doi:10.1038/nature23469.
  • Wallrapp A, Riesenfeld SJ, Burkett PR, et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature. 2017;549(7672):351–356. doi:10.1038/nature24029.
  • Zhong C, Zheng M, Zhu J. Lymphoid tissue inducer-A divergent member of the ILC family. Cytokine Growth Factor Rev. 2018;42:5–12. doi:10.1016/j.cytogfr.2018.02.004.
  • Mortha A, Chudnovskiy A, Hashimoto D, et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science. 2014;343(6178):1249288. doi:10.1126/science.1249288.
  • Pearson C, Thornton EE, McKenzie B, et al. ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation. Elife. 2016;5:e10066. doi:10.7554/eLife.10066.
  • van de Pavert SA, Mebius RE. New insights into the development of lymphoid tissues. Nat Rev Immunol. 2010;10(9):664–674. doi:10.1038/nri2832.
  • Withers DR, Hepworth MR. Group 3 innate lymphoid cells: communications hubs of the intestinal immune system. Front Immunol. 2017;8:1298. doi:10.3389/fimmu.2017.01298.
  • Spencer SP, Wilhelm C, Yang Q, et al. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science. 2014;343(6169):432–437. doi:10.1126/science.1247606.
  • van de Pavert SA, Ferreira M, Domingues RG, et al. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature. 2014;508(7494):123–127. doi:10.1038/nature13158.
  • Zhong C, Cui K, Wilhelm C, et al. Group 3 innate lymphoid cells continuously require the transcription factor GATA-3 after commitment. Nat Immunol. 2016;17(2):169–178. doi:10.1038/ni.3318.
  • Serafini N, Klein Wolterink RG, Satoh-Takayama N, et al. Gata3 drives development of RORγt + group 3 innate lymphoid cells. J Exp Med. 2014;211(2):199–208. doi:10.1084/jem.20131038.
  • Emgard J, Kammoun H, Garcia-Cassani B, et al. Oxysterol sensing through the receptor GPR183 promotes the lymphoid-tissue-inducing function of innate lymphoid cells and colonic inflammation. Immunity. 2018;48(1):120–132.e8. doi:10.1016/j.immuni.2017.11.020.
  • Chu C, Moriyama S, Li Z, et al. Anti-microbial functions of group 3 innate lymphoid cells in gut-associated lymphoid tissues are regulated by G-protein-coupled receptor 183. Cell Rep. 2018;23(13):3750–3758. doi:10.1016/j.celrep.2018.05.099.
  • Wyss A, Raselli T, Perkins N, et al. The EBI2-oxysterol axis promotes the development of intestinal lymphoid structures and colitis. Mucosal Immunol. 2019;12(3):733–745. doi:10.1038/s41385-019-0140-x.
  • Daugvilaite V, Arfelt KN, Benned-Jensen T, Sailer AW, Rosenkilde MM. Oxysterol-EBI2 signaling in immune regulation and viral infection. Eur J Immunol. 2014;44(7):1904–1912. doi:10.1002/eji.201444493.
  • Kurschus FC, Wanke F. EBI2 - Sensor for dihydroxycholesterol gradients in neuroinflammation. Biochimie. 2018;153:52–55. doi:10.1016/j.biochi.2018.04.014.
  • Xu W, Cherrier DE, Chea S, et al. An Id2RFP-reporter mouse redefines innate lymphoid cell precursor potentials. Immunity. 2019;50(4):1054–1068.e3. doi:10.1016/j.immuni.2019.02.022.
  • Hepworth MR, Monticelli LA, Fung TC, et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature. 2013;498(7452):113–117. doi:10.1038/nature12240.
  • von Burg N, Chappaz S, Baerenwaldt A, et al. Activated group 3 innate lymphoid cells promote T-cell-mediated immune responses. Proc Natl Acad Sci U S A. 2014;111(35):12835–12840. doi:10.1073/pnas.1406908111.
  • Sawa S, Lochner M, Satoh-Takayama N, et al. RORγt + innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol. 2011;12(4):320–326. doi:10.1038/ni.2002.
  • Buonocore S, Ahern PP, Uhlig HH, et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature. 2010;464(7293):1371–1375. doi:10.1038/nature08949.
  • Geremia A, Arancibia-Carcamo CV, Fleming MP, et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med. 2011;208(6):1127–1133. doi:10.1084/jem.20101712.
  • Zhang Z, Cheng L, Zhao J, et al. Plasmacytoid dendritic cells promote HIV-1-induced group 3 innate lymphoid cell depletion. J Clin Invest. 2015;125(9):3692–3703. doi:10.1172/JCI82124.
  • Mudd JC, Brenchley JM. Innate lymphoid cells: their contributions to gastrointestinal tissue homeostasis and HIV/SIV disease pathology. Curr HIV/AIDS Rep. 2019;16(3):181–190. doi:10.1007/s11904-019-00439-4.
  • Dillon SM, Castleman MJ, Frank DN, et al. Brief report: inflammatory colonic innate lymphoid cells are increased during untreated HIV-1 infection and associated with markers of gut dysbiosis and mucosal immune activation. J Acquir Immune Defic Syndr. 2017;76(4):431–437. doi:10.1097/QAI.0000000000001523.
  • Vivier E, Spits H, Cupedo T. Interleukin-22-producing innate immune cells: new players in mucosal immunity and tissue repair?Nat Rev Immunol. 2009;9(4):229–234. doi:10.1038/nri2522.
  • Sanos SL, Bui VL, Mortha A, et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol. 2009;10(1):83–91. doi:10.1038/ni.1684.
  • Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity. 2008;29(6):958–970. doi:10.1016/j.immuni.2008.11.001.
  • Castleman MJ, Dillon SM, Purba CM, et al. Commensal and pathogenic bacteria indirectly induce IL-22 but not IFNγ production from human colonic ILC3s via multiple mechanisms. Front Immunol. 2019;10:649. doi:10.3389/fimmu.2019.00649.
  • Mizuno S, Mikami Y, Kamada N, et al. Cross-talk between RORγt + innate lymphoid cells and intestinal macrophages induces mucosal IL-22 production in Crohn’s disease. Inflamm Bowel Dis. 2014;20(8):1426–1434. doi:10.1097/MIB.0000000000000105.
  • Powell N, Lo JW, Biancheri P, et al. Interleukin 6 increases production of cytokines by colonic innate lymphoid cells in mice and patients with chronic intestinal inflammation. Gastroenterology. 2015;149(2):456–467.e15. doi:10.1053/j.gastro.2015.04.017.
