1,338
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Intracerebral Hemorrhage Detection in Computed Tomography Scans Through Cost-Sensitive Machine Learning

Article: 2138126 | Received 08 Apr 2022, Accepted 13 Oct 2022, Published online: 30 Oct 2022

References

  • Arbabshirani, M. R., B. K. Fornwalt, G. J. Mongelluzzo, J. D. Suever, B. D. Geise, A. A. Patel, and G. J. Moore. 2018. Advanced machine learning in action: Identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. Npj Digital Medicine 1 (9):1–3343. ISSN: 2398-6352. doi:10.1038/s41746-017-0015-z.
  • Badjatia, N., and J. Rosand. 2005, November. Intracerebral hemorrhage. The Neurologist 11 (6):311–24. ISSN: 1074-7931. doi: https://doi.org/10.1097/01.nrl.0000178757.68551.26.
  • Biau, G., and E. Scornet. 2016, June. A random forest guided tour. Test 25 (2):197–227. ISSN: 1863-8260. doi: 10.1007/s11749-016-0481-7.
  • Bobby, J. S., and C. L. Annapoorani. 2021. Analysis of intracranial hemorrhage in Ct brain images using machine learning and deep learning algorithm. Annals of RSCB 25 (6):13742–52. https://www.annalsofrscb.ro/index.php/journal/article/view/8186.
  • Breiman, L. 1996, August. Bagging predictors. Machine Learning 24 (2):123–40. ISSN: 1573-0565. doi: 10.1007/BF00058655.
  • Breiman, L. 2001, October. Random forests. Machine Learning 45 (1):5–32. ISSN: 1573-0565. doi: 10.1023/A:1010933404324.
  • Charoenphakdee, N., Z. Cui, Y. Zhang, and M. Sugiyama. 2021, July. “Classification with rejection based on cost-sensitive classification.” In International Conference on Machine Learning, 1507–17. PMLR. http://proceedings.mlr.press/v139/charoenphakdee21a.html.
  • Claude, S., and G. I. Webb. 2011, March. Encyclopedia of machine learning. New York: Springer. https://www.amazon.com/Encyclopedia-Machine-Learning-Claude-Sammut/dp/0387307680.
  • Dawud, A. M., K. Yurtkan, and H. Oztoprak. 2019, June. Application of deep learning in neuroradiology: Brain haemorrhage classification using transfer learning. Computational Intelligence and Neuroscience 2019:4629859. ISSN: 1687-5265. doi:10.1155/2019/4629859.
  • Elkan, C. 2001, August. The foundations of cost-sensitive learning. In IJCAI’01: Proceedings of the 17th international joint conference on Artificial intelligence, vol. 2, 973–78. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. ISBN: 978-155860812. 10.5555/1642194.1642224
  • Freitas, A., A. Costa-Pereira, and P. Brazdil. 2007, September. Cost-sensitive decision trees applied to medical data. In Data warehousing and knowledge discovery, 303–12. Berlin, Germany: Springer. ISBN: 978-3-540-74552-5. 10.1007/978-3-540-74553-2_28
  • Friedman, J. H. 2001, October. Greedy function approximation: A gradient boosting machine. Annals of Statistics 29 (5):1189–232. ISSN: 0090-5364. doi: https://doi.org/10.1214/aos/1013203451.
  • Fuqua, D., and T. Razzaghi. 2020, July. A cost-sensitive convolution neural network learning for control chart pattern recognition. Expert Systems with Applications 150:113275. ISSN: 0957-4174. doi:10.1016/j.eswa.2020.113275.
  • Grewal, M., M. Mayank Srivastava, P. Kumar, and S. Varadarajan. 2018, April. “Radnet: Radiologist level accuracy using deep learning for hemorrhage detection in CT scans.” In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 281–84. IEEE. doi:10.1109/ISBI.2018.8363574.
