96
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Chemokines: A key driver for inflammation in protozoan infection

, , , , &
Pages 211-228 | Received 08 May 2023, Accepted 16 Oct 2023, Published online: 19 Nov 2023

References

  • Fletcher SM, Stark D, Harkness J, et al. Enteric protozoa in the developed world: a public health perspective. Clin Microbiol Rev. 2012;25(3):420–449. doi:10.1128/CMR.05038-11.
  • Burgess SL, Gilchrist CA, Lynn TC, et al. Parasitic protozoa and interactions with the host intestinal microbiota. Infect Immun. 2017;85(8):e00101–17. doi:10.1128/IAI.00101-17.
  • World Health Organization. World Malaria Report 2021.Geneva: World Health Organization; 2021.
  • Ferreira MS, Borges AS. Some aspects of protozoan infections in immunocompromised patients- a review. Mem Inst Oswaldo Cruz. 2002;97(4):443–457. doi:10.1590/s0074-02762002000400001.
  • Kataria P, Surela N, Chaudhary A, et al. MiRNA: Biological regulator in host-parasite interaction during malaria infection. Int J Environ Res Public Health. 2022;19(4):2395. doi:10.3390/ijerph19042395.
  • Osman M, El Safadi D, Cian A, et al. Prevalence and risk factors for intestinal protozoan infections with cryptosporidium, giardia, blastocystis and dientamoeba among schoolchildren in Tripoli, Lebanon. PLoS Negl Trop Dis. 2016;10(3):e0004496. doi:10.1371/journal.pntd.0004496.
  • Nicholson LB. The immune system. Essays Biochem. 2016;60(3):275–301. doi:10.1042/EBC20160017.
  • Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S3–S23. doi:10.1016/j.jaci.2009.12.980.
  • Sokol CL, Luster AD. The chemokine system in innate immunity. Cold Spring Harb Perspect Biol. 2015;7(5):a016303. doi:10.1101/cshperspect.a016303.
  • Kohli K, Pillarisetty VG, Kim TS. Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Ther. 2022;29(1):10–21. doi:10.1038/s41417-021-00303-x.
  • Michlmayr D, Lim JK. Chemokine receptors as important regulators of pathogenesis during arboviral encephalitis. Front Cell Neurosci. 2014;8:264. doi:10.3389/fncel.2014.00264.
  • Teixeira MM, Gazzinelli RT, Silva JS. Chemokines, inflammation and Trypanosoma cruzi infection. Trends Parasitol. 2002;18(6):262–265. doi:10.1016/s1471-4922(02)02283-3.
  • White G, Iqbal A, Greaves D. CC chemokine receptors and chronic inflammation–therapeutic opportunities and pharmacological challenges. Pharmacol Rev. 2013;65(1):47–89. doi:10.1124/pr.111.005074.
  • Kraemer L, McKay DM, Russo RC, et al. Chemokines and chemokine receptors: Insights from human disease and experimental models of helminthiasis. Cytokine Growth Factor Rev. 2022;66:38–52. doi:10.1016/j.cytogfr.2022.05.002.
  • Seed JR. Protozoa: Pathogenesis and defenses. In: S. Baron, ed. Medical microbiology. Galveston, TX: University of Texas Medical Branch at Galveston Copyright © 1996, The University of Texas Medical Branch at Galveston; 1996
  • Arsić-Arsenijević V, et al. Characteristics of the immune response in protozoan infections. Med Pregl. 2003;56(11-12):557–563.
  • Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. Febs J. 2018;285(16):2944–2971. doi:10.1111/febs.14466.
  • Villegas-Mendez A, Greig R, Shaw TN, et al. IFN-γ-producing CD4+ T cells promote experimental cerebral malaria by modulating CD8+ T cell accumulation within the brain. J Immunol. 2012;189(2):968–979. doi:10.4049/jimmunol.1200688.
  • Ponte-Sucre A. An overview of trypanosoma brucei infections: an intense host-parasite interaction. Front Microbiol. 2016;7:2126. doi:10.3389/fmicb.2016.02126.
  • Reid MB, Li Y-P. Tumor necrosis factor-α and muscle wasting: a cellular perspective. Respir Res. 2001;2(5):269–272. doi:10.1186/rr67.
  • Song X, Wei W, Cheng W, et al. Cerebral malaria induced by plasmodium falciparum: clinical features, pathogenesis, diagnosis, and treatment. Front Cell Infect Microbiol. 2022;12:939532. doi:10.3389/fcimb.2022.939532.
  • Roggero E, Piazzon I, Nepomnaschy I, et al. Thymocyte depletion during acute Trypanosoma cruzi infection in C57BL/6 mice is partly reverted by lipopolysaccharide pretreatment. FEMS Immunol Med Microbiol. 2004;41(2):123–131. doi:10.1016/j.femsim.2004.02.003.
  • Niu X, Wang H, Fu ZF. Role of chemokines in rabies pathogenesis and protection. Adv Virus Res. 2011;79:73–89. doi:10.1016/B978-0-12-387040-7.00005-6
  • McColl SR. Chemokines and dendritic cells: a crucial alliance. Immunol Cell Biol. 2002;80(5):489–496. doi:10.1046/j.1440-1711.2002.01113.x.