  • Morita H, Kubo T, Ruckert B, et al. Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid. J Allergy Clin Immunol. 2019;143(6):2190–2201.e9. doi:10.1016/j.jaci.2018.12.1018.
  • Nidetz NF, McGee MC, Limper CB, et al. Development of regulatory IL-10-producing ILCs during type 2 inflammation. J Immunol. 2020;204:154.4–154.4.
  • Wang S, Xia P, Chen Y, et al. Regulatory innate lymphoid cells control innate intestinal inflammation. Cell. 2017;171(1):201–216.e18. doi:10.1016/j.cell.2017.07.027.
  • Mjosberg JM, Trifari S, Crellin NK, et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol. 2011;12(11):1055–1062. doi:10.1038/ni.2104.
  • Jandl K, Heinemann A. The therapeutic potential of CRTH2/DP2 beyond allergy and asthma. Prostaglandins Other Lipid Mediat. 2017;133:42–48. doi:10.1016/j.prostaglandins.2017.08.006.
  • Tait Wojno ED, Monticelli LA, Tran SV, et al. The prostaglandin D2 receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung. Mucosal Immunol. 2015;8(6):1313–1323. doi:10.1038/mi.2015.21.
  • Singh D, Ravi A, Southworth T. CRTH2 antagonists in asthma: current perspectives. Clin Pharmacol. 2017;9:165–173. doi:10.2147/CPAA.S119295.
  • Tojima I, Shimizu T. Group 2 innate lymphoid cells and eosinophilic chronic rhinosinusitis. Curr Opin Allergy Clin Immunol. 2019;19(1):18–25. doi:10.1097/ACI.0000000000000496.
  • Vale AM, Kearney JF, Nobrega A, Schroeder HW. Chapter 7: Development and function of B cell subsets. In: Alt FW, Honjo T, Radbruch A, Reth M, editors. Molecular Biology of B Cells. 2nd ed.London: Academic Press; 2015. pp.. 99–119.
  • Allman D, Pillai S. Peripheral B cell subsets. Curr Opin Immunol. 2008;20(2):149–157. doi:10.1016/j.coi.2008.03.014.
  • Sindhava V, Bondada S. Multiple regulatory mechanisms control B-1 B cell activation. Front Immun. 2012;3:372. doi:10.3389/fimmu.2012.00372.
  • Golubovskaya V, Wu L. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers. 2016;8(3):36. doi:10.3390/cancers8030036.
  • Gaudino SJ, Kumar P. Cross-talk between antigen presenting cells and T cells impacts intestinal homeostasis, bacterial infections, and tumorigenesis. Front Immunol. 2019;10:360. doi:10.3389/fimmu.2019.00360.
  • Rankin LC, Artis D. Beyond host defense: emerging functions of the immune system in regulating complex tissue physiology. Cell. 2018;173(3):554–567. doi:10.1016/j.cell.2018.03.013.
  • Friedrich C, Gasteiger G. ILCs and T cells competing for space: more than a numbers game. Immunity. 2017;47(1):8–10. doi:10.1016/j.immuni.2017.07.003.
  • Martin CE, Spasova DS, Frimpong-Boateng K, et al. Interleukin-7 availability is maintained by a hematopoietic cytokine sink comprising innate lymphoid cells and T cells. Immunity. 2017;47(1):171–182.e4. doi:10.1016/j.immuni.2017.07.005.
  • Kumar V. T cells and their immunometabolism: a novel way to understanding sepsis immunopathogenesis and future therapeutics. Eur J Cell Biol. 2018;97(6):379–392. doi:10.1016/j.ejcb.2018.05.001.
  • Kang J, Coles M. IL-7: the global builder of the innate lymphoid network and beyond, one niche at a time. Semin Immunol. 2012;24(3):190–197. doi:10.1016/j.smim.2012.02.003.
  • von Burg N, Turchinovich G, Finke D. Maintenance of immune homeostasis through ILC/T cell interactions. Front Immunol. 2015;6:416. doi:10.3389/fimmu.2015.00416.
  • Lu L, Ikizawa K, Hu D, Werneck MB, Wucherpfennig KW, Cantor H. Regulation of activated CD4+ T cells by NK cells via the Qa-1-NKG2A inhibitory pathway. Immunity. 2007;26(5):593–604. doi:10.1016/j.immuni.2007.03.017.
  • Waggoner SN, Cornberg M, Selin LK, Welsh RM. Natural killer cells act as rheostats modulating antiviral T cells. Nature. 2011;481(7381):394–398. doi:10.1038/nature10624.
  • Soderquest K, Walzer T, Zafirova B, et al. Cutting edge: CD8+ T cell priming in the absence of NK cells leads to enhanced memory responses. J Immunol. 2011;186(6):3304–3308. doi:10.4049/jimmunol.1004122.
  • Rydyznski CE, Cranert SA, Zhou JQ, et al. Affinity maturation is impaired by natural killer cell suppression of germinal centers. Cell Rep. 2018;24(13):3367–3373.e4. doi:10.1016/j.celrep.2018.08.075.
  • Rydyznski C, Daniels KA, Karmele EP, et al. Generation of cellular immune memory and B-cell immunity is impaired by natural killer cells. Nat Commun. 2015;6:6375. doi:10.1038/ncomms7375.
  • Waggoner SN, Taniguchi RT, Mathew PA, Kumar V, Welsh RM. Absence of mouse 2B4 promotes NK cell-mediated killing of activated CD8+ T cells, leading to prolonged viral persistence and altered pathogenesis. J Clin Invest. 2010;120(6):1925–1938. doi:10.1172/JCI41264.
  • Waggoner SN, Kumar V. Evolving role of 2B4/CD244 in T and NK cell responses during virus infection. Front Immunol. 2012;3:377.
  • Wang X, Cui Y, Luo G, et al. Activated mouse CD4(+)Foxp3(-) T cells facilitate melanoma metastasis via Qa-1-dependent suppression of NK-cell cytotoxicity. Cell Res. 2012;22(12):1696–1706. doi:10.1038/cr.2012.128.
  • Andre P, Denis C, Soulas C, et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell. 2018;175(7):1731–1743.e13. doi:10.1016/j.cell.2018.10.014.
  • van Montfoort N, Borst L, Korrer MJ, et al. NKG2A blockade potentiates CD8 T cell immunity induced by cancer vaccines. Cell. 2018;175(7):1744–1755.e15. doi:10.1016/j.cell.2018.10.028.
