2,778
Views
11
CrossRef citations to date
0
Altmetric
Clinical Study

Association between serum alkaline phosphatase and renal outcome in patients with type 2 diabetes mellitus

ORCID Icon, , , , , , , & ORCID Icon show all
Pages 818-828 | Received 04 May 2020, Accepted 27 Jul 2020, Published online: 12 Aug 2020

References

  • Saeedi P, Petersohn I, Salpea P, et al.; IDF Diabetes Atlas Committee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843.
  • Zhang L, Long J, Jiang W, et al. Trends in chronic kidney disease in China. N Engl J Med. 2016;375:905–906.
  • Looker HC, Colombo M, Hess S, et al.; SUMMIT Investigators. Biomarkers of rapid chronic kidney disease progression in type 2 diabetes. Kidney Int. 2015;88:888–896.
  • Leehey DJ, Zhang JH, Emanuele NV, et al. BP and renal outcomes in diabetic kidney disease: the Veterans affairs nephropathy in diabetes trial. CJASN. 2015;10:2159–2169.
  • Berhane AM, Weil EJ, Knowler WC, et al. Albuminuria and estimated glomerular filtration rate as predictors of diabetic end-stage renal disease and death. CJASN. 2011;6:2444–2451.
  • Kalantar-Zadeh K, Kuwae N, Regidor DL, et al. Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int. 2006;70:771–780.
  • Chen H, Li X, Yue R, et al. The effects of diabetes mellitus and diabetic nephropathy on bone and mineral metabolism in T2DM patients. Diabetes Res Clin Pract. 2013;100:272–276.
  • Haarhaus M, Brandenburg V, Kalantar-Zadeh K, et al. Alkaline phosphatase: a novel treatment target for cardiovascular disease in CKD. Nat Rev Nephrol. 2017;13:429–442.
  • Beddhu S, Ma X, Baird B, et al. Serum alkaline phosphatase and mortality in African Americans with chronic kidney disease. Clin J Am Soc Nephrol. 2009;4:1805–1810.
  • Regidor DL, Kovesdy CP, Mehrotra R, et al. Serum alkaline phosphatase predicts mortality among maintenance hemodialysis patients. JASN. 2008;19:2193–2203.
  • Liu X, Guo Q, Feng X, et al. Alkaline phosphatase and mortality in patients on peritoneal dialysis. Clin J Am Soc Nephrol. 2014;9:771–778.
  • Taliercio JJ, Schold JD, Simon JF, et al. Prognostic importance of serum alkaline phosphatase in CKD stages 3-4 in a clinical population. Am J Kidney Dis. 2013;62:703–710.
  • Chen NX, Moe SM. Arterial calcification in diabetes. Curr Diab Rep. 2003;3:28–32.
  • Sabe MA, Claggett B, Burdmann EA, et al. Coronary artery disease is a predictor of progression to dialysis in patients with chronic kidney disease, type 2 diabetes mellitus, and anemia: an analysis of the trial to reduce cardiovascular events with aranesp therapy (TREAT). JAHA. 2016;5:e002850.
  • Azpiazu D, Gonzalo S, Villa-Bellosta R. Tissue non-specific alkaline phosphatase and vascular calcification: a potential therapeutic target. Curr Cardiol Rev. 2019;15:91–95.
  • Cheung CL, Tan KC, Lam KS, et al. The relationship between glucose metabolism, metabolic syndrome, and bone-specific alkaline phosphatase: a structural equation modeling approach. J Clin Endocrinol Metab. 2013;98:3856–3863.
  • Krishnamurthy VR, Baird BC, Wei G, et al. Associations of serum alkaline phosphatase with metabolic syndrome and mortality. Am J Med. 2011;124:566.e1–566.e7.
  • Nannipieri M, Gonzales C, Baldi S, et al. Liver enzymes, the metabolic syndrome, and incident diabetes: the Mexico City diabetes study. Diabetes Care. 2005;28:1757–1762.