  • Hai, Y., F. Gao, Y. Yin, D. Guo, P. Zhao, Y. Lu, X. Wang, J. Bai, K. Cao, and Q. Song. 2019, November. Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network. European Radiology 29(11): 6191–201. ISSN: 1432-1084. 10.1007/s00330-019-06163-2
  • Jerry, Y., J.-H. Chow, J. Chen, and Z. Zheng. 2009, November. Stochastic gradient boosted distributed decision trees. In CIKM ‘09: Proceedings of the 18th ACM conference on Information and knowledge management, 2061–64. New York: Association for Computing Machinery. 978-1-60558512-3. 10.1145/1645953.1646301
  • Jnawali, K., M. R. Arbabshirani, N. Rao, and A. A. Patel. 2018, February. Deep 3D convolution neural network for CT brain hemorrhage classification. In Medical imaging 2018: Computer-aided diagnosis, 10575:105751C. International Society for Optics/Photonics. 10.1117/12.2293725
  • Kitamura, Felipe. 2017, August. Head CT - hemorrhage [Online]. Accessed July 22, 2021. https://www.kaggle.com/ felipekitamura/head-ct-hemorrhage
  • Kleinbaum, D. G., and M. Klein. 2010, March. Introduction to logistic regression. In Logistic regression, 1–39. New York, NY, USANew York, NY: Springer. ISBN: 978-1-4419-1741-6. 10.1007/978-1-4419-1742-3_1
  • Kramer, O. 2013. K-Nearest Neighbors. Dimensionality reduction with unsupervised nearest neighbors, 13–23. Berlin, Germany: Springer. ISBN: 978-3-642-38651-0. 10.1007/978-3-642-38652-7_2
  • Kukar, M., I. Kononenko, C. Grošelj, K. Kralj, and J. Fettich. 1999. Analysing and improving the diagnosis of ischaemic heart disease with machine learning. Artificial Intelligence in Medicine 16 (11):25–50 ISSN: 0933-3657. doi:10.1016/S0933-3657(98)00063-3.
  • Lacroix, Z., and T. Critchlow. 2003, January. Compared evaluation of scientific data management systems. In Bioinformatics, 371–91. ISBN: 978-1-55860-829-0. Morgan Kaufmann. doi:10.1016/B978-155860829-0/50015-2.
  • Lee, H., S. Yune, M. Mansouri, M. Kim, S. H. Tajmir, C. E. Guerrier, S. A. Ebert, S. R. Pomerantz, J. M. Romero, S. Kamalian, et al. 2019. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nature Biomedical Engineering 3 (3):173–82. ISSN: 2157-846X. doi:10.1038/s41551-018-0324-9.
  • Lee, J. Y., J. Soo Kim, T. Yoon Kim, and Y. Soo Kim. 2020. Detection and classification of intracranial haemorrhage on CT images using a novel deep-learning algorithm. Scientific Reports 10 (20546):1–7. ISSN: 2045-2322. doi:10.1038/s41598-020-77441-z.
  • Lim, G., W. Hsu, M. Li Lee, D. Shu Wei Ting, and T. Yin Wong. 2019, January. Technical and clinical challenges of A.I. in retinal image analysis. In Computational retinal image analysis, 445–66. Cambridge, MA: Academic Press. ISBN: 978-0-08-102816-2. 10.1016/B978-0-08-102816-2.00022-8
  • Majumdar, A., L. Brattain, B. Telfer, C. Farris, and J. Scalera. 2018, July. Detecting intracranial hemorrhage with deep learning. Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2018:583–87. ISSN: 2694-0604. eprint: 30440464. doi: 10.1109/EMBC.2018.8512336.
  • Mammone, A., M. Turchi, and N. Cristianini. 2009. Support vector machines. WIREs Computational Statistics 1 (3):283–89. ISSN: 1939-5108. doi:10.1002/wics.49.
  • Nawabi, J., H. Kniep, S. Elsayed, C. Friedrich, P. Sporns, T. Rusche, and M. Böhmer. 2021, February. Imaging-based outcome prediction of acute intracerebral hemorrhage. Translational Stroke Research: 1–10. ISSN: 1868-601X. doi: 10.1007/s12975-021-00891-8.
  • Noble, W. S. 2006, December. What is a support vector machine? Nature Biotechnology 24:1565–67 ISSN: 1546-1696. doi:10.1038/nbt1206-1565.
  • Rane, H., and K. Warhade. 2021, March. “A survey on deep learning for intracranial hemorrhage detection.” In 2021 International Conference on Emerging Smart Computing and Informatics (ESCI), 38–42. IEEE. 10.1109/ESCI50559.2021.9397009.
  • Russell, S. J., and P. Norvig. 2002, December. Artificial intelligence: A modern approach. Prentice Hall. https://www.amazon.com/Artificial-Intelligence-Modern-Approach-3rd/dp/0136042597.