  • Muschaweckh A, Buchholz VR, Fellenzer A, et al. Antigen-dependent competition shapes the local repertoire of tissue-resident memory CD8+ T cells. J Exp Med. 2016;213(13):3075–3086. doi:10.1084/jem.20160888.
  • Sitrin J, Ring A, Garcia KC, Benoist C, Mathis D. Regulatory T cells control NK cells in an insulitic lesion by depriving them of IL-2. J Exp Med. 2013;210(6):1153–1165. doi:10.1084/jem.20122248.
  • Gasteiger G, Hemmers S, Firth MA, et al. IL-2-dependent tuning of NK cell sensitivity for target cells is controlled by regulatory T cells. J Exp Med. 2013;210(6):1167–1178. doi:10.1084/jem.20122462.
  • Croft M, So T, Duan W, Soroosh P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev. 2009;229(1):173–191. doi:10.1111/j.1600-065X.2009.00766.x.
  • Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13(4):227–242. doi:10.1038/nri3405.
  • Buchan SL, Rogel A, Al-Shamkhani A. The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy. Blood. 2018;131(1):39–48. doi:10.1182/blood-2017-07-741025.
  • Xiao X, Balasubramanian S, Liu W, et al. OX40 signaling favors the induction of T(H)9 cells and airway inflammation. Nat Immunol. 2012;13(10):981–990. doi:10.1038/ni.2390.
  • Schmitt E, Klein M, Bopp T. Th9 cells, new players in adaptive immunity. Trends Immunol. 2014;35(2):61–68. doi:10.1016/j.it.2013.10.004.
  • Xue G, Jin G, Fang J, Lu Y. IL-4 together with IL-1β induces antitumor Th9 cell differentiation in the absence of TGF-β signaling. Nat Commun. 2019;10(1):1376. doi:10.1038/s41467-019-09401-9.
  • Micossé C, von Meyenn L, Steck O, et al. Human “TH9” cells are a subpopulation of PPAR-γ+ TH2 cells. Sci Immunol. 2019;314:eaat5943. doi:10.1126/sciimmunol.aat5943.
  • Drake LY, Iijima K, Kita H. Group 2 innate lymphoid cells and CD4+ T cells cooperate to mediate type 2 immune response in mice. Allergy. 2014;69(10):1300–1307. doi:10.1111/all.12446.
  • Kim MY, Gaspal FM, Wiggett HE, et al. CD4(+)CD3(-) accessory cells costimulate primed CD4 T cells through OX40 and CD30 at sites where T cells collaborate with B cells. Immunity. 2003;18(5):643–654. doi:10.1016/S1074-7613(03)00110-9.
  • Withers DR, Jaensson E, Gaspal F, et al. The survival of memory CD4+ T cells within the gut lamina propria requires OX40 and CD30 signals. J Immunol. 2009;183(8):5079–5084. doi:10.4049/jimmunol.0901514.
  • Zheng B, Xu G, Chen X, Marinova E, Han S. ICOSL-mediated signaling is essential for the survival and functional maturation of germinal center B cells through the classical NF-κB pathway (IRM10P.611). The Journal of Immunology. 2015;194:131.9–131.9.
  • Wikenheiser DJ, Stumhofer JS. ICOS co-stimulation: friend or foe?Front Immunol. 2016;7:304. doi:10.3389/fimmu.2016.00304.
  • Drake LY, Iijima K, Bartemes K, Kita H. Group 2 innate lymphoid cells promote an early antibody response to a respiratory antigen in mice. JI. 2016;197(4):1335–1342. doi:10.4049/jimmunol.1502669.
  • Gold MJ, Antignano F, Halim TY, et al. Group 2 innate lymphoid cells facilitate sensitization to local, but not systemic, TH2-inducing allergen exposures. J Allergy Clin Immunol. 2014;133(4):1142–1148. doi:10.1016/j.jaci.2014.02.033.
  • Mirchandani AS, Besnard AG, Yip E, et al. Type 2 innate lymphoid cells drive CD4+ Th2 cell responses. JI. 2014;192(5):2442–2448. doi:10.4049/jimmunol.1300974.
  • Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE. The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol. 1999;17:701–738. doi:10.1146/annurev.immunol.17.1.701.
  • Granato A, Hayashi EA, Baptista BJA, Bellio M, Nobrega A. IL-4 regulates bim expression and promotes B cell maturation in synergy with BAFF conferring resistance to cell death at negative selection checkpoints. J Immunol. 2014;192(12):5761–5775. doi:10.4049/jimmunol.1300749.
  • Horikawa K, Takatsu K. Interleukin-5 regulates genes involved in B-cell terminal maturation. Immunology. 2006;118(4):497–508. doi:10.1111/​j.1365-2567.2006.02382.x.
  • Moon B-g, Takaki S, Miyake K, Takatsu K. The role of IL-5 for mature B-1 cells in homeostatic proliferation, cell survival, and Ig production. J Immunol. 2004;172(10):6020–6029. doi:10.4049/jimmunol.172.10.6020.
  • Defrance T, Carayon P, Billian G, et al. Interleukin 13 is a B cell stimulating factor. J Exp Med. 1994;179(1):135–143. doi:10.1084/jem.179.1.135.
  • Reboldi A, Arnon TI, Rodda LB, Atakilit A, Sheppard D, Cyster JG. IgA production requires B cell interaction with subepithelial dendritic cells in Peyer’s patches. Science. 2016;352(6287):aaf4822–aaf4822. doi:10.1126/science.aaf4822.
  • Browning JL, Ngam-Ek A, Lawton P, et al. Lymphotoxin beta, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell. 1993;72(6):847–856. doi:10.1016/0092-8674(93)90574-A.
  • Crowe PD, VanArsdale TL, Walter BN, et al. A lymphotoxin-beta-specific receptor. Science. 1994;264(5159):707–710. doi:10.1126/science.8171323.
  • Kruglov AA, Grivennikov SI, Kuprash DV, et al. Nonredundant function of soluble LTα3 produced by innate lymphoid cells in intestinal homeostasis. Science. 2013;342(6163):1243–1246. doi:10.1126/science.1243364.
  • Bird L. Mucosal immunology: innate control of IgA. Nat Rev Immunol. 2014;14(2):66–67. doi:10.1038/nri3613.
  • Tumanov AV, Koroleva EP, Guo X, et al. Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge. Cell Host Microbe. 2011;10(1):44–53. doi:10.1016/j.chom.2011.06.002.
  • Wang W, Li Y, Hao J, et al. The interaction between lymphoid tissue inducer-like cells and T cells in the mesenteric lymph node restrains intestinal humoral immunity. Cell Rep. 2020;32(3):107936. doi:10.1016/j.celrep.2020.107936.