  • Rostène W, Kitabgi P, Parsadaniantz SM. Chemokines: a new class of neuromodulator? Nat Rev Neurosci. 2007;8(11):895–903. doi:10.1038/nrn2255.
  • Mélik-Parsadaniantz S, Rostène W. Chemokines and neuromodulation. J Neuroimmunol. 2008;198(1-2):62–68. doi:10.1016/j.jneuroim.2008.04.022.
  • Perpiñá-Viciano C, Işbilir A, Zarca A, et al. Kinetic analysis of the early signaling steps of the human chemokine receptor CXCR4. Mol Pharmacol. 2020;98(2):72–87. doi:10.1124/mol.119.118448.
  • Wong MM, Fish EN. Chemokines: attractive mediators of the immune response. Semin Immunol. 2003;15(1):5–14. doi:10.1016/s1044-5323(02)00123-9.
  • Oo YH, Adams DH. The role of chemokines in the recruitment of lymphocytes to the liver. J Autoimmun. 2010;34(1):45–54. doi:10.1016/j.jaut.2009.07.011.
  • Chen K, Bao Z, Tang P, et al. Chemokines in homeostasis and diseases. Cell Mol Immunol. 2018;15(4):324–334. doi:10.1038/cmi.2017.134.
  • Raz E, Mahabaleshwar H. Chemokine signaling in embryonic cell migration: a fisheye view. Development. 2009;136(8):1223–1229. doi:10.1242/dev.022418.
  • Williams JL, Holman DW, Klein RS. Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers. Front Cell Neurosci. 2014;8:154. doi:10.3389/fncel.2014.00154.
  • Ozga AJ, Chow MT, Luster AD. Chemokines and the immune response to cancer. Immunity. 2021;54(5):859–874. doi:10.1016/j.immuni.2021.01.012.
  • Rajagopalan L, Rajarathnam K. Structural basis of chemokine receptor function–a model for binding affinity and ligand selectivity. Biosci Rep. 2006;26(5):325–339. doi:10.1007/s10540-006-9025-9.
  • Bird S, Tafalla C. Teleost chemokines and their receptors. Biology (Basel). 2015;4(4):756–784. doi:10.3390/biology4040756.
  • Ulvmar MH, Hub E, Rot A. Atypical chemokine receptors. Exp Cell Res. 2011;317(5):556–568. doi:10.1016/j.yexcr.2011.01.012.
  • Bonecchi R, Graham GJ. Atypical chemokine receptors and their roles in the resolution of the inflammatory response. Front Immunol. 2016;7:224. doi:10.3389/fimmu.2016.00224.
  • Nibbs RJ, Graham GJ. Immune regulation by atypical chemokine receptors. Nat Rev Immunol. 2013;13(11):815–829. doi:10.1038/nri3544.
  • Bussmann J, Raz E. Chemokine-guided cell migration and motility in zebrafish development. Embo J. 2015;34(10):1309–1318. doi:10.15252/embj.201490105.
  • Stone MJ, et al. Mechanisms of regulation of the chemokine-receptor network. Int J Mol Sci. 2017;18(2):342. doi:10.3390/ijms18020342.
  • Malet-Engra G, Yu W, Oldani A, et al. Collective cell motility promotes chemotactic prowess and resistance to chemorepulsion. Curr Biol. 2015;25(2):242–250. doi:10.1016/j.cub.2014.11.030.
  • Tharp WG, Yadav R, Irimia D, et al. Neutrophil chemorepulsion in defined interleukin-8 gradients in vitro and in vivo. J Leukoc Biol. 2006;79(3):539–554. doi:10.1189/jlb.0905516.
  • Poznansky MC, Olszak IT, Foxall R, et al. Active movement of T cells away from a chemokine. Nat Med. 2000;6(5):543–548. doi:10.1038/75022.
  • Poznansky MC, Olszak IT, Evans RH, et al. Thymocyte emigration is mediated by active movement away from stroma-derived factors. J Clin Invest. 2002;109(8):1101–1110. doi:10.1172/JCI0213853.
  • López-Cotarelo P, Gómez-Moreira C, Criado-García O, et al. Beyond chemoattraction: Multifunctionality of chemokine receptors in leukocytes. Trends Immunol. 2017;38(12):927–941. doi:10.1016/j.it.2017.08.004.
  • Le Y, et al. Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell Mol Immunol. 2004;1(2):95–104.
  • Tang P, Wang JM. Chemokines: the past, the present and the future. Cell Mol Immunol. 2018;15(4):295–298. doi:10.1038/cmi.2018.9.
  • Russo RC, Garcia CC, Teixeira MM, et al. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev Clin Immunol. 2014;10(5):593–619. doi:10.1586/1744666X.2014.894886.
  • Wolf M, Moser B. Antimicrobial activities of chemokines: Not just a side-effect? Front Immunol. 2012;3:213. doi:10.3389/fimmu.2012.00213.
  • Mitroulis I, Alexaki VI, Kourtzelis I, et al. Leukocyte integrins: role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacol Ther. 2015;147:123–135. doi:10.1016/j.pharmthera.2014.11.008.
