3,150
Views
21
CrossRef citations to date
0
Altmetric
Research Article

A Novel Data Augmentation Convolutional Neural Network for Detecting Malaria Parasite in Blood Smear Images

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2033473 | Received 16 Nov 2021, Accepted 20 Jan 2022, Published online: 25 Jan 2022

References

  • Ahuja, A. S. 2019. The impact of artificial intelligence in medicine on the future role of the physician. PeerJ 7:e7702. doi:10.7717/peerj.7702.
  • Alok, N., K. Krishan, and P. Chauhan. 2021. Deep learning‐Based image classifier for malaria cell detection. Machine Learning for Healthcare Applications 187–2256.
  • Alom, M. Z., T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, and V. K. Asari. 2019. A state-of-the-art survey on deep learning theory and architectures. Electronics 8 (3). doi: 10.3390/electronics8030292.
  • Bibin, D., M. S. Nair, and P. Punitha. 2017. Malaria parasite detection from peripheral blood smear images using deep belief networks. IEEE Access 5:9099–108. doi:10.1109/ACCESS.2017.2705642.
  • Bjorck, N., C. P. Gomes, B. Selman, and K. Q. Weinberger. 2018. Understanding batch normalization. 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
  • Centres for Disease Control and Prevention. 2020. CDC malaria. http://www.cdc.gov/malaria/about/biology/.
  • Chaya, J. D., and R. N. Usha. 2019. Predictive analysis by ensemble classifier with machine learning models. International Journal of Computers and Applications 1–8. doi:10.1080/1206212X.2019.1675019.
  • Fuhad, K., J. F. Tuba, M. Sarker, S. Momen, N. Mohammed, and T. Rahman. 2020. Deep learning based automatic malaria parasite detection from blood smear and its smartphone-based application. Diagnostics 10 (5):329. doi:10.3390/diagnostics10050329.
  • Gunčar, G., M. Kukar, M. Notar, M. Brvar, P. Černelč, M. Notar, and M. Notar. 2018. An application of machine learning to haematological diagnosis. Scientific Reports 8:411. doi:10.1038/s41598-017-18564-8.
  • He, K., X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–78, Las Vegas, NV.
  • Hernandez-Leal, P., B. Kartal, and M. E. Taylor. 2019. A survey and critique of multiagent deep reinforcement learning. Autonomous Agents and Multi-Agent Systems 33 (6):750–97. doi:10.1007/s10458-019-09421-1.
  • Huang, G., Z. Liu, L. van der Maaten, and K. Weinberger. 2018. Densely connected convolutional networks. arXiv Preprint arXiv: 1608.06993.
  • Irfan, R., A. A. Almazroi, H. T. Rauf, R. Damaševičius, E. A. Nasr, and A. E. Abdelgawad. 2021. Dilated semantic segmentation for breast ultrasonic lesion detection using parallel feature fusion. Diagnostics 11 (7):1212. doi:10.3390/diagnostics11071212.
  • Kadry, S., V. Rajinikanth, D. Taniar, R. Damaševičius, and X. P. B. Valencia. 2021. Automated segmentation of leukocyte from hematological images—a study using various CNN schemes. The Journal of Supercomputing. doi:10.1007/s11227-021-04125-4.
  • Kaggle. 2018. Malaria cell images dataset. https://www.kaggle.com/iarunava/cell-images-for-detecting-malaria.
  • Khan, M. A., M. Alhaisoni, U. Tariq, N. Hussain, A. Majid, R. Damaševičius, and R. Maskeliūnas. 2021. Covid-19 case recognition from chest ct images by deep learning, entropy-controlled firefly optimization, and parallel feature fusion. Sensors 21 (21):7286. doi:10.3390/s21217286.
  • Krizhevsky, A., I. Sutskever, and G. Hinton. 2012. ImageNet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, pp.1097-1105.
  • Kumari, S., M. Singh, and K. Kumar. 2019. December. Prediction of liver disease using grouping of machine learning classifiers. International Conference on Deep Learning, Artificial Intelligence and Robotics, 339–49. Cham: Springer.