  • Yang J, Zhang X, Wang W, et al. Insulin stimulates osteoblast proliferation and differentiation through ERK and PI3K in MG-63 cells. Cell Biochem Funct. 2010;28:334–341.
  • Oh SW, Han KH, Han SY. Associations between renal hyperfiltration and serum alkaline phosphatase. PLOS One. 2015;10:e0122921.
  • Bulum T, Kolaric B, Duvnjak M, et al. Alkaline phosphatase is independently associated with renal function in normoalbuminuric type 1 diabetic patients. Ren Fail. 2014;36:372–377.
  • Li L, Zhang X, Li Z, et al. Renal pathological implications in type 2 diabetes mellitus patients with renal involvement. J Diabetes Complicat. 2017;31:114–121.
  • Wang J, Zhao L, Zhang J, et al. Clinicopathologic features and prognosis of type 2 diabetes mellitus and diabetic nephropathy in different age groups: more attention to younger patients. Endocr Pract. 2020;26:51–57.
  • Zhao L, Ren H, Zhang J, et al. Diabetic retinopathy, classified using the lesion-aware deep learning system, predicts diabetic end-stage renal disease in Chinese patients. Endocr Pract. 2020;26:429–443.
  • Pinsker JE, Shank T, Dassau E, et al. Comment on American Diabetes Association. Approaches to glycemic treatment. Sec. 7. In standards of medical care in diabetes-2015. Diabetes Care. 2015;38:e174.
  • Tervaert TW, Mooyaart AL, Amann K, et al.; Renal Pathology Society. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21:556–563.
  • An Y, Xu F, Le W, et al. Renal histologic changes and the outcome in patients with diabetic nephropathy. Nephrol Dial Transplant. 2015;30:257–266.
  • Wang S, Pan Q, Xu C, et al. Massive proteinuria-induced injury of tubular epithelial cells in nephrotic syndrome is not exacerbated by furosemide. Cell Physiol Biochem. 2018;45:1700–1706.
  • Yamanouchi M, Hoshino J, Ubara Y, et al. Clinicopathological predictors for progression of chronic kidney disease in nephrosclerosis: a biopsy-based cohort study. Nephrol Dial Transplant. 2019;34:1182–1188.
  • Fine JP, Gray RJ, Jason P. A proportional hazards model for the subdistribution of a competing risk AU – fine. J Am Stat Assoc. 1999;94:496–509.
  • Mise K, Hoshino J, Ubara Y, et al. Renal prognosis a long time after renal biopsy on patients with diabetic nephropathy. Nephrol Dial Transplant. 2014;29:109–118.
  • Masson S, Barlera S, Colotta F, et al. A low plasma 1,25(OH)2 vitamin D/PTH (1-84) ratio predicts worsening of renal function in patients with chronic heart failure. Int J Cardiol. 2016;224:220–225.
  • Abramowitz M, Muntner P, Coco M, et al. Serum alkaline phosphatase and phosphate and risk of mortality and hospitalization. CJASN. 2010;5:1064–1071.
  • Tonelli M, Curhan G, Pfeffer M, et al. Relation between alkaline phosphatase, serum phosphate, and all-cause or cardiovascular mortality. Circulation. 2009;120:1784–1792.
  • Sumida K, Molnar MZ, Potukuchi PK, et al. Prognostic significance of pre-end-stage renal disease serum alkaline phosphatase for post-end-stage renal disease mortality in late-stage chronic kidney disease patients transitioning to dialysis. Nephrol Dial Transplant. 2018;33:264–273.
  • Zhan X, Yang Y, Chen Y, et al. Serum alkaline phosphatase levels correlate with long-term mortality solely in peritoneal dialysis patients with residual renal function. Ren Fail. 2019;41:718–725.
  • Lomashvili KA, Cobbs S, Hennigar RA, et al. Phosphate-induced vascular calcification: role of pyrophosphate and osteopontin. J Am Soc Nephrol. 2004;15:1392–1401.