  • Hyun YM, Lefort CT, Kim M. Leukocyte integrins and their ligand interactions. Immunol Res. 2009;45(2-3):195–208. doi:10.1007/s12026-009-8101-1.
  • Dixit N, Simon SI. Chemokines, selectins and intracellular calcium flux: temporal and spatial cues for leukocyte arrest. Front Immunol. 2012;3:188. doi:10.3389/fimmu.2012.00188.
  • Ramesh G, MacLean AG, Philipp MT. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm. 2013;2013:480739–480720. doi:10.1155/2013/480739.
  • Lira SA, Furtado GC. The biology of chemokines and their receptors. Immunol Res. 2012;54(1-3):111–120. doi:10.1007/s12026-012-8313-7.
  • Strieter RM, Burdick MD, Gomperts BN, et al. CXC chemokines in angiogenesis. Cytokine Growth Factor Rev. 2005;16(6):593–609. doi:10.1016/j.cytogfr.2005.04.007.
  • Kalyanaraman M, Heidemann SM, Sarnaik AP. Macrophage inflammatory protein-2 predicts acute lung injury in endotoxemia. J Investig Med. 1998;46(6):275–278.
  • Deshmane SL, Kremlev S, Amini S, et al. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res. 2009;29(6):313–326. doi:10.1089/jir.2008.0027.
  • Rojas-López AE, Soldevila G, Meza-Pérez S, et al. CCR9+ T cells contribute to the resolution of the inflammatory response in a mouse model of intestinal amoebiasis. Immunobiology. 2012;217(8):795–807. doi:10.1016/j.imbio.2012.04.005.
  • Watanabe K, Petri WA. Learning from the research on amebiasis and gut microbiome: Is stimulation by gut flora essential for effective neutrophil mediated protection from external pathogens? Gut Microbes. 2019;10(1):100–104. doi:10.1080/19490976.2018.1479626.
  • Watanabe K, Gilchrist CA, Uddin MJ, et al. Microbiome-mediated neutrophil recruitment via CXCR2 and protection from amebic colitis. PLoS Pathog. 2017;13(8):e1006513. doi:10.1371/journal.ppat.1006513.
  • Lantier L, Lacroix-Lamandé S, Potiron L, et al. Intestinal CD103+ dendritic cells are key players in the innate immune control of Cryptosporidium parvum infection in neonatal mice. PLoS Pathog. 2013;9(12):e1003801. doi:10.1371/journal.ppat.1003801.
  • Wang H-C, Dann SM, Okhuysen PC, et al. High levels of CXCL10 are produced by intestinal epithelial cells in AIDS patients with active cryptosporidiosis but not after reconstitution of immunity. Infect Immun. 2007;75(1):481–487.
  • Crawford CK, Kol A. The mucosal innate immune response to cryptosporidium parvum, a global one health issue. Front Cell Infect Microbiol. 2021;11:689401. doi:10.3389/fcimb.2021.689401.
  • Guesdon W, Auray G, Pezier T, et al. CCL20 displays antimicrobial activity against cryptosporidium parvum, but its expression is reduced during infection in the intestine of neonatal mice. J Infect Dis. 2015;212(8):1332–1340. doi:10.1093/infdis/jiv206.
  • Pantenburg B, Dann SM, Wang H-C, et al. Intestinal immune response to human Cryptosporidium sp. infection. Infect Immun. 2008;76(1):23–29. doi:10.1128/IAI.00960-07.
  • Ritter U, Moll H, Laskay T, et al. Differential expression of chemokines in patients with localized and diffuse cutaneous American leishmaniasis. J Infect Dis. 1996;173(3):699–709. doi:10.1093/infdis/173.3.699.
  • Reis MLC, Ferreira VM, Zhang X, et al. Murine immune response induced by Leishmania major during the implantation of paraffin tablets. Virchows Arch. 2010;457(5):609–618. doi:10.1007/s00428-010-0974-9.
  • Conrad SM, Strauss-Ayali D, Field AE, et al. Leishmania-derived murine monocyte chemoattractant protein 1 enhances the recruitment of a restrictive population of CC chemokine receptor 2-positive macrophages. Infect Immun. 2007;75(2):653–665. doi:10.1128/IAI.01314-06.
  • Ritter U, Moll H. Monocyte chemotactic protein-1 stimulates the killing of leishmania major by human monocytes, acts synergistically with IFN-gamma and is antagonized by IL-4. Eur J Immunol. 2000;30(11):3111–3120. doi:10.1002/1521-4141(200011)30:11<3111::AID-IMMU3111>3.0.CO;2-O.
  • Santiago HdC, Oliveira CF, Santiago L, et al. Involvement of the chemokine RANTES (CCL5) in resistance to experimental infection with Leishmania major. Infect Immun. 2004;72(8):4918–4923. doi:10.1128/IAI.72.8.4918-4923.2004.
  • Oghumu S, Lezama-Dávila CM, Isaac-Márquez AP, et al. Role of chemokines in regulation of immunity against leishmaniasis. Exp Parasitol. 2010;126(3):389–396. doi:10.1016/j.exppara.2010.02.010.