  • LeCun, Y., Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521 (7553):436–44. doi:10.1038/nature14539.
  • Li, J., X. Li, and D. He. 2019. A directed acyclic graph network combined with CNN and LSTM for remaining useful life prediction. IEEE Access 7:75464–75. doi:10.1109/ACCESS.2019.2919566.
  • Litjens, G., T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. van der Laak, B. van Ginneken, and C. I. Sánchez. 2017. A survey on deep learning in medical image analysis. Medical Image Analysis 42:60–88. doi:10.1016/j.media.2017.07.005.
  • Mahmud, M., M. S. Kaiser, A. Hussain, and S. Vassanelli. 2018. Applications of deep learning and reinforcement learning to biological data. IEEE Transactions on Neural Networks and Learning Systems 29 (6):2063–79. doi:10.1109/TNNLS.2018.2790388.
  • Maqsood, S., R. Damaševičius, and R. Maskeliūnas. 2021. Haemorrhage detection based on 3d CNN deep learning framework and feature fusion for evaluating retinal abnormality in diabetic patients. Sensors 21 (11). doi: 10.3390/s21113865.
  • Mehedi Masud, M., H. Alhumyani, S. S. Alshamrani, O. Cheikhrouhou, S. Ibrahim, G. Muhammad, M. S. Hossain, and M. Shorfuzzaman. 2020. Leveraging deep learning techniques for malaria parasite detection using mobile application. Wireless Communications and Mobile Computing 2020:Article ID 8895429, 1–15. doi:10.1155/2020/8895429.
  • Miotto, R., F. Wang, S. Wang, X. Jiang, and J. T. Dudley. 2018. Deep learning for healthcare: Review, opportunities and challenges. Briefings in Bioinformatics 19 (6):1236–46. doi:10.1093/bib/bbx044.
  • Nair, V., and G. E. Hinton. 2010. Rectified linear units improve restricted Boltzmann machines. Proceedings of the 27th International Conference on International Conference on Machine Learning (ICML’10), 807–14, Omnipress, Madison, WI, USA.
  • National Population Commission (NPC) [Nigeria] and ICF. 2019. Nigeria demographic and health survey 2018. Abuja, Nigeria, and Rockville, Maryland, USA: NPC and ICF.
  • Negi, A., and K. Kumar. 2021. Classification and detection of citrus diseases using deep learning. In Data science and its applications, 63–85. Chapman and Hall/CRC, London.
  • Negi, A., K. Kumar, and P. Chauhan. 2021. Deep neural network-based multi‐class image classification for plant diseases. Agricultural informatics. Wiley, Hoboken, pp 117–129.
  • Odusami, M., R. Maskeliūnas, R. Damaševičius, and T. Krilavičius. 2021. Analysis of features of Alzheimer’s disease: Detection of the early stage from functional brain changes in magnetic resonance images using a finetuned resnet18 network. Diagnostics 11 (6):1071. doi:10.3390/diagnostics11061071.
  • Okeke, E. U. 2012. Nigerian malaria: The problems and the fight. Malaria Journal 11 (Suppl 1):122. doi:10.1186/1475-2875-11-S1-P122.
  • Oyewola, D. O., E. G. Dada, S. Misra, and R. Damaševičius. 2021. Detecting cassava mosaic disease using a deep residual convolutional neural network with distinct block processing. PeerJ Computer Science 7:e352. doi:10.7717/peerj-cs.352.
  • Pan, W. D., Y. Dong, and D. Wu. 2018. Classification of malaria-infected cells using deep convolutional neural networks. Machine Learning - Advanced Techniques and Emerging Applications. doi:10.5772/intechopen.72426.
  • Poostchi, M., K. Silamut, R. J. Maude, S. Jaeger, and G. Thoma. 2018. Image analysis and machine learning for detecting malaria. Translational Research 194:36–55. doi:10.1016/j.trsl.2017.12.004.
