390
Views
7
CrossRef citations to date
0
Altmetric
Laboratory Study

Reduced Nitric Oxide Bioavailability In a Baboon Model of Shiga Toxin Mediated Hemolytic Uremic Syndrome (HUS)

, M.D., , M.D., , Ph.D., , Pharm.D., , Biol. Sci.D. & , M.D.
Pages 635-641 | Published online: 07 Jul 2009

References

  • Siegler, R L. The hemolytic uremic syndrome. Pediatr. Clin. North. Am. 1995, 42 (6), 1505–1529. [PUBMED], [INFOTRIEVE], [CSA]
  • Radomski, M W.; Palmer, R M.J.; Moncada, S. The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. Biochem. Biophys. Res. Commun. 1987, 148, 1482–1489. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Ikeda, M.; Ikeda, U.; Takahashi, M.; Shimada, K.; Minota, S.; Kano, S. Nitric oxide inhibits intracellular adhesion molecule-1 expression in rat mesangial cells.J. Am. Soc. Nephrol. 1996, 7, 2213–2218. [PUBMED], [INFOTRIEVE], [CSA]
  • Deng, A.; Baylis, C. Locally produced EDRF controls preglomerular resistance and ultrafiltration coefficient.Am. J. Physiol. 1993, 264 (Renal Fluid Electrolyte Physiol. 33), F212–F215. [CSA]
  • Argyle, J C.; Hogg, R J.; Pysher, T J.; Silva, F G.; Siegler, R L. A clinicopathological study of 24 children with hemolytic uremic syndrome. A report of the Southwest Pediatric Nephrology Study Group.Pediatr. Nephrol. 1990, 4, 52–58. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Bohle, A.; Grabensee, B.; Fischer, R.; Berg, E.; Klust, H. On four cases of hemolytic-uremic syndrome without microangiopathy.Clin. Nephrol. 1985, 24 (2), 88–92. [PUBMED], [INFOTRIEVE], [CSA]
  • Levy, M.; Gagnadoux, M F.; Habib, R. Pathology of hemolytic-uremic syndrome in children. In Hemostatis, Prostaglandins, and Renal Disease; Remuzzi, G., Mecca, G., de Gaetano, G., Eds.; Raven Press: New York, 1980; 383–397.
  • Dran, G I.; Fernandez, G C.; Rubel, C J.; , et al. Protective role of nitric oxide in mice with Shiga toxin-induced hemolytic uremic syndrome.Kidney Int. 2002, 62 (4), 1338–1348. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Jaradat, Z W.; Marquardt, R R. L-arginine as a therapeutic approach for the verotoxigenic Escherichia coli-induced hemolytic uremic syndrome and thrombotic thrombocytopenic purpura.Med. Hypotheses 1997, 49 (3), 277–280. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Kajiume, T.; Nagita, A.; Yoshimi, S.; Kobayashi, K.; Kataoka, N. A case of hemolytic uremic syndrome improved with nitric oxide.Bone Marrow Transplant. 2000, 25 (1), 109–110. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Taylor, F B., Jr.; Tesh, V L.; DeBault, L.; , et al. Characterization of the baboon responses to Shiga-like toxin (descriptive study of a new primate model of toxic responses to Stx-1).Am. J. Pathol. 1999, 154 (4), 1285–1299. [PUBMED], [INFOTRIEVE], [CSA]
  • Siegler, R L.; Pysher, T J.; Tesh, V L.; Taylor, F B., Jr. Response to single and divided doses of Shiga toxin-1 in a primate model of hemolytic uremic syndrome.J. Am. Soc. Nephrol. 2001, 12 (7), 1458–1467. [PUBMED], [CSA]
  • Thorup, C.; Persson, A E.G. Macula densa derived nitric oxide in regulation of glomerular capillary pressure.Kidney Int. 1996, 49, 430–436. [PUBMED], [INFOTRIEVE], [CSA]
  • Pfeilschifter, J.; Kunz, D.; Muhl, H. Nitric oxide: an inflammatory mediator of glomerular mesangial cells.Nephron. 1993, 64, 518–525. [PUBMED], [INFOTRIEVE], [CSA]
  • McLay, J S.; Chatterjee, P.; Nicolson, A G. Nitric oxide production by human proximal tubular cells: a novel immunomodulatory mechanism? Kidney Int. 1994, 46, 1043–1049. [PUBMED], [INFOTRIEVE], [CSA]
  • Walter, R.; Schaffner, A.; Schoedon, G. Differential regulation of constitutive and inducible nitric oxide production by inflammatory stimuli in murine endothelial cells.Biochem. Biophys. Res. Commun. 1994, 202 (1), 450–455. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Koide, M.; Kawahara, Y.; Tsuda, T.; Yokoyama, M. Cytokine-induced expression of an inducible type of nitric oxide synthase gene in cultured vascular smooth muscle cells.FEBS Lett. 1993, 318 (3), 213–217. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Breen, D.; Bihari, D. Acute renal failure as a part of multiple organ failure: the slippery slope of critical illness.Kidney Int. Suppl. 1998, 66, S25–S33. [PUBMED], [INFOTRIEVE], [CSA]
  • Waldman, S A.; Murad, F. Cyclic GMP synthesis and function.Pharmacol. Rev. 1987, 39 (3), 163–196. [PUBMED], [INFOTRIEVE], [CSA]