  • Vester B, Müller K, Solbach W, et al. Early gene expression of NK cell-activating chemokines in mice resistant to Leishmania major. Infect Immun. 1999;67(6):3155–3159. doi:10.1128/IAI.67.6.3155-3159.1999.
  • Steigerwald M, Moll H. Leishmania major modulates chemokine and chemokine receptor expression by dendritic cells and affects their migratory capacity. Infect Immun. 2005;73(4):2564–2567. doi:10.1128/IAI.73.4.2564-2567.2005.
  • Rot A, von Andrian UH. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol. 2004;22(1):891–928. doi:10.1146/annurev.immunol.22.012703.104543.
  • Ato M, Nakano H, Kakiuchi T, et al. Localization of marginal zone macrophages is regulated by C-C chemokine ligands 21/19. J Immunol. 2004;173(8):4815–4820. doi:10.4049/jimmunol.173.8.4815.
  • Ato M, Stäger S, Engwerda CR, et al. Defective CCR7 expression on dendritic cells contributes to the development of visceral leishmaniasis. Nat Immunol. 2002;3(12):1185–1191. doi:10.1038/ni861.
  • Engwerda CR, Ato M, Cotterell SEJ, et al. A role for tumor necrosis factor-alpha in remodeling the splenic marginal zone during Leishmania donovani infection. Am J Pathol. 2002;161(2):429–437. doi:10.1016/s0002-9440(10)64199-5.
  • Engwerda CR, Ato M, Kaye PM. Macrophages, pathology and parasite persistence in experimental visceral leishmaniasis. Trends Parasitol. 2004;20(11):524–530. doi:10.1016/j.pt.2004.08.009.
  • Awasthi A, Mathur RK, Saha B. Immune response to Leishmania infection. Indian J Med Res. 2004;119(6):238–258.
  • Bhattacharyya S, Ghosh S, Dasgupta B, et al. Chemokine-induced leishmanicidal activity in murine macrophages via the generation of nitric oxide. J Infect Dis. 2002;185(12):1704–1708. doi:10.1086/340820.
  • Brandonisio O, Panaro MA, Fumarola I, et al. Macrophage chemotactic protein-1 and macrophage inflammatory protein-1 alpha induce nitric oxide release and enhance parasite killing in Leishmania infantum-infected human macrophages. Clin Exp Med. 2002;2(3):125–129. doi:10.1007/s102380200017.
  • Dey R, Majumder N, Bhattacharyya Majumdar S, et al. Induction of host protective Th1 immune response by chemokines in Leishmania donovani-infected BALB/c mice. Scand J Immunol. 2007;66(6):671–683. doi:10.1111/j.1365-3083.2007.02025.x.
  • Dey R, Sarkar A, Majumder N, et al. Regulation of impaired protein kinase C signaling by chemokines in murine macrophages during visceral leishmaniasis. Infect Immun. 2005;73(12):8334–8344. doi:10.1128/IAI.73.12.8334-8344.2005.
  • Sponaas A-M, Freitas do Rosario AP, Voisine C, et al. Migrating monocytes recruited to the spleen play an important role in control of blood stage malaria. Blood. 2009;114(27):5522–5531. doi:10.1182/blood-2009-04-217489.
  • Serbina NV, Jia T, Hohl TM, et al. Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol. 2008;26(1):421–452. doi:10.1146/annurev.immunol.26.021607.090326.
  • Clark CJ, Phillips RS. Cerebral malaria protection in mice by species-specific Plasmodium coinfection is associated with reduced CC chemokine levels in the brain. Parasite Immunol. 2011;33(11):637–641. doi:10.1111/j.1365-3024.2011.01329.x.
  • Garnica MR, Souto JT, Silva JS, et al. Stromal cell derived factor 1 synthesis by spleen cells in rodent malaria, and the effects of in vivo supplementation of SDF-1alpha and CXCR4 receptor blocker. Immunol Lett. 2002;83(1):47–53. doi:10.1016/s0165-2478(02)00067-6.
  • Nie CQ, Bernard NJ, Norman MU, et al. IP-10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection. PLoS Pathog. 2009;5(4):e1000369. doi:10.1371/journal.ppat.1000369.
  • Ioannidis LJ, Nie CQ, Hansen DS. The role of chemokines in severe malaria: more than meets the eye. Parasitology. 2014;141(5):602–613. doi:10.1017/S0031182013001984.
  • Wilson NO, Solomon W, Anderson L, et al. Pharmacologic inhibition of CXCL10 in combination with anti-malarial therapy eliminates mortality associated with murine model of cerebral malaria. PLoS One. 2013;8(4):e60898. doi:10.1371/journal.pone.0060898.
  • Fernandes AAM, Carvalho LJdM, Zanini GM, et al. Similar cytokine responses and degrees of anemia in patients with Plasmodium falciparum and Plasmodium vivax infections in the Brazilian Amazon region. Clin Vaccine Immunol. 2008;15(4):650–658. doi:10.1128/CVI.00475-07.
  • Appay V, Rowland-Jones SL. RANTES: a versatile and controversial chemokine. Trends Immunol. 2001;22(2):83–87. doi:10.1016/s1471-4906(00)01812-3.