  • Melo-Gonzalez F, Kammoun H, Evren E, et al. Antigen-presenting ILC3 regulate T cell-dependent IgA responses to colonic mucosal bacteria. J Exp Med. 2019;216(4):728–742. doi:10.1084/jem.20180871.
  • Qiu J, Guo X, Chen ZM, et al. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity. 2013;39(2):386–399. doi:10.1016/j.immuni.2013.08.002.
  • Reynders A, Yessaad N, Vu Manh TP, et al. Identity, regulation and in vivo function of gut NKp46 + RORγt + and NKp46 + RORγt- lymphoid cells. EMBO J. 2011;30(14):2934–2947. doi:10.1038/emboj.2011.201.
  • Sawa S, Cherrier M, Lochner M, et al. Lineage relationship analysis of RORgammat + innate lymphoid cells. Science. 2010;330(6004):665–669. doi:10.1126/science.1194597.
  • Korn LL, Thomas HL, Hubbeling HG, et al. Conventional CD4+ T cells regulate IL-22-producing intestinal innate lymphoid cells. Mucosal Immunol. 2014;7(5):1045–1057. doi:10.1038/mi.2013.121.
  • Zhou L, Chu C, Teng F, et al. Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2. Nature. 2019;568(7752):405–409. doi:10.1038/s41586-019-1082-x.
  • Lehmann FM, von Burg N, Ivanek R, et al. Microbiota-induced tissue signals regulate ILC3-mediated antigen presentation. Nat Commun. 2020;11(1):1794. doi:10.1038/s41467-020-15612-2.
  • Magri G, Miyajima M, Bascones S, et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014;15(4):354–364. doi:10.1038/ni.2830.
  • Mackley EC, Houston S, Marriott CL, et al. CCR7-dependent trafficking of RORγ ILCs creates a unique microenvironment within mucosal draining lymph nodes. Nat Commun. 2015;6:5862. doi:10.1038/ncomms6862.
  • Vander Lugt B, Tubo NJ, Nizza ST, et al. CCR7 plays no appreciable role in trafficking of central memory CD4 T cells to lymph nodes. JI. 2013;191(6):3119–3127. doi:10.4049/jimmunol.1200938.
  • Li PP, Liu DD, Liu YJ, et al. BAFF/BAFF-R involved in antibodies production of rats with collagen-induced arthritis via PI3K-Akt-mTOR signaling and the regulation of paeoniflorin. J Ethnopharmacol. 2012;141(1):290–300. doi:10.1016/j.jep.2012.02.034.
  • Zhang F, Song S-S, Shu J-L, et al. BAFF upregulates CD28/B7 and CD40/CD154 expression and promotes mouse T and B cell interaction in vitro via BAFF receptor. Acta Pharmacol Sin. 2016;37(8):1101–1109. doi:10.1038/aps.2016.15.
  • Zhang X, Park CS, Yoon SO, et al. BAFF supports human B cell differentiation in the lymphoid follicles through distinct receptors. Int Immunol. 2005;17(6):779–788. doi:10.1093/intimm/dxh259.
  • Cibrián D, Sánchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur J Immunol. 2017;47(6):946–953. doi:10.1002/eji.201646837.
  • Robinette ML, Fuchs A, Cortez VS, et al. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat Immunol. 2015;16(3):306–317. doi:10.1038/ni.3094.
  • Yu L, Yang F, Zhang F, et al. CD69 enhances immunosuppressive function of regulatory T-cells and attenuates colitis by prompting IL-10 production. Cell Death Dis. 2018;9(9):905. doi:10.1038/s41419-018-0927-9.
  • Radulovic K, Niess JH. CD69 is the crucial regulator of intestinal inflammation: a new target molecule for IBD treatment?J Immunol Res. 2015;2015:1–12. doi:10.1155/2015/497056.
  • Radulovic K, Manta C, Rossini V, et al. CD69 regulates type I IFN-induced tolerogenic signals to mucosal CD4 T cells that attenuate their colitogenic potential. JI. 2012;188(4):2001–2013. doi:10.4049/jimmunol.1100765.
  • Shikhagaie MM, Bjorklund AK, Mjosberg J, et al. Neuropilin-1 is expressed on lymphoid tissue residing LTi-like group 3 innate lymphoid cells and associated with ectopic lymphoid aggregates. Cell Rep. 2017;18(7):1761–1773. doi:10.1016/j.celrep.2017.01.063.
  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.21492.
  • Borger JG, Lau M, Hibbs ML. The influence of innate lymphoid cells and unconventional T cells in chronic inflammatory lung disease. Front Immunol. 2019;10:1597. doi:10.3389/fimmu.2019.01597.
  • Wenink MH, Leijten EFA, Cupedo T, Radstake T. Review: innate lymphoid cells: sparking inflammatory rheumatic disease?Arthritis Rheumatol. 2017;69(5):885–897. doi:10.1002/art.40068.
  • Schön MP, Erpenbeck L. The interleukin-23/interleukin-17 axis links adaptive and innate immunity in psoriasis. Front Immunol. 2018;9:1323. doi:10.3389/fimmu.2018.01323.
  • Prinz JC. Human leukocyte antigen-class I alleles and the autoreactive T cell response in psoriasis pathogenesis. Front Immunol. 2018;9:954. doi:10.3389/fimmu.2018.00954.
  • Thorleifsdottir RH, Sigurdardottir SL, Sigurgeirsson B, et al. Improvement of psoriasis after tonsillectomy is associated with a decrease in the frequency of circulating T cells that recognize streptococcal determinants and homologous skin determinants. JI. 2012;188(10):5160–5165. doi:10.4049/jimmunol.1102834.
  • Lande R, Botti E, Jandus C, et al. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun. 2014;5:5621. doi:10.1038/ncomms6621.
  • Ruddle NH, Akirav EM. Secondary lymphoid organs: responding to genetic and environmental cues in ontogeny and the immune response. J Immunol. 2009;183(4):2205–2212. doi:10.4049/jimmunol.0804324.
  • Blauvelt A, Chiricozzi A. The immunologic role of IL-17 in psoriasis and psoriatic arthritis pathogenesis. Clin Rev Allergy Immunol. 2018;55(3):379–390. doi:10.1007/s12016-018-8702-3.
  • Kryczek I, Bruce AT, Gudjonsson JE, et al. Induction of IL-17+ T cell trafficking and development by IFN-gamma: mechanism and pathological relevance in psoriasis. J Immunol. 2008;181(7):4733–4741. doi:10.4049/jimmunol.181.7.4733.