  • Septiandri, A. A., R. T. Aditiawarman, E. Burhan, and A. Shankar. 2020, November. Cost-sensitive machine learning classification for mass tuberculosis verbal screening. arXiv eprint: 2011.07396. https://arxiv.org/abs/2011.07396v1.
  • Siddiqui, M. K., X. Huang, R. Morales-Menendez, N. Hussain, and K. Khatoon. 2020. Machine learning based novel cost-sensitive seizure detection classifier for imbalanced EEG data sets. International Journal on Interactive Design and Manufacturing (IJIDeM) 14 (4):1491–509 ISSN: 1955-2505. doi:10.1007/s12008-020-00715-3.
  • Song, Y.-Y., and L. U. Ying. 2015. Decision tree methods: Applications for classification and prediction. Shanghai Archives of Psychiatry 27 (2):130. doi:10.11919/j.issn.1002-0829.215044.
  • Suthaharan, S. 2016. Support vector machine. In Machine learning models and algorithms for big data classification, 207–35. Boston, MABoston, MA: Springer. ISBN: 978-1-4899-7640-6. 10.1007/978-1-4899-7641-3_9
  • Swain, P. H., and H. Hauska. 1977, July. The decision tree classifier: Design and potential. IEEE Transactions on Geoscience Electronics 15 (3):142–47. ISSN: 0018-9413. doi: 10.1109/TGE.1977.6498972.
  • Thai-Nghe, N., Z. Gantner, and L. Schmidt-Thieme. 2010, July. “Cost-sensitive learning methods for imbalanced data.” In The 2010 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE. 10.1109/IJCNN.2010.5596486.
  • Tianyang, L., Z. Han, B. Wei, Y. Zheng, Y. Hong, and J. Cong. 2020. Robust screening of COVID-19 from chest X-ray via discriminative cost-sensitive learning. arXiv (April). eprint: 2004.12592. https://arxiv.org/abs/2004.12592v2
  • Toǧaçar, M., C. Zafer, E. Burhan, and B. Ümit 2019, November. “Brain hemorrhage detection based on heat maps, autoencoder and CNN architecture.” In 2019 1st International Informatics and Software Engineering Conference (UBMYK), 1–5. IEEE. 10.1109/UBMYK48245.2019.8965576.
  • Voter, A. F., E. Meram, J. W. Garrett, and J.P.J Yu. 2021, August. Diagnostic accuracy and failure mode analysis of a deep learning algorithm for the detection of intracranial hemorrhage. Journal of the American College of Radiology 18 (8):1143–52. ISSN: 1546-1440. doi: 10.1016/j.jacr.2021.03.005.
  • Vrbančič, G., M. Zorman, and V. Podgorelec. 2019, October. “Transfer learning tuning utilizing grey wolf optimizer for identification of brain hemorrhage from head CT images.” In 6th Student Computer Science Research Conference, 61–66. StuCoSReC. 10.26493/978-961-7055-82-5.61-66.
  • Wang, H., G. Kou, and Y. Peng. 2021, April. Multi-class misclassification cost matrix for credit ratings in peer-to- peer lending. The Journal of the Operational Research Society 72 (4):923–34. ISSN: 0160-5682. doi: 10.1080/01605682.2019.1705193.
  • Weicheng, K., C. Xn–hne-Tvd, P. Mukherjee, J. Malik, and E. L. Yuh. 2019. Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning. Proceedings of the National Academy of Sciences 116 (45):22737–45 ISSN: 0027-8424. doi:10.1073/pnas.1908021116.
  • Wolfram Research. 2014. UtilityFunction [online]. Accessed July 26, 2021. https://reference.wolfram.com/language/ref/UtilityFunction.html
  • Wolfram Research. 2021. Classify [online]. Accessed July 27, 2021. https://reference.wolfram.com/language/ref/Classify.html
  • Xinghua, X., J. Zhang, K. Yang, Q. Wang, X. Chen, and B. Xu. 2021, May. Prognostic prediction of hypertensive intracerebral hemorrhage using CT radiomics and machine learning. Brain and Behavior 11 (5):e02085. ISSN: 2162-3279. doi: 10.1002/brb3.2085.
  • Ziai, W. C., and J. Ricardo Carhuapoma. 2018, December. Intracerebral hemorrhage. CONTINUUM: Lifelong Learning in Neurology 24 (6):1603 ( ISSN: 1080-2371). doi: 10.1212/CON.0000000000000672.