  • Were T, Hittner JB, Ouma C, et al. Suppression of RANTES in children with Plasmodium falciparum malaria. Haematologica. 2006;91(10):1396–1399.
  • Menzies FM, Macphail D, Henriquez FL. The role of chemokines and their receptors during protist parasite infections. Parasitology. 2016;143(14):1890–1901. doi:10.1017/S0031182016001694.
  • Khan IA, Thomas SY, Moretto MM, et al. CCR5 is essential for NK cell trafficking and host survival following Toxoplasma gondii infection. PLoS Pathog. 2006;2(6):e49. doi:10.1371/journal.ppat.0020049.
  • Khan IA, MacLean JA, Lee FS, et al. IP-10 is critical for effector T cell trafficking and host survival in Toxoplasma gondii infection. Immunity. 2000;12(5):483–494. doi:10.1016/s1074-7613(00)80200-9.
  • Brenier-Pinchart MP, Pelloux H, Simon J, et al. Toxoplasma gondii induces the secretion of monocyte chemotactic protein-1 in human fibroblasts, in vitro. Mol Cell Biochem. 2000;209(1-2):79–87. doi:10.1023/a:1007075701551.
  • Hardison JL, Wrightsman RA, Carpenter PM, et al. The CC chemokine receptor 5 is important in control of parasite replication and acute cardiac inflammation following infection with Trypanosoma cruzi. Infect Immun. 2006;74(1):135–143. doi:10.1128/IAI.74.1.135-143.2006.
  • Marino APMP, Silva AA, Santos PVA, et al. CC-chemokine receptors: a potential therapeutic target for Trypanosoma cruzi-elicited myocarditis. Mem Inst Oswaldo Cruz. 2005;100 Suppl 1(suppl 1):93–96. doi:10.1590/s0074-02762005000900015.
  • Chalmers, R.M., Chapter Eighteen - Entamoeba histolytica. In: S. L. Percival, et al. eds. Microbiology of waterborne diseases. 2nd ed. London: Academic Press; 2014:355–373.
  • Nichols GL. Protozoa: Entamoeba histolytica. In Y. Motarjemi, ed. Encyclopedia of food safety. Waltham: Academic Press; 2014:31–36.
  • Costa CAX, Fonseca THS, Oliveira FMS, et al. Influence of inflammation on parasitism and area of experimental amoebic liver abscess: an ­immunohistochemical and morphometric study. Parasit Vectors. 2011;4(1):27. doi:10.1186/1756-3305-4-27.
  • Fonseca Z, Díaz-Godínez C, Mora N, et al. Entamoeba histolytica induce signaling via Raf/MEK/ERK for neutrophil extracellular trap (NET) formation. Front Cell Infect Microbiol. 2018;8:226. doi:10.3389/fcimb.2018.00226.
  • Eckmann L, Reed SL, Smith JR, et al. Entamoeba histolytica trophozoites induce an inflammatory cytokine response by cultured human cells through the paracrine action of cytolytically released interleukin-1 alpha. J Clin Invest. 1995;96(3):1269–1279. doi:10.1172/JCI118161.
  • Dickson-Gonzalez SM, de Uribe ML, Rodriguez-Morales AJ. Polymorphonuclear neutrophil infiltration intensity as consequence of Entamoeba histolytica density in amebic colitis. Surg Infect (Larchmt). 2009;10(2):91–97. doi:10.1089/sur.2008.011.
  • Carrero JC, Reyes-López M, Serrano-Luna J, et al. Intestinal amoebiasis: 160 years of its first detection and still remains as a health problem in developing countries. Int J Med Microbiol. 2020;310(1):151358. doi:10.1016/j.ijmm.2019.151358.
  • Bansal D, Ave P, Kerneis S, et al. An ex-vivo human intestinal model to study Entamoeba histolytica pathogenesis. PLoS Negl Trop Dis. 2009;3(11):e551. doi:10.1371/journal.pntd.0000551.
  • Leitch GJ, He Q. Cryptosporidiosis-an overview. J Biomed Res. 2012;25(1):1–16. doi:10.1016/S1674-8301(11)60001-8.
  • Ahmed SA, Karanis P. Cryptosporidium and cryptosporidiosis: The perspective from the gulf countries. Int J Environ Res Public Health. 2020;17(18):6824. doi:10.3390/ijerph17186824.
  • Yang D, Chen Q, Hoover DM, et al. Many chemokines including CCL20/MIP-3alpha display antimicrobial activity. J Leukoc Biol. 2003;74(3):448–455. doi:10.1189/jlb.0103024.
  • Lacroix-Lamandé S, Mancassola R, Auray G, et al. CCR5 is involved in controlling the early stage of Cryptosporidium parvum infection in neonates but is dispensable for parasite elimination. Microbes and Infection. 2008;10(4):390–395. doi:10.1016/j.micinf.2007.12.020.
  • Campbell LD, Stewart JN, Mead JR. Susceptibility to Cryptosporidium parvum infections in cytokine- and chemokine-receptor knockout mice. J Parasitol. 2002;88(5):1014–1016. doi:10.1645/0022-3395(2002)088[1014:STCPII]2.0.CO;2.