  • Villanova F, Flutter B, Tosi I, et al. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J Invest Dermatol. 2014;134(4):984–991. doi:10.1038/jid.2013.477.
  • Teunissen MBM, Munneke JM, Bernink JH, et al. Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR(+) ILC3 in lesional skin and blood of psoriasis patients. J Invest Dermatol. 2014;134(9):2351–2360. doi:10.1038/jid.2014.146.
  • Bruggen MC, Bauer WM, Reininger B, et al. In situ mapping of innate lymphoid cells in human skin: evidence for remarkable differences between normal and inflamed skin. J Invest Dermatol. 2016;136(12):2396–2405. doi:10.1016/j.jid.2016.07.017.
  • Dyring-Andersen B, Geisler C, Agerbeck C, et al. Increased number and frequency of group 3 innate lymphoid cells in nonlesional psoriatic skin. Br J Dermatol. 2014;170(3):609–616. doi:10.1111/bjd.12658.
  • Soare A, Weber S, Maul L, et al. Cutting edge: homeostasis of innate lymphoid cells is imbalanced in psoriatic arthritis. J Immunol. 2018;200(4):1249–1254. doi:10.4049/jimmunol.1700596.
  • Ward NL, Umetsu DT. A new player on the psoriasis block: IL-17A- and IL-22-producing innate lymphoid cells. J Invest Dermatol. 2014;134(9):2305–2307. doi:10.1038/jid.2014.216.
  • Griffiths CE, Strober BE, van de Kerkhof P, et al. Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. N Engl J Med. 2010;362(2):118–128. doi:10.1056/NEJMoa0810652.
  • Yamin R, Berhani O, Peleg H, et al. High percentages and activity of synovial fluid NK cells present in patients with advanced stage active rheumatoid arthritis. Sci Rep. 2019;9(1):1351. doi:10.1038/s41598-018-37448-z.
  • Pridgeon C, Lennon GP, Pazmany L, Thompson RN, Christmas SE, Moots RJ. Natural killer cells in the synovial fluid of rheumatoid arthritis patients exhibit a CD56bright, CD94bright, CD158negative phenotype. Rheumatology (Oxford). 2003;42(7):870–878. doi:10.1093/rheumatology/keg240.
  • Rosser EC, Lom H, Bending D, Duurland CL, Bajaj-Elliott M, Wedderburn LR. Innate lymphoid cells and T cells contribute to the interleukin-17A signature detected in the synovial fluid of patients with juvenile idiopathic arthritis. Arthritis Rheumatol. 2019;71(3):460–467. doi:10.1002/art.40731.
  • Söderström K, Stein E, Colmenero P, et al. Natural killer cells trigger osteoclastogenesis and bone destruction in arthritis. Proc Natl Acad Sci U S A. 2010;107(29):13028–13033. doi:10.1073/pnas.1000546107.
  • Takaki-Kuwahara A, Arinobu Y, Miyawaki K, et al. CCR6+ group 3 innate lymphoid cells accumulate in inflamed joints in rheumatoid arthritis and produce Th17 cytokines. Arthritis Res Ther. 2019;21(1):198. doi:10.1186/s13075-019-1984-x.
  • Rauber S, Luber M, Weber S, et al. Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells. Nat Med. 2017;23(8):938–944. doi:10.1038/nm.4373.
  • Omata Y, Frech M, Primbs T, et al. Group 2 innate lymphoid cells attenuate inflammatory arthritis and protect from bone destruction in mice. Cell Rep. 2018;24(1):169–180. doi:10.1016/j.celrep.2018.06.005.
  • Biton J, Khaleghparast Athari S, Thiolat A, et al. In vivo expansion of activated Foxp3+ regulatory T cells and establishment of a type 2 immune response upon IL-33 treatment protect against experimental arthritis. J Immunol. 2016;197(5):1708–1719. doi:10.4049/jimmunol.1502124.
  • Miani M, Le Naour J, Waeckel-Enee E, et al. Gut microbiota-stimulated innate lymphoid cells support β-defensin 14 expression in pancreatic endocrine cells, preventing autoimmune diabetes. Cell Metab. 2018;28(4):557–572.e6. doi:10.1016/j.cmet.2018.06.012.
  • Liu H, Wang J, He T, et al. Butyrate: a double-edged sword for health?Adv Nutr. 2018;9(1):21–29. doi:10.1093/advances/nmx009.
  • Brown AJ, Goldsworthy SM, Barnes AA, et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278(13):11312–11319. doi:10.1074/jbc.M211609200.
  • Gubatan J, Moss AC. Vitamin D in inflammatory bowel disease: more than just a supplement. Curr Opin Gastroenterol. 2018;34(4):217–225. doi:10.1097/MOG.0000000000000449.
  • Ananthakrishnan AN. Vitamin D and inflammatory bowel disease. Gastroenterol Hepatol (N Y). 2016;12:513–515.
  • Imam T, Park S, Kaplan MH, Olson MR. Effector T helper cell subsets in inflammatory bowel diseases. Front Immunol. 2018;9:1212. doi:10.3389/fimmu.2018.01212.
  • Lee SH, Kwon JE, Cho M-L. Immunological pathogenesis of inflammatory bowel disease. Intest Res. 2018;16(1):26–42. doi:10.5217/ir.2018.16.1.26.
  • Dimitrov V, White JH. Vitamin D signaling in intestinal innate immunity and homeostasis. Mol Cell Endocrinol. 2017;453:68–78. doi:10.1016/j.mce.2017.04.010.
  • Cantorna MT, Snyder L, Lin Y-D, Yang L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients. 2015;7(4):3011–3021. doi:10.3390/nu7043011.
  • Zeng B, Shi S, Ashworth G, Dong C, Liu J, Xing F. ILC3 function as a double-edged sword in inflammatory bowel diseases. Cell Death Dis. 2019;10(4):315–315. doi:10.1038/s41419-019-1540-2.
  • Chen J, Waddell A, Lin YD, Cantorna MT. Dysbiosis caused by vitamin D receptor deficiency confers colonization resistance to Citrobacter rodentium through modulation of innate lymphoid cells. Mucosal Immunol. 2015;8(3):618–626. doi:10.1038/mi.2014.94.
  • Konya V, Czarnewski P, Forkel M, et al. Vitamin D downregulates the IL-23 receptor pathway in human mucosal group 3 innate lymphoid cells. J Allergy Clin Immunol. 2018;141(1):279–292. doi:10.1016/j.jaci.2017.01.045.