  • Qanbar, M. M., and S. Tasdemir. 2019. Detection of malaria diseases with residual attention network. International Journal of Intelligent Systems and Applications in Engineering 7 (4):238–44. doi:10.18201/ijisae.2019457677.
  • Rajaraman, S., S. Jaeger, and S. K. Antani. 2019. Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images. PeerJ 7:e6977. doi:10.7717/peerj.6977.
  • Roy, K., S. Sharmin, R. B. M. Mukta, and A. Sen. 2018. Detection of malaria parasite in giemsa blood sample using image processing. International Journal of Computer Science and Information Technology 10 (1):55–65. doi:10.5121/ijcsit.2018.10105.
  • Sahba, F., H. R. Tizhoosh, and M. M. A. Salama. 2008. Application of reinforcement learning for segmentation of transrectal ultrasound images. BMC Medical Imaging 8 (1):8. doi:10.1186/1471-2342-8-8.
  • Shah, D., K. Kawale, M. Shah, S. Randive, and R. Mapari. 2020. Malaria Parasite Detection Using Deep Learning: (Beneficial to humankind). 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), 2020 May 13, 984–88, IEEE, Madurai, India.
  • Shorten, C., and T. M. Khoshgoftaar. 2019. A survey on image data augmentation for deep learning. Journal of Big Data 6:60. doi:10.1186/s40537-019-0197-0.
  • Simonyan, K., and A. Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. arXiv Preprint arXiv: 1409.1556.
  • Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research 15 (1):1929–58.
  • Suárez-Paniagua, V., and I. Segura-Bedmar. 2018. Evaluation of pooling operations in convolutional architectures for drug-drug interaction extraction. BMC Bioinformatics 19 (8):39–47. doi:10.1186/s12859-018-2195-1.
  • Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. 2015. Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1–9. doi:10.1109/CVPR.2015.7298594.
  • Tangpukdee, N., C. Duangdee, P. Wilairatana, and S. Krudsood. 2009. Malaria diagnosis: A brief review. The Korean Journal of Parasitology 47 (2):93–102. doi:10.3347/kjp.2009.47.2.93.
  • Teuwen, J., and N. Moriakov. 2020. Convolutional neural networks. In Handbook of medical image computing and computer-assisted intervention, Kevin Zhou, Daniel Rueckert, Gabor Fichtinger eds., 481–501. Academic Press.
  • Tian, Z., X. Si, Y. Zheng, Z. Chen, and X. Li. 2020. Multi-step medical image segmentation based on reinforcement learning. Journal of Ambient Intelligence and Humanized Computing. doi:10.1007/s12652-020-01905-3.
  • Torres-Jimenez, J., and J. Pavon. 2014. Applications of metaheuristics in real-life problems. Progress in Artificial Intelligence 2:175–76. doi:10.1007/s13748-014-0051-8.
  • Wang, H., N. Liu, Y. Zhang, D. Feng, F. Huang, D. Li, and Y. Zhang. 2020. Deep reinforcement learning: A survey. Frontiers of Information Technology and Electronic Engineering 21 (12):1726–44. doi:10.1631/FITEE.1900533.
  • World Health Organization. 2020. Malaria. Accessed June 5, 2020. https://www.who.int/news-room/fact-sheets/detail/malaria.
  • Yadav, S. S., and S. M. Jadhav. 2019. Deep convolutional neural network-based medical image classification for disease diagnosis. Journal of Big Data 6:1–18. doi:10.1186/s40537-019-0276-2.
  • Zhang, J., A. Saha, Z. Zhu, and M. A. Mazurowski. 2019. Hierarchical convolutional neural networks for segmentation of breast tumours in MRI with application to radiogenomics. IEEE Transactions on Medical Imaging 38 (2):435–47. doi:10.1109/TMI.2018.2865671.
  • Zheng, Q., M. Yang, X. Tian, N. Jiang, and D. Wang. 2020. A full stage data augmentation method in deep convolutional neural network for natural image classification. Discrete Dynamics in Nature and Society 2020:Article 4706576, 11. doi:10.1155/2020/4706576.