  • Wheeler RJ, Gluenz E, Gull K. The cell cycle of Leishmania: morphogenetic events and their implications for parasite biology. Mol Microbiol. 2011;79(3):647–662. doi:10.1111/j.1365-2958.2010.07479.x.
  • Hernández-Bojorge SE, Blass-Alfaro GG, Rickloff MA, et al. Epidemiology of cutaneous and mucocutaneous leishmaniasis in Nicaragua. Parasite Epidemiol Control. 2020;11:e00192. doi:10.1016/j.parepi.2020.e00192.
  • Schlein Y, Jacobson RL, Messer G. Leishmania infections damage the feeding mechanism of the sandfly vector and implement parasite transmission by bite. Proc Natl Acad Sci USA. 1992;89(20):9944–9948. doi:10.1073/pnas.89.20.9944.
  • Costa-da-Silva AC, et al. Immune responses in leishmaniasis: An overview. Trop Med Infect Dis. 2022;7(4):54. doi:10.3390/tropicalmed7040054.
  • Yasmin H, Adhikary A, Al-Ahdal MN, et al. Host–pathogen interaction in leishmaniasis: immune response and vaccination strategies. Immuno. 2022;2(1):218–254. doi:10.3390/immuno2010015.
  • Volpedo G, Pacheco-Fernandez T, Holcomb EA, et al. Mechanisms of immunopathogenesis in cutaneous leishmaniasis and post kala-azar dermal leishmaniasis (PKDL). Front Cell Infect Microbiol. 2021;11:685296. doi:10.3389/fcimb.2021.685296.
  • Bandeira Ferreira FL, Séguin O, Descoteaux A, et al. Persistent cutaneous leishmania major infection promotes infection-adapted myelopoiesis. Microorganisms. 2022;10(3):535. doi:10.3390/microorganisms10030535.
  • Yorek MS, Poudel B, Mazgaeen L, et al. Leishmania major degrades murine CXCL1 - An immune evasion strategy. PLoS Negl Trop Dis. 2019;13(7):e0007533. doi:10.1371/journal.pntd.0007533.
  • Ribeiro-Gomes FL, Sacks D. The influence of early neutrophil-Leishmania interactions on the host immune response to infection. Front Cell Infect Microbiol. 2012;2:59. doi:10.3389/fcimb.2012.00059.
  • Rabhi I, Rabhi S, Ben-Othman R, et al. Comparative analysis of resistant and susceptible macrophage gene expression response to Leishmania major parasite. BMC Genomics. 2013;14(1):723. doi:10.1186/1471-2164-14-723.
  • Elmahallawy EK, Alkhaldi AAM, Saleh AA. Host immune response against leishmaniasis and parasite persistence strategies: a review and assessment of recent research. Biomed Pharmacother. 2021;139:111671. doi:10.1016/j.biopha.2021.111671.
  • Brenier-Pinchart MP, Pelloux H, Derouich-Guergour D, et al. Chemokines in host-protozoan-parasite interactions. Trends Parasitol. 2001;17(6):292–296. doi:10.1016/s1471-4922(01)01902-x.
  • Eufrásio de Figueiredo WM, Heredia FF, Santos AS, et al. CXCL10 treatment promotes reduction of IL-10+ regulatory T (Foxp3+ and Tr1) cells in the spleen of BALB/c mice infected by Leishmania infantum. Exp Parasitol. 2019;207:107789. doi:10.1016/j.exppara.2019.107789.
  • Bhattacharyya S, Dey R, Majumder N, et al. A novel approach to regulate experimental visceral leishmaniasis in murine macrophages using CCR5 siRNA. Scand J Immunol. 2008;67(4):345–353.
  • Sato S. Plasmodium-a brief introduction to the parasites causing human malaria and their basic biology. J Physiol Anthropol. 2021;40(1):1. doi:10.1186/s40101-020-00251-9.
  • Scholar E. Malaria, in xPharm: the comprehensive pharmacology reference. S. J. Enna and D. B. Bylund, eds. Elsevier: New York; 2007:1–5.
  • Awasthi V, Gupta Y, Chauhan R, et al. Growth inhibition of plasmodium falciparum by Nano-molar concentrations of 1-(4‑hydroxy-3-methoxyphenyl) decan-3-one (6-paradol); is a cure at hand? Phytomedicine Plus. 2022;2(1):100208. doi:10.1016/j.phyplu.2021.100208.
  • Hopp CS, Sinnis P. The innate and adaptive response to mosquito saliva and Plasmodium sporozoites in the skin. Ann N Y Acad Sci. 2015;1342(1):37–43. doi:10.1111/nyas.12661.
  • Kwapong SS, Asare KK, Kusi KA, et al. Mosquito bites and stage-specific antibody responses against Plasmodium falciparum in southern Ghana. Malar J. 2023;22(1):126. doi:10.1186/s12936-023-04557-8.
  • Chaudhary A, Kataria P, Surela N, et al. Pathophysiology of cerebral malaria: implications of MSCs as a regenerative medicinal tool. Bioengineering (Basel). 2022;9(6):263. doi:10.3390/bioengineering9060263.