  • Aggarwal S, Ghilardi N, Xie M-H, de Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem. 2003;278(3):1910–1914. doi:10.1074/jbc.M207577200.
  • Loh W, Tang MLK. The epidemiology of food allergy in the global context. IJERPH. 2018;15(9):2043. doi:10.3390/ijerph15092043.
  • Gupta RS, Warren CM, Smith BM, et al. Prevalence and severity of food allergies among US adults. JAMA Netw Open. 2019;2(1):e185630. doi:10.1001/jamanetworkopen.2018.5630.
  • Noval Rivas M, Burton OT, Oettgen HC, Chatila T. IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function. J Allergy Clin Immunol. 2016;138(3):801–811.e9. doi:10.1016/j.jaci.2016.02.030.
  • Lee JB, Chen CY, Liu B, et al. IL-25 and CD4(+) TH2 cells enhance type 2 innate lymphoid cell-derived IL-13 production, which promotes IgE-mediated experimental food allergy. J Allergy Clin Immunol. 2016;137(4):1216–1225.e5. doi:10.1016/j.jaci.2015.09.019.
  • Oliveira L. d M, Teixeira FME, Sato MN. Impact of retinoic acid on immune cells and inflammatory diseases. Mediators Inflamm. 2018;2018:3067126–3067126. doi:10.1155/2018/3067126.
  • Bono MR, Tejon G, Flores-Santibañez F, Fernandez D, Rosemblatt M, Sauma D. Retinoic acid as a modulator of T cell immunity. Nutrients. 2016;8(6):349. doi:10.3390/nu8060349.
  • Tong X, Guo X, Zhao L, et al. Innate lymphoid cells—a new medium that berberine affect glycolipid metabolism. Diabetes. 2018;67(Suppl 1):2419-PUB. doi:10.2337/db18-2419-PUB.
  • Becker M, Levings MK, Daniel C. Adipose-tissue regulatory T cells: Critical players in adipose-immune crosstalk. Eur J Immunol. 2017;47(11):1867–1874. doi:10.1002/eji.201646739.
  • Zeng Q, Sun X, Xiao L, Xie Z, Bettini M, Deng T. A unique population: adipose-resident regulatory T cells. Front Immunol. 2018;9:2075. doi:10.3389/fimmu.2018.02075.
  • Lu J, Zhao J, Meng H, Zhang X. Adipose tissue-resident immune cells in obesity and type 2 diabetes. Front Immunol. 2019;10:1173. doi:10.3389/fimmu.2019.01173.
  • Chiossone L, Dumas PY, Vienne M, Vivier E. Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol. 2018;18(11):671–688. doi:10.1038/s41577-018-0061-z.
  • Fehniger TA, Cooper MA. Harnessing NK cell memory for cancer immunotherapy. Trends Immunol. 2016;37(12):877–888. doi:10.1016/j.it.2016.09.005.
  • Uzhachenko RV, Shanker A. CD8+ T lymphocyte and NK cell network: circuitry in the cytotoxic domain of immunity. Front Immunol. 2019;10:1906. doi:10.3389/fimmu.2019.01906.
  • Wong JL, Berk E, Edwards RP, Kalinski P. IL-18-primed helper NK cells collaborate with dendritic cells to promote recruitment of effector CD8+ T cells to the tumor microenvironment. Cancer Res. 2013;73(15):4653–4662. doi:10.1158/0008-5472.CAN-12-4366.
  • Bottcher JP, Bonavita E, Chakravarty P, et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell. 2018;172(5):1022–1037.e14. doi:10.1016/j.cell.2018.01.004.
  • Barry KC, Hsu J, Broz ML, et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat Med. 2018;24(8):1178–1191. doi:10.1038/s41591-018-0085-8.
  • Bottcher JP, Reis ESC. The role of type 1 conventional dendritic cells in cancer immunity. Trends Cancer. 2018;4:784–792.
  • Cancel JC, Crozat K, Dalod M, Mattiuz R. Are conventional type 1 dendritic cells critical for protective antitumor immunity and how?Front Immunol. 2019;10:9. doi:10.3389/fimmu.2019.00009.
  • Gardner A, Ruffell B. Dendritic cells and cancer immunity. Trends Immunol. 2016;37(12):855–865. doi:10.1016/j.it.2016.09.006.
  • Nakayama M, Takeda K, Kawano M, Takai T, Ishii N, Ogasawara K. Natural killer (NK)-dendritic cell interactions generate MHC class II-dressed NK cells that regulate CD4+ T cells. Proc Natl Acad Sci U S A. 2011;108(45):18360–18365. doi:10.1073/pnas.1110584108.
  • Pallmer K, Oxenius A. Recognition and regulation of T cells by NK cells. Front Immunol. 2016;7:251. doi:10.3389/fimmu.2016.00251.
  • Lee SH, Kim KS, Fodil-Cornu N, Vidal SM, Biron CA. Activating receptors promote NK cell expansion for maintenance, IL-10 production, and CD8 T cell regulation during viral infection. J Exp Med. 2009;206(10):2235–2251. doi:10.1084/jem.20082387.
  • Deniz G, Erten G, Kucuksezer UC, et al. Regulatory NK cells suppress antigen-specific T cell responses. J Immunol. 2008;180(2):850–857. doi:10.4049/jimmunol.180.2.850.
  • Shanker A, Buferne M, Schmitt-Verhulst AM. Cooperative action of CD8 T lymphocytes and natural killer cells controls tumour growth under conditions of restricted T-cell receptor r diversity. Immunology. 2010;129(1):41–54. doi:10.1111/j.1365-2567.2009.03150.x.
  • Shanker A, Verdeil G, Buferne M, et al. CD8 T cell help for innate antitumor immunity. J Immunol. 2007;179(10):6651–6662. doi:10.4049/jimmunol.179.10.6651.
  • Iraolagoitia XL, Spallanzani RG, Torres NI, et al. NK cells restrain spontaneous antitumor CD8+ T cell priming through PD-1/PD-L1 interactions with dendritic cells. JI. 2016;197(3):953–961. doi:10.4049/jimmunol.1502291.
  • Hsu J, Hodgins JJ, Marathe M, et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Invest. 2018;128(10):4654–4668. doi:10.1172/JCI99317.
  • Xu-Monette ZY, Zhang M, Li J, Young KH. PD-1/PD-L1 blockade: have we found the key to unleash the antitumor immune response?Front Immunol. 2017;8:1597. doi:10.3389/fimmu.2017.01597.
