1,086
Views
7
CrossRef citations to date
0
Altmetric
Clinical Study

Proteomics investigation of the changes in serum proteins after high- and low-flux hemodialysis

, , , , &
Pages 506-513 | Received 03 May 2018, Accepted 14 Jun 2018, Published online: 04 Oct 2018

References

  • Vanholder R, De Smet R, Glorieux G, et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 2003;63:1934–1943.
  • Liner A, Charra B, Sherrard DJ, et al. Accelerated atherosclerosis in prolonged maintenance hemodialysis. N Engl J Med. 1974;290:697–701.
  • Cheung AK. Biocompatibility of hemodialysis membranes. J Am Soc Nephrol. 1990;1:150–161.
  • Bonomini M, Pavone B, Sirolli V, et al. Proteomics characterization of protein adsorption onto hemodialysis membranes. J Proteome Res. 2006;5:2666–2674.
  • Locatelli F, Gauly A, Czekalski S, et al. The MPO study: just a European HEMO study or something very different? Blood Purif. 2008;26:100–104.
  • Donadio C, Kanaki A, Sami N, et al. High-flux dialysis: clinical, biochemical, and proteomic comparison with low-flux dialysis and on-line hemodiafiltration. Blood Purif. 2017;44:129–139.
  • Chu PL, Chiu YL, Lin JW, et al. Effects of low- and high-flux dialyzers on oxidative stress and insulin resistance. Blood Purif. 2008;26:213–220.
  • Akoglu H, Dede F, Piskinpasa S, et al. Impact of low- or high-flux haemodialysis and online haemodiafiltration on inflammatory markers and lipid profile in chronic haemodialysis patients. Blood Purif. 2013; 35:258–264.
  • Ouseph R, Hutchison CA, Ward RA. Differences in solute removal by two high-flux membranes of nominally similar synthetic polymers. Nephrol Dial Transplant. 2008;23:1704–1712.
  • Lindstrom V, Grubb A, Alquist Hegbrant M, et al. Different elimination patterns of beta-trace protein, beta2-microglobulin and cystatin C in haemodialysis, haemodiafiltration and haemofiltration. Scand J Clin Lab Invest. 2008;68:685–691.
  • Eknoyan G, Beck GJ, Cheung AK, et al. Effect of dialysis dose and membrane flux in maintenance hemodialysis. N Engl J Med. 2002;347:2010–2019.
  • Urbani A, Lupisella S, Sirolli V, et al. Proteomic analysis of protein adsorption capacity of different haemodialysis membranes. Mol Biosyst. 2012;8:1029.
  • Mares J, Thongboonkerd V, Tuma Z, et al. Specific adsorption of some complement activation proteins to polysulfone dialysis membranes during hemodialysis. Kidney Int. 2009;76:404–413.
  • Mares J, Richtrova P, Hricinova A, et al. Proteomic profiling of blood-dialyzer interactome reveals involvement of lectin complement pathway in hemodialysis-induced inflammatory response. Prot Clin Appl. 2010;4:829–838.
  • Ishikawa I, Chikazawa Y, Sato K, et al. Proteomic analysis of serum, outflow dialysate and adsorbed protein onto dialysis membranes (polysulfone and PMMA) during hemodialysis treatment using SELDI-TOF-MS. Am J Nephrol. 2006;26:372–380.
  • Pavone B, Sirolli V, Bucci S, et al. Adsorption and carbonylation of plasma proteins by dialyser membrane material: in vitro and in vivo proteomics investigations. Blood Transfus. 2010;8:S113.
  • Dihazi H, Müller CA, Mattes H, et al. Proteomic analysis to improve adequacy of hemo- and peritoneal dialysis: removal of small and high molecular weight proteins with high- and low-flux filters or a peritoneal membrane. Proteomics Clin Appl. 2008;2:1167–1182.
  • Han S, Yang K, Sun J, et al. Proteomics investigations into serum proteins adsorbed by high-flux and low-flux dialysis membranes. Prot Clin Appl. 2017;11:1700079–1700012.