  • Belachew EB. Immune response and evasion mechanisms of plasmodium falciparum parasites. J Immunol Res. 2018;2018:6529681–6529686. doi:10.1155/2018/6529681.
  • Gonzales SJ, Reyes RA, Braddom AE, et al. Naturally acquired humoral immunity against plasmodium falciparum malaria. Front Immunol. 2020;11:594653. doi:10.3389/fimmu.2020.594653.
  • Chauhan R, Awasthi V, Thakur RS, et al. CD4(+)ICOS(+)Foxp3(+): a sub-population of regulatory T cells contribute to malaria pathogenesis. Malar J. 2022;21(1):32. doi:10.1186/s12936-022-04055-3.
  • Chauhan R, et al. CD4 + ICOS + Foxp3 + regulatory T cells: a novel sub-population associated with pathogenesis of malaria. Current Overview on Disease and Health Research. 2023;9:109–126.
  • King T, Lamb T. Interferon-γ: the Jekyll and hyde of malaria. PLoS Pathog. 2015;11(10):e1005118. doi:10.1371/journal.ppat.1005118.
  • Gowda NM, Wu X, Gowda DC. TLR9 and MyD88 are crucial for the development of protective immunity to malaria. J Immunol. 2012;188(10):5073–5085. doi:10.4049/jimmunol.1102143.
  • Awasthi V, et al. Effect of L-arginine on the growth of Plasmodium falciparum and immune modulation of host cells. Journal of Vector Borne Diseases. 2017;54(2):139–145.
  • Iwalokun BA, Bamiro SB, Ogunledun A. Levels and interactions of plasma xanthine oxidase, catalase and liver function parameters in Nigerian children with Plasmodium falciparum infection. APMIS. 2006;114(12):842–850. doi:10.1111/j.1600-0463.2006.apm_457.x.
  • Ty MC, Zuniga M, Götz A, et al. Malaria inflammation by xanthine oxidase-produced reactive oxygen species. EMBO Mol Med. 2019;11(8):e9903. doi:10.15252/emmm.201809903.
  • Awasthi V, Chauhan R, Das J. Administration of L-citrulline prevents Plasmodium growth by inhibiting/modulating T-regulatory cells during malaria pathogenesis. J Vector Borne Dis. 2022;59(1):45–51. doi:10.4103/0972-9062.325640.
  • Pollenus E, Pham T-T, Vandermosten L, et al. CCR2 is dispensable for disease resolution but required for the restoration of leukocyte homeostasis upon experimental malaria-associated acute respiratory distress syndrome. Front Immunol. 2020;11:628643. doi:10.3389/fimmu.2020.628643.
  • Belnoue E, Costa FTM, Vigário AM, et al. Chemokine receptor CCR2 is not essential for the development of experimental cerebral malaria. Infect Immun. 2003;71(6):3648–3651. doi:10.1128/IAI.71.6.3648-3651.2003.
  • van der Heyde HC, Batchelder JM, Sandor M, et al. Gammadelta T cells but not NK cells are essential for cell-mediated immunity against Plasmodium chabaudi malaria. Infect Immun. 2006;74(5):2717–2725. doi:10.1128/IAI.00539-10.
  • Hojo-Souza NS, Pereira DB, de Souza FSH, et al. On the cytokine/chemokine network during Plasmodium vivax malaria: new insights to understand the disease. Malar J. 2017;16(1):42. doi:10.1186/s12936-017-1683-5.
  • Yadav A, Saini V, Arora S. MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta. 2010;411(21-22):1570–1579. doi:10.1016/j.cca.2010.07.006.
  • Biswas P, Delfanti F, Bernasconi S, et al. Interleukin-6 induces monocyte chemotactic protein-1 in peripheral blood mononuclear cells and in the U937 cell line. Blood. 1998;91(1):258–265. doi:10.1182/blood.V91.1.258.
  • Liu M, et al. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev. 2011;22(3):121–130.
  • Weaver CT, Hatton RD, Mangan PR, et al. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol. 2007;25(1):821–852. doi:10.1146/annurev.immunol.25.022106.141557.
  • Armah HB, Wilson NO, Sarfo BY, et al. Cerebrospinal fluid and serum biomarkers of cerebral malaria mortality in Ghanaian children. Malar J. 2007;6(1):147. doi:10.1186/1475-2875-6-147.
  • Jain V, Singh PP, Silawat N, et al. A preliminary study on pro- and anti-inflammatory cytokine profiles in Plasmodium vivax malaria patients from central zone of India. Acta Trop. 2010;113(3):263–268. doi:10.1016/j.actatropica.2009.11.009.
  • Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491. doi:10.3389/fimmu.2014.00491.
  • Ajioka JW, Morrissette NS. A century of Toxoplasma research. Int J Parasitol. 2009;39(8):859–860. doi:10.1016/j.ijpara.2009.02.006.
  • Ferguson DJ. Toxoplasma gondii: 1908-2008, homage to Nicolle, Manceaux and Splendore. Mem Inst Oswaldo Cruz. 2009;104(2):133–148. doi:10.1590/s0074-02762009000200003.
  • Shapiro K, Bahia-Oliveira L, Dixon B, et al. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food Waterborne Parasitol. 2019;15:e00049. doi:10.1016/j.fawpar.2019.e00049.