  • Williams, J M.; Lote, C J.; Thewles, A.; , et al. Role of nitric oxide in a toxin-induced model of haemolytic ureamic syndrome.Pediatr. Nephrol. 2000, 14, 1066–1070. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Matsunaga, T.; Nakajima, T.; Sonoda, M.; , et al. Reactive oxygen species as a risk factor in verotoxin-1-exposed rats.Biochem. Biophys. Res. Commun. 1999, 260 (3), 813–819. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Te Loo, M.; van Hinsbergh, V.; van der Velden, T.; Monnens, L.; van den Heuvel, L. Effects of Verocytotoxin-1 on Nitric Oxide Production by Human Glomerular Microvascular Endothelial and Mesangial Cells, 4th International Symposium and Workshop on “Shiga Toxin (Verocytotoxin)-Producing Escherichia Coli Infections,” Kyoto, Japan, 2000.
  • Bitzan, M M.; Wang, Y.; Lin, J.; Marsden, P A. Verotoxin and ricin have novel effects on preproendothelin-1 expression but fail to modify nitric oxide synthase (ecNOS) expression and NO production in vascular endothelium.J. Clin. Invest. 1998, 101 (2), 372–382. [PUBMED], [INFOTRIEVE], [CSA]
  • Siegler, R L.; Christofferson, R D.; Edwin, S S.; Mitchell, M D. Urinary cyclic GMP as a measure of endothelin derived relaxation factor (EDRF) in the hemolytic uremic syndrome. [abstract].JASN. 1991, 2, 274. [CSA]
  • Dedeoglu, I O.; Feld, L G. Nitric oxide in the urine of a patient with hemolytic uremic syndrome. [letter].Pediatr. Nephrol. 1996, 10 (6), 812–813. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Gibson, Q H.; Roughton, F J.W. The kinetics and equilibria of the reactions of nitric oxide with sheep haemoglobin.J. Physiol. 1957, 136, 507–526. [PUBMED], [INFOTRIEVE], [CSA]
  • Evans, H G.; Ryley, H C.; Hallett, I.; Lewis, M J. Human red blood cells inhibit endothelium-derived relaxing factor (EDRF) activity.Eur. J. Pharmacol. 1989, 163 (2–3), 361–364. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Martin, W.; Villani, G M.; Jothianandan, D.; Furchgott, R F. Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta.J. Pharmacol. Exp. Ther. 1985, 232 (3), 708–716. [PUBMED], [INFOTRIEVE], [CSA]
  • Edwards, D H.; Griffith, T M.; Ryley, H C.; Henderson, A H. Haptoglobin-haemoglobin complex in human plasma inhibits endothelium dependent relaxation: evidence that endothelium derived relaxing factor acts as a local autocoid.Cardiovas. Res. 1986, 20, 549–556. [CSA]
  • Rioux, F.; Petitclerc, E.; Audet, R.; Drapeau, G.; Fielding, R M.; Marceau, F. Recombinant human hemoglobin inhibits both constitutive and cytokine-induced nitric oxide-mediated relaxation of rabbit isolated aortic rings.J. Cardiovasc. Pharmacol. 1994, 24 (2), 229–237. [PUBMED], [INFOTRIEVE], [CSA]
  • Katusic, Z S.; Lee, H C.; Clambey, E T. Crosslinked hemoglobin inhibits endothelium-dependent relaxations in isolated canine arteries.Gen. Pharmacol. 1996, 27 (2), 239–244. [PUBMED], [INFOTRIEVE], [CSA]
  • Katusic, Z S.; Marshall, J J.; Kontos, H A.; Vanhoutte, P M. Similar responsiveness of smooth muscle of the canine basilar artery to EDRF and nitric oxide.Am. J. Physiol. 1989, 257 (4 Pt 2), H1235–H1239. [PUBMED], [INFOTRIEVE], [CSA]
  • Chou, S Y.; Ahmed, A.; Porush, J G. Renal vasoconstriction by endothelin (ET) is augmented by intravascular hemolysis and reversed by calcium antagonists. [abstract].J. Am. Soc. Nephrol. 1990, 1, 411. [CSA]
  • White, D G.M.J.; Sumner, M J.; Watts, I S. The effect of endothelins on nitric oxide and prostacyclin production from human umbilical vein, porcine aorta and bovine carotid artery endothelial cells in culture.Br. J. Pharmacol. 1993, 109, 1128–1132. [PUBMED], [INFOTRIEVE], [CSA]
  • Balla, G.; Vercellotti, G M.; Muller-Eberhard, U.; Eaton, J.; Jacob, H S. Exposure of endothelial cells to free heme potentiates damage mediated by granulocytes and toxic oxygen species.Lab. Invest. 1991 64 (5), 648–655. [PUBMED], [INFOTRIEVE], [CSA]
  • Motterlini, R.; Macdonald, V W. Cell-free hemoglobin potentiates acetylcholine-induced coronary vasoconstriction in rabbit hearts.J. Appl. Physiol. 1993 75 (5), 2224–2233. [PUBMED], [INFOTRIEVE], [CSA]
  • Siegler, R L.; Christofferson, R D.; Cook, J B.; Edwin, S S.; Mitchell, M D. Urinary Cyclic GMP (cGMP) as a Measure of Nitric Oxide (NO) and Atrial Natriuretic Peptide (ANP) Activity in Post-Diarrheal HUS, 2nd International Symposium and Workshop on “Verocytotoxin (Shiga-like toxin)-producing Escherichia coli infections,” Bergamo, Italy, 1994.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.