  • Crome SQ, Nguyen LT, Lopez-Verges S, et al. A distinct innate lymphoid cell population regulates tumor-associated T cells. Nat Med. 2017;23(3):368–375. doi:10.1038/nm.4278.
  • Moral JA, Leung J, Rojas LA, et al. ILC2s amplify PD-1 blockade by activating tissue-specific cancer immunity. Nature. 2020;579(7797):130–135. doi:10.1038/s41586-020-2015-4.
  • Eisenring M, Vom Berg J, Kristiansen G, Saller E, Becher B. IL-12 initiates tumor rejection via lymphoid tissue-inducer cells bearing the natural cytotoxicity receptor NKp46. Nat Immunol. 2010;11(11):1030–1038. doi:10.1038/ni.1947.
  • Carrega P, Loiacono F, Di Carlo E, et al. NCR(+)ILC3 concentrate in human lung cancer and associate with intratumoral lymphoid structures. Nat Commun. 2015;6:8280. doi:10.1038/ncomms9280.
  • Nussbaum K, Burkhard SH, Ohs I, et al. Tissue microenvironment dictates the fate and tumor-suppressive function of type 3 ILCs. J Exp Med. 2017;214(8):2331–2347. doi:10.1084/jem.20162031.
  • Colbeck EJ, Ager A, Gallimore A, Jones GW. Tertiary lymphoid structures in cancer: drivers of antitumor immunity, immunosuppression, or bystander sentinels in disease?Front Immunol. 2017;8:1830. doi:10.3389/fimmu.2017.01830.
  • Calderaro J, Petitprez F, Becht E, et al. Intra-tumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma. J Hepatol. 2019;70(1):58–65. doi:10.1016/j.jhep.2018.09.003.
  • Sautès-Fridman C, Petitprez F, Calderaro J, Fridman WH. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer. 2019;19(6):307–325. doi:10.1038/s41568-019-0144-6.
  • Picard E, Godet Y, Laheurte C, et al. Circulating NKp46+ natural killer cells have a potential regulatory property and predict distinct survival in non-small cell lung cancer. Oncoimmunology. 2019;8(2):e1527498. doi:10.1080/2162402X.2018.1527498.
  • Nieto-Velazquez NG, Torres-Ramos YD, Munoz-Sanchez JL, et al. Altered expression of natural cytotoxicity receptors and NKG2D on peripheral blood NK cell subsets in breast cancer patients. Transl Oncol. 2016;9(5):384–391. doi:10.1016/j.tranon.2016.07.003.
  • Wang S, Zhang Y, Wang Y, et al. Amphiregulin confers regulatory T cell suppressive function and tumor invasion via the EGFR/GSK-3β/Foxp3 Axis. J Biol Chem. 2016;291(40):21085–21095. doi:10.1074/jbc.M116.717892.
  • Zaiss DM, van Loosdregt J, Gorlani A, et al. Amphiregulin enhances regulatory T cell-suppressive function via the epidermal growth factor receptor. Immunity. 2013;38(2):275–284. doi:10.1016/j.immuni.2012.09.023.
  • Rao A, Strauss O, Kokkinou E, et al. Cytokines regulate the antigen-presenting characteristics of human circulating and tissue-resident intestinal ILCs. Nat Commun. 2020;11(1):2049. doi:10.1038/s41467-020-15695-x.
  • Shao L, Pan S, Zhang QP, et al. An essential role of innate lymphoid cells in the pathophysiology of graft-vs.-host disease. Front Immunol. 2019;10:1233.
  • Henden AS, Hill GR. Cytokines in graft-versus-host disease. J Immunol. 2015;194(10):4604–4612. doi:10.4049/jimmunol.1500117.
  • Mohty M, Blaise D, Faucher C, et al. Inflammatory cytokines and acute graft-versus-host disease after reduced-intensity conditioning allogeneic stem cell transplantation. Blood. 2005;106(13):4407–4411. doi:10.1182/blood-2005-07-2919.
  • Zeiser R, Blazar BR. Acute graft-versus-host disease - biologic process, prevention, and therapy. N Engl J Med. 2017;377(22):2167–2179. doi:10.1056/NEJMra1609337.
  • Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet. 2009;373(9674):1550–1561. doi:10.1016/S0140-6736(09)60237-3.
  • Simonetta F, Alvarez M, Negrin RS. Natural killer cells in graft-versus-host-disease after allogeneic hematopoietic cell transplantation. Front Immunol. 2017;8:465. doi:10.3389/fimmu.2017.00465.
  • Ciurea SO, Schafer JR, Bassett R, et al. Phase 1 clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation. Blood. 2017;130(16):1857–1868. doi:10.1182/blood-2017-05-785659.
  • Noval Rivas M, Hazzan M, Weatherly K, Gaudray F, Salmon I, Braun MY. NK cell regulation of CD4 T cell-mediated graft-versus-host disease. JI. 2010;184(12):6790–6798. doi:10.4049/jimmunol.0902598.
  • Chan YLT, Zuo J, Inman C, et al. NK cells produce high levels of IL-10 early after allogeneic stem cell transplantation and suppress development of acute GVHD. Eur J Immunol. 2018;48(2):316–329. doi:10.1002/eji.201747134.
  • DeWolfe D, Aid M, McGann K, et al. NK cells contribute to the immune risk profile in kidney transplant candidates. Front Immunol. 2019;10:1890.
  • Munneke JM, Bjorklund AT, Mjosberg JM, et al. Activated innate lymphoid cells are associated with a reduced susceptibility to graft-versus-host disease. Blood. 2014;124(5):812–821. doi:10.1182/blood-2013-11-536888.
  • Bruce DW, Stefanski HE, Vincent BG, et al. Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease. J Clin Invest. 2017;127(5):1813–1825. doi:10.1172/JCI91816.
  • Ferrara JL, Smith CM, Sheets J, Reddy P, Serody JS. Altered homeostatic regulation of innate and adaptive immunity in lower gastrointestinal tract GVHD pathogenesis. J Clin Invest. 2017;127(7):2441–2451. doi:10.1172/JCI90592.
  • Karrich JJ, Cupedo T. Group 3 innate lymphoid cells in tissue damage and graft-versus-host disease pathogenesis. Curr Opin Hematol. 2016;23(4):410–415. doi:10.1097/MOH.0000000000000262.
  • Hanash AM, Dudakov JA, Hua G, et al. Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity. 2012;37(2):339–350. doi:10.1016/j.immuni.2012.05.028.
  • Lindemans CA, Calafiore M, Mertelsmann AM, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 2015;528(7583):560–564. doi:10.1038/nature16460.