  • Hill D, Dubey JP. Toxoplasma gondii: transmission, diagnosis and prevention. Clin Microbiol Infect. 2002;8(10):634–640. doi:10.1046/j.1469-0691.2002.00485.x.
  • Aliberti J, Valenzuela JG, Carruthers VB, et al. Molecular mimicry of a CCR5 binding-domain in the microbial activation of dendritic cells. Nat Immunol. 2003;4(5):485–490. doi:10.1038/ni915.
  • Ibrahim HM, Xuan X, Nishikawa Y. Toxoplasma gondii cyclophilin 18 regulates the proliferation and migration of murine macrophages and spleen cells. Clin Vaccine Immunol. 2010;17(9):1322–1329. doi:10.1128/CVI.00128-10.
  • Ibrahim HM, Bannai H, Xuan X, et al. Toxoplasma gondii cyclophilin 18-mediated production of nitric oxide induces Bradyzoite conversion in a CCR5-dependent manner. Infect Immun. 2009;77(9):3686–3695. doi:10.1128/IAI.00361-09.
  • Ibrahim HM, Nishimura M, Tanaka S, et al. Overproduction of Toxoplasma gondii cyclophilin-18 regulates host cell migration and enhances parasite dissemination in a CCR5-independent manner. BMC Microbiol. 2014;14(1):76. doi:10.1186/1471-2180-14-76.
  • Halonen SK, Taylor GA, Weiss LM. Gamma interferon-induced inhibition of Toxoplasma gondii in astrocytes is mediated by IGTP. Infect Immun. 2001;69(9):5573–5576. doi:10.1128/IAI.69.9.5573-5576.2001.
  • Baral TN. Immunobiology of African trypanosomes: need of alternative interventions. J Biomed Biotechnol. 2010;2010:389153–389124. doi:10.1155/2010/389153.
  • Onyilagha C, Uzonna JE. Host immune responses and immune evasion strategies in african trypanosomiasis. Front Immunol. 2019;10:2738. doi:10.3389/fimmu.2019.02738.
  • Kuzoe FA. Current situation of African trypanosomiasis. Acta Trop. 1993;54(3-4):153–162. doi:10.1016/0001-706x(93)90089-t.
  • Aliberti JC, Machado FS, Gazzinelli RT, et al. Platelet-activating factor induces nitric oxide synthesis in Trypanosoma cruzi-infected macrophages and mediates resistance to parasite infection in mice. Infect Immun. 1999;67(6):2810–2814. doi:10.1128/IAI.67.6.2810-2814.1999.
  • Noël W, Hassanzadeh G, Raes G, et al. Infection Stage-Dependent Modulation of Macrophage Activation in Trypanosoma congolense-Resistant and -Susceptible Mice. Infect Immun. 2002;70(11):6180–6187. doi:10.1128/IAI.70.11.6180-6187.2002.
  • Bachelerie F, Ben-Baruch A, Burkhardt AM, et al. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev. 2014;66(1):1–79. doi:10.1124/pr.113.007724.
  • Graham GJ, Locati M, Mantovani A, et al. The biochemistry and biology of the atypical chemokine receptors. Immunol Lett. 2012;145(1-2):30–38. doi:10.1016/j.imlet.2012.04.004.
  • Chaudhuri A, et al. The major glycoprotein of the Duffy blood-group antigen (Gpd), which is the malarial Plasmodium-vivax erythrocyte receptor is also a novel class of chemokine receptor and is present in brain, kidney, lung, thymus, and spleen. Faseb J. 1994.
  • Kima P, Soong L. Interferon gamma in leishmaniasis. Front Immunol. 2013;4:156. doi:10.3389/fimmu.2013.00156.
  • Hoge J, Yan I, Jänner N, et al. IL-6 controls the innate immune response against listeria monocytogenes via classical IL-6 Signaling. J Immunol. 2013;190(2):703–711. doi:10.4049/jimmunol.1201044.
  • Dunst J, Kamena F, Matuschewski K. Cytokines and chemokines in cerebral malaria pathogenesis. Front Cell Infect Microbiol. 2017;7:324. doi:10.3389/fcimb.2017.00324.
  • Amezcua Vesely MC, Rodríguez C, Gruppi A, et al. Interleukin-17 mediated immunity during infections with Trypanosoma cruzi and other protozoans. Biochim Biophys Acta Mol Basis Dis. 2020;1866(5):165706. doi:10.1016/j.bbadis.2020.165706.
  • Mantovani A, Sica A, Sozzani S, et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–686. doi:10.1016/j.it.2004.09.015.
  • Politz O, Kodelja V, Guillot P, et al. Pseudoexons and regulatory elements in the genomic sequence of the β-chemokine, alternative macrophage activation-associated cc-chemokine (AMAC)-1. Cytokine. 2000;12(2):120–126. doi:10.1006/cyto.1999.0538.
  • Qi W, Chen X, Polhill TS, et al. TGF-beta1 induces IL-8 and MCP-1 through a connective tissue growth factor-independent pathway. Am J Physiol Renal Physiol. 2006;290(3):F703–9. doi:10.1152/ajprenal.00254.2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.