  • Lau WL, Pai A, Moe SM, et al. Direct effects of phosphate on vascular cell function. Adv Chronic Kidney Dis. 2011;18:105–112.
  • Kalantar-Zadeh K, Shah A, Duong U, et al. Kidney bone disease and mortality in CKD: revisiting the role of vitamin D, calcimimetics, alkaline phosphatase, and minerals. Kidney Int Suppl. 2010;78:S10–S21.
  • Chen SC, Chang JM, Liu WC, et al. Brachial-ankle pulse wave velocity and rate of renal function decline and mortality in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6:724–732.
  • O'Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension. 2005;46:200–204.
  • London GM. Arterial stiffness in chronic kidney disease and end-stage renal disease. Blood Purif. 2018;45:154–158.
  • Roetker NS, Peng Y, Ashfaq A, et al. Adherence to kidney disease: improving global outcomes mineral and bone guidelines for monitoring biochemical parameters. Am J Nephrol. 2019;49:225–232.
  • Molnar MZ, Kovesdy CP, Mucsi I, et al. Association of pre-kidney transplant markers of mineral and bone disorder with post-transplant outcomes. Clin J Am Soc Nephrol. 2012;7:1859–1871.
  • Palmer SC, McGregor DO, Macaskill P, et al. Meta-analysis: vitamin D compounds in chronic kidney disease. Ann Intern Med. 2007;147:840–853.
  • Ureña P, Bernard-Poenaru O, Cohen-Solal M, et al. Plasma bone-specific alkaline phosphatase changes in hemodialysis patients treated by alfacalcidol. Clin Nephrol. 2002;57:261–273.
  • Demer LL, Tintut Y. Inflammatory, metabolic, and genetic mechanisms of vascular calcification. Arterioscler Thromb Vasc Biol. 2014;34:715–723.
  • Kocabay G, Telci A, Tutuncu Y, et al. Alkaline phosphatase: can it be considered as an indicator of liver fibrosis in non-alcoholic steatohepatitis with type 2 diabetes? Bratisl Lek Listy. 2011;112:626–629.
  • Barreto AV, Alecrim VM, Medeiros TB, et al. New index for the diagnosis of liver fibrosis in Schistosomiasis mansoni. Arq Gastroenterol. 2017;54:51–56.
  • Capelli A, Lusuardi M, Cerutti CG, et al. Lung alkaline phosphatase as a marker of fibrosis in chronic interstitial disorders. Am J Respir Crit Care Med. 1997;155:249–253.
  • Martin S, Lin H, Ejimadu C, et al. Tissue-nonspecific alkaline phosphatase as a target of sFRP2 in cardiac fibroblasts. Am J Physiol Cell Physiol. 2015;309:C139–C147.
  • Zhou D, Fu H, Zhang L, et al. Tubule-derived Wnts are required for fibroblast activation and kidney fibrosis. J Am Soc Nephrol. 2017;28:2322–2336.
  • Edeling M, Ragi G, Huang S, et al. Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat Rev Nephrol. 2016;12:426–439.
  • Hermens JS, Thelen P, Ringert RH, et al. Alterations of selected genes of the Wnt signal chain in rat kidneys with spontaneous congenital obstructive uropathy. J Pediatr Urol. 2007;3:86–95.
  • Menon MC, Chuang PY, He CJ. The glomerular filtration barrier: components and crosstalk. Int J Nephrol. 2012;2012:749010.
  • Simons M. The benefits of tubular proteinuria: an evolutionary perspective. J Am Soc Nephrol. 2018;29:710–712.
  • Pfleiderer G, Baier M, Mondorf AW, et al. Change in alkaline phosphatase isoenzyme pattern in urine as possible marker for renal disease. Kidney Int. 1980;17:242–249.
  • Kapojos JJ, Poelstra K, Borghuis T, et al. Induction of glomerular alkaline phosphatase after challenge with lipopolysaccharide. Int J Exp Pathol. 2003;84:135–144.
  • Wang H-B, Yang Q-H, