1,699
Views
1
CrossRef citations to date
0
Altmetric
Articles

Predictive Analytics Machinery for STEM Student Success Studies

, , , &

References

  • Alkhasawneh, R., and R. Hobson (2009). Summer transition program: A model for impacting first-year retention rates for underrepresented groups. Paper presented at the 2009 American Society for Engineering Education Annual Conference, Austin, TX.
  • Alkhasawneh, R., and R. Hobson (2011). Modeling student retention in science and engineering disciplines using neural networks. In Global Engineering Education Conference (EDUCON), 2011 IEEE, 660–63. IEEE.
  • Ameri, S., M. J. Fard, R. B. Chinnam, and C. K. Reddy (2016, October). Survival analysis based framework for early prediction of student dropouts. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, 903–12. ACM.
  • Beck, H. P., and W. D. Davidson. 2001. Establishing an early warning system: Predicting low grades in college students from survey of academic orientations scores. Research in High Education 42(6):709–23. doi:10.1023/A:1012253527960.
  • Beemer, J., K. Spoon, L. He, J. Fan, and R. A. Levine. 2017. Ensemble learning for estimating individualized treatment effects in student success studies. To appear in . International Journal of Artificial Intelligence in Education. doi:10.1007/s40593-017-0148-x.
  • Benbow, C. P. 2012. Identifying and nurturing future innovators in science, technology, engineering, and mathematics: A review of findings from the study of mathematically precocious youth. Peabody Journal of Education 87(1):16–25. doi:10.1080/0161956X.2012.642236.
  • Besterfield-Sacre, M., C. Atman, and L. Shuman. 1997. Characteristics of freshmen engineering students: Models for determining student attrition in engineering. Journal of Engineering Education 86(2):139–49. doi:10.1002/j.2168-9830.1997.tb00277.x.
  • Breiman, L. 2001. Random Forest. Machine Learning 45:5–32. doi:10.1023/A:1010933404324.
  • Breiman, L. (2002). Manual on setting up, using, and understanding random forests. Technical Report, V3.1. http://oz.berkeley.edu/users/breiman.
  • Breiman, L., J. H. Friedman, R. A. Olshen, and C. I. Stone. 1984. Classification and Regression Trees. Belmont, Calif.: Wadsworth.
  • Brown, J. L., G. Halpin, and G. Halpin. 2015. Relationship between high school mathematical achievement and quantitative GPA. Higher Education Studies 5(6):1–8. doi:10.5539/hes.v5n6p1.
  • Burtner, J. 2005. The use of discriminant analysis to investigate the influence of non-cognitive factors on engineering school persistence. Journal of Engineering Education 94(3):335. doi:10.1002/j.2168-9830.2005.tb00858.x.
  • Buuren, S. V., and K. Groothuis-Oudshoorn (1999). Flexible multivariate imputation by MICE. Technical report. Leiden, The Netherlands: TNO prevention and Health.
  • Buuren, S. V., and K. Groothuis-Oudshoorn. 2011. MICE: Multivariate imputation by chained equations. Journal of Statistical Software 45: doi: 10.18637/jss.v045.i03.
  • Carnevale, A., N. Smith, and M. Melton. 2011. STEM: Science, Technology. Georgetown University, Engineering and Mathematics. In Center on Education and the Workforce, Washington, DC. https://cew.georgetown.edu/wp-content/uploads/2014/11/stem-complete.pdf
  • Caruana, R., N. Karampatziakis, and A. Yessenalina (2008). An empirical evaluation of supervised learning in high dimensions, Proceedings of the 25th International Conference on Machine Learning 2008, 96–103.
  • Caruana, R., and A. Niculescu-Mizil (2006). An empirical comparison of supervised learning algorithms, Proceedings of the 23rd International Conference on Machine Learning 2006, 161–68.
  • Chang, W. and Ribeiro, B. B. (2018). shinydashboard. R package version 0.7.0. CRAN. https://cran.r-project.org/web/packages/shinydashboard/index.html
  • Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. 2002. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research 16:321–57.
  • Chen, X., and M. Soldner (2013). STEM attrition: College Students’ Paths Into and Out of STEM fields. Statistical Analysis Report. Report NCES 2014, US Dept. of Education.
  • Chen, X., and T. Weko. 2009. Students Who Study Science, Technology, Engineering, and Mathematics (STEM) in Postsecondary Education. . Washington DC: U.S. Department of Education, National Center for Education Statistics.
  • Chinn, S. 2000. A simple method for converting an odds ratio to effect size for use in meta-analysis. Statistics in Medicine 19(22):3127–31. doi:10.1002/(ISSN)1097-0258.
  • Dika, S. L., and M. M. D’Amico. 2016. Early experiences and integration in the persistence of first-generation college students in STEM and non-STEM majors. Journal of Research in Science Teaching 53(3):368–83. doi:10.1002/tea.21301.
  • Dobson, J. L. 2008. The use of formative online quizzes to enhance class preparation and scores on summative exams. Advances in Physiology Education 32(4):297–302. doi:10.1152/advan.90162.2008.
  • Eddy, S. L., S. E. Brownell, and M. P. Wenderoth. 2014. Gender gaps in achievement and participation in multiple introductory biology Classrooms. CBE-Life Sciences Education 13(3):478–92. doi:10.1187/cbe.13-10-0204.
  • Ehrenberg, R. G. 2010. Analyzing the factors that influence persistence rates in STEM fields majors: Introduction to the symposium. Economics of Education Review 29:888–91. doi:10.1016/j.econedurev.2010.06.012.
  • Feelders, A. 1999. Handling missing data in trees: Surrogate splits or statistical imputation? Zytkow and Rauch 255:329–34.
  • Fernandez-Delgado, M., E. Cernadas, S. Barro, and D. Amorim. 2014. Do we need hundreds of classifiers to solve real world classification problems? Journal of Machine Learning Research 15:3133–81.
  • Fleming, L., S. Ledbetter, D. Williams, and J. McCain. (2008). Engineering students define diversity: An uncommon thread. In 2008 ASEE Conference and Exposition.
  • Genuer, R., V. Michel, E. Eger, and B. Thirion. 2010. Random forests based feature selection for decoding fMRI data. Proceedings Compstat 2010, August 2227, Paris, France 267:1–8.
  • Griff, E. R., and S. F. Matter. 2008. Early identification of at-risk students using a personal response system. British Journal of Educational Technology 39(6):1124–30. doi:10.1111/j.1467-8535.2007.00806.x.
  • Haag, S., and J. Collofello (2008). Engineering undergraduate persistence and contributing factors. ASEE/IEEE Annual Fronters in Educaton Conference (38th), Saratoga Springs, NY.
  • Herzog, S. 2006. Estimating student retention and degree-completion time: Decision trees and neural networks vis-a-vis regression. New Directions for Institutional Research (131):17–33. doi:10.1002/ir.185.
  • James, G., D. Witten, T. Hastie, and R. Tibshirani. 2013. An Introduction to Statistical Learning. New York: Springer.
  • Kassaee, A., and G. H. Rowell (2016). Using digital metaphors to improve student success in mathematics and science. In 10th Annual TN STEM Education Research Conference February 11- 12, 2016 DoubleTree Hotel Murfreesboro, TN (p. 48).
  • Knowles, J. E. 2015. Of needles and haystacks: Building an accurate statewide dropout early warning system in Wisconsin. Journal of Educational Data Mining 7(3):18–67.
  • Lee, O., J. Maerten-Rivera, R. D. Penfield, K. LeRoy, and W. G. Secada. 2008. Science achievement of english language learners in urban elementary schools: Results of a first-year professional development intervention. Journal of Research in Science Teaching 45(1):31–52. doi:10.1002/tea.20209.
  • Lee, U. J., G. C. Sbeglia, M. Ha, S. J. Finch, and R. H. Nehm. 2015. Clicker score trajectories and concept inventory scores as predictors for early warning systems for large STEM classes. Journal of Science Education and Technology 24(6):848–60. doi:10.1007/s10956-015-9568-2.
  • Lin, J. J., P. K. Imbrie, and K. J. Reid. 2009. Student Retention Modelling: An evaluation of different methods and their impact on prediction results. In Research in Engineering Education Sysmposium, 1–6. Palm Cove, Australia: Research in Engineering Education Network (REEN).
  • Louppe, G. (2014). Understanding random forests: From theory to practice. arXiv preprint arXiv:1407.7502.
  • Macfadyen, L. P., and S. Dawson. 2010. Mining LMS Data to Develop an “early warning system” for Educators: A proof of concept. Computers and Education 54(2):588–99. doi:10.1016/j.compedu.2009.09.008.
  • Mendez, G., T. D. Buskirk, S. Lohr, and S. Haag. 2008. Factors associated with persistence in science and engineering majors: An exploratory study using classification trees and random forests. Journal of Engineering Education 97(1):57–70. doi:10.1002/j.2168-9830.2008.tb00954.x.
  • Mitchell, T. L., and A. Daniel. 2007. A Year-long Entry-level College Course Sequence for Enhancing Engineering Student Success. Proceedings of the International Conference on Engineering Education (ICEE), Coimbra, Portugal.
  • Murtaugh, P. A., L. D. Burns, and J. Schuster. 1999. Predicting the retention of university students. Research in Higher Education 40(3):355–71. doi:10.1023/A:1018755201899.
  • Murthy, M. N., E. Chacko, R. Penny, and M. MonirHossain. 2003. Multivariate nearest neighbour imputation. Journal of Statistics in Transition 6:55–66.
  • Neild, R. C., R. Balfanz, and L. Herzog. 2007. An early warning system. Educational Leadership 65(2):28–33.
  • OECD (Organization for Economic Co-operation and Development). 2012. Education At a Glance 2012: OECD indicators. Washington, D. C: OECD Publishing. http://dx.doi.org/10.1787/eag-2012-en.
  • Orr, R., and S. Foster. 2013. Increasing student success using online quizzing in introductory (majors) Biology. CBE-Life Sciences Education 12(3):509–14. doi:10.1187/cbe.12-10-0183.
  • PCAST. 2012. Engage to Excel: Producing one million additional college graduates with degrees in science, technology, engineering, and mathematics. Washington, DC: PCAST.
  • Peterson, P. E., L. Woessmann, E. A. Hanushek, and C. X. Lastra-Anadón (2011). Globally challenged: Are US students ready to compete? The latest on each state’s international standing in math and reading. PEPG 11-03. Program on Education Policy and Governance, Harvard University.
  • R Core Team. 2017. R: A Language for Statistical Computing. Vienna Austria: R Foundation for Statistical Computing. https://www.R-project.org.
  • Raelin, J. A., M. B. Bailey, J. Hamann, L. K. Pendleton, R. Reisberg, and D. L. Whitman. 2015. The role of work experience and self-efficacy in STEM student retention. Journal on Excellence in College Teaching 26(4):29–50.
  • Rath, K. A., A. R. Peterfreund, S. P. Xenos, F. Bayliss, and N. Carnal. 2007. Supplemental Instruction in Introductory Biology I: Enhancing the performance and retention of underrepresented minority students. CBE-Life Sciences Education 6(3):203–16. doi:10.1187/cbe.06-10-0198.
  • Redmond-Sanogo, A., J. Angle, and E. Davis. 2016. Kinks in the STEM Pipeline: Tracking STEM graduation rates using science and mathematics performance. School Science and Mathematics 116(7):378–88. doi:10.1111/ssm.2016.116.issue-7.
  • Richardson, M., C. Abraham, and R. Bond. 2012. Psychological correlates of university students? academic performance: A systematic review and meta-analysis. Psychol Bull 138(2):353–87. doi:10.1037/a0026838.
  • Rosenbaum, P. R. 2002. Observational Studies (2nd ed.). New York: Springer.
  • Sadler, P. M., and R. H. Tai. 2007. The two high pillars supporting college science. Science 317(5837):457–58. doi:10.1126/science.1144214.
  • Schafer, J. L., and J. W. Graham. 2002. Missing data: Our view of the state of the art. Psychological Methods 7:147–77. doi:10.1037/1082-989X.7.2.147.
  • Siemens, G., and P. Long. 2011. Penetrating the fog: Analytics in learning and education. EDUCAUSE Review 46(5):30.
  • Simon, R. A., M. W. Aulls, H. Dedic, K. Hubbard, and N. C. Hall. 2015. Exploring Student Persistence in STEM Programs: A motivational model. Canadian Journal of Education 38(1):1. doi:10.2307/canajeducrevucan.38.2.13.
  • Strobl, C., A. L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis. 2008. Conditional variable importance for random forest. BMC Bioinformatics 9:307. doi:10.1186/1471-2105-9-307.
  • Strobl, C., A. L. Boulesteix, A. Zeileis, and T. Hothorn. 2007. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8:25. doi:10.1186/1471-2105-8-25.
  • Tai, R. H., P. M. Sadler, and J. J. Mintzes. 2006. Factors influencing college science success. Journal of College Science Teaching 35(8):56–60.
  • Thiel, T., S. Peterman, and M. Brown. 2008. Addressing the crisis in college mathematics: Designing courses for student success. Change: the Magazine of Higher Learning 40(4): 44–49. 12. doi:10.3200/CHNG.40.4.44-49.
  • Thompson, E. D., B. V. Bowling, and R. E. Markle. 2018. Predicting student success in a major’s introductory biology course via logistic regression analysis of scientific reasoning ability and mathematics scores. Research in Science Education 48:151–163.
  • Urban, J. E., M. A. Reyes, and M. R. Anderson-Rowland (2002). Minority engineering program computer basics with a vision. In Frontiers in Education, 2002. FIE 2002. 32nd Annual (Vol. 3, pp. S3C-S3C). IEEE.
  • Whalen, D. F., and M. C. Shelley II. 2010. Academic Success for STEM and Non-STEM majors. Journal of STEM Education: Innovations and Research 11(1/2):45.
  • Wilson, B., and S. Shrock (2001). Contributing to success in an introductory computer science course: A study of twelve factors. SIGCSE Bulletin: The proceedings of the Thirty-Second SIGCSE Technical Symposium on Computer Science Education, 33, 184–88.
  • Zhang, Y., Q. Fei, M. Quddus, and C. Davis. 2014. An examination of the impact of early intervention on learning outcomes of at-risk students. Research in Higher Education Journal 26:1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.