  • Zhou Y, Shan Y, Wu Q, et al. Mass defect-based pseudo-isobaric dimethyl labeling for proteome quantification. Anal Chem. 2013;85:10658–10663.
  • Yang K, Liu J, Sun J, et al. Proteomic study provides new clues for complications of hemodialysis caused by dialysis membrane. Sci Bull. 2017;62:1251.
  • Fang F, Zhao Q, Li X, et al. Dissolving capability difference based sequential extraction: a versatile tool for in-depth membrane proteome analysis. Anal Chim Acta. 2016;945:39–46.
  • Zhang G, Neubert TA. Automated comparative proteomics based on multiplex tandem mass spectrometry and stable isotope labeling. Mol Cell Prot. 2006;5:401–411.
  • Wang L-H, Li D-Q, Fu Y, et al. pFind 2.0: a software package for peptide and protein identification via tandem mass spectrometry. Rapid Commun Mass Spect. 2007;21:2985–2991.
  • Hallbauer J, Kreusch S, Klemm A, et al. Long-term serum proteomes are quite similar under high- and low-flux hemodialysis treatment. Prot Clin Appl. 2010;4:953–961.
  • Laveborn E, Lindmark K, Skagerlind M, et al. NT-proBNP and troponin T levels differ after haemodialysis with a low versus high flux membrane. Int J Artif Organs. 2015;38:69–75.
  • Vaziri ND. Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences. Am J Physiol Renal Physiol. 2006;290:F262–F272.
  • Dautin G, Soltani Z, Ducloux D, et al. Hemodialysis reduces plasma apolipoprotein C-I concentration making VLDL a better substrate for lipoprotein lipase. Kidney Int. 2007;72:871–878.
  • Okubo K, Ikewaki K, Sakai S, et al. Abnormal HDL apolipoprotein A-I and A-II kinetics in hemodialysis patients: a stable isotope study. J Am Soc Nephrol. 2004;15:1008–1015.
  • Rysz-Gorzy.nska M, Gluba-Brzozka A, Banach M. High-density lipoprotein and low-density lipoprotein subfractions in patients with chronic kidney disease. CVP. 2017;15:144–151.
  • Calabresi L, Simonelli S, Conca P, et al. Acquired lecithin: cholesterol acyltransferase deficiency as a major factor in lowering plasma HDL levels in chronic kidney disease. J Intern Med. 2015;277:552–561.
  • Wolfrum C, Poy MN, Stoffel M. Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nat Med. 2005;11:418–422.
  • Ganfornina MD, Do Carmo S, Lora JM, et al. Apolipoprotein D is involved in the mechanisms regulating protection from oxidative stress. Aging Cell. 2008;7:506–515.
  • Nagasawa H, Uto Y, Sasaki H, et al. Gc protein (vitamin D-binding protein): Gc genotyping and GcMAF precursor activity. Anticancer Res. 2005;3689–3695.
  • Denburg MR, Bhan I. Vitamin D-binding protein in health and chronic kidney disease. Semin Dial. 2015;28:636–644.
  • Lin Y-P, Yang C-Y, Liao C-C, et al. Plasma protein characteristics of long-term hemodialysis survivors. PLoS One. 2012;7:e40232
  • Auwerx J, De Keyser L, Bouillon R, et al. Decreased free 1,25-dihydroxycholecalciferol index in patients with the nephrotic syndrome. Nephron 1986; 42:231–235.
  • Schmidt-Gayk H, Grawunder C, Tschöpe W, et al. 25-Hydroxy-vitamin-D in nephrotic syndrome. Lancet. 1977;2:105–108.
  • Doorenbos CRC, De Cuba MM, Vogt L, et al. Antiproteinuric treatment reduces urinary loss of vitamin D-binding protein but does not affect vitamin D status in patients with chronic kidney disease. J Steroid Biochem Mol Biol. 2012;128:56–61.
  • Prytuła A, Wells D, McLean T, et al. Urinary and dialysate losses of vitamin D-binding protein in children on chronic peritoneal dialysis. Pediatr Nephrol. 2012;27:643–649.