  • Dudakov JA, Hanash AM, Jenq RR, et al. Interleukin-22 drives endogenous thymic regeneration in mice. Science. 2012;336(6077):91–95. doi:10.1126/science.1218004.
  • Dudakov JA, Mertelsmann AM, O’Connor MH, et al. Loss of thymic innate lymphoid cells leads to impaired thymopoiesis in experimental graft-versus-host disease. Blood. 2017;130(7):933–942. doi:10.1182/blood-2017-01-762658.
  • Koyama M, Mukhopadhyay P, Schuster IS, et al. MHC class II antigen presentation by the intestinal epithelium initiates graft-versus-host disease and is influenced by the microbiota. Immunity 2019;51(5):885–898.e7.
  • Graham C, Chooniedass R, Stefura WP, CHILD Study Investigators, et al. In vivo immune signatures of healthy human pregnancy: Inherently inflammatory or anti-inflammatory?PLoS One. 2017;12(6):e0177813. doi:10.1371/journal.pone.0177813.
  • Sargent IL, Borzychowski AM, Redman CW. NK cells and human pregnancy-an inflammatory view. Trends Immunol. 2006;27(9):399–404. doi:10.1016/j.it.2006.06.009.
  • Faas MM, de Vos P. Uterine NK cells and macrophages in pregnancy. Placenta. 2017;56:44–52. doi:10.1016/j.placenta.2017.03.001.
  • Williams PJ, Searle RF, Robson SC, Innes BA, Bulmer JN. Decidual leucocyte populations in early to late gestation normal human pregnancy. J Reprod Immunol. 2009;82(1):24–31. doi:10.1016/j.jri.2009.08.001.
  • Shah NM, Herasimtschuk AA, Boasso A, et al. Changes in T cell and dendritic cell phenotype from mid to late pregnancy are indicative of a shift from immune tolerance to immune activation. Front Immunol. 2017;8:1138. doi:10.3389/fimmu.2017.01138.
  • Kumar V, Medhi B. Emerging role of uterine natural killer cells in establishing pregnancy. Iran J Immunol. 2008;5(2):71–81.
  • Faas MM, Spaans F, De Vos P. Monocytes and macrophages in pregnancy and pre-eclampsia. Front Immunol. 2014;5:298. doi:10.3389/fimmu.2014.00298.
  • Scherjon S, Lashley L, van der Hoorn ML, Claas F. Fetus specific T cell modulation during fertilization, implantation and pregnancy. Placenta. 2011;32:S291–S297. doi:10.1016/j.placenta.2011.03.014.
  • Moffett-King A. Natural killer cells and pregnancy. Nat Rev Immunol. 2002;2(9):656–663. doi:10.1038/nri886.
  • Vacca P, Cantoni C, Vitale M, et al. Crosstalk between decidual NK and CD14+ myelomonocytic cells results in induction of Tregs and immunosuppression. Proc Natl Acad Sci U S A. 2010;107(26):11918–11923. doi:10.1073/pnas.1001749107.
  • Montaldo E, Vacca P, Chiossone L, et al. Unique Eomes(+) NK cell subsets are present in uterus and decidua during early pregnancy. Front Immunol. 2015;6:646. doi:10.3389/fimmu.2015.00646.
  • Li M, Gao Y, Yong L, et al. Molecular signature and functional analysis of uterine ILCs in mouse pregnancy. J Reprod Immunol. 2017;123:48–57. doi:10.1016/j.jri.2017.09.003.
  • Boulenouar S, Doisne JM, Sferruzzi-Perri A, et al. The residual innate lymphoid cells in NFIL3-deficient mice support suboptimal maternal adaptations to pregnancy. Front Immunol. 2016;7:43. doi:10.3389/fimmu.2016.00043.
  • Doisne JM, Balmas E, Boulenouar S, et al. Composition, development, and function of uterine innate lymphoid cells. JI. 2015;195(8):3937–3945. doi:10.4049/jimmunol.1500689.
  • Male V, Hughes T, McClory S, Colucci F, Caligiuri MA, Moffett A. Immature NK cells, capable of producing IL-22, are present in human uterine mucosa. JI. 2010;185(7):3913–3918. doi:10.4049/jimmunol.1001637.
  • Vacca P, Montaldo E, Croxatto D, et al. Identification of diverse innate lymphoid cells in human decidua. Mucosal Immunol. 2015;8(2):254–264. doi:10.1038/mi.2014.63.
  • Pang XL, Yin TL, Yan WJ, Li J, He F, Yang J. Molecular detection of uterine innate lymphoid cells in the immunological mouse model of pregnancy loss. Int Immunopharmacol. 2019;68:1–6. doi:10.1016/j.intimp.2018.12.046.
  • Croxatto D, Micheletti A, Montaldo E, et al. Group 3 innate lymphoid cells regulate neutrophil migration and function in human decidua. Mucosal Immunol. 2016;9(6):1372–1383. doi:10.1038/mi.2016.10.
  • Vacca P, Pesce S, Greppi M, et al. PD-1 is expressed by and regulates human group 3 innate lymphoid cells in human decidua. Mucosal Immunol. 2019;12(3):624–631. doi:10.1038/s41385-019-0141-9.
  • Habicht A, Dada S, Jurewicz M, et al. A link between PDL1 and T regulatory cells in fetomaternal tolerance. J Immunol. 2007;179(8):5211–5219. doi:10.4049/jimmunol.179.8.5211.
  • Sasaki Y, Sakai M, Miyazaki S, Higuma S, Shiozaki A, Saito S. Decidual and peripheral blood CD4 + CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod. 2004;10(5):347–353. doi:10.1093/molehr/gah044.
  • Somerset DA, Zheng Y, Kilby MD, Sansom DM, Drayson MT. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology. 2004;112(1):38–43. doi:10.1111/j.1365-2567.2004.01869.x.
  • D’Addio F, Riella LV, Mfarrej BG, et al. The link between the PDL1 costimulatory pathway and Th17 in fetomaternal tolerance. JI. 2011;187(9):4530–4541. doi:10.4049/jimmunol.1002031.
  • Tripathi S, Guleria I. Role of PD1/PDL1 pathway, and TH17 and treg cells in maternal tolerance to the fetus. Biomed J. 2015;38(1):25–31. doi:10.4103/2319-4170.143511.
  • Salvany-Celades M, van der Zwan A, Benner M, et al. Three types of functional regulatory T cells control T cell responses at the human maternal-fetal interface. Cell Rep. 2019;27(9):2537–2547.e5. doi:10.1016/j.celrep.2019.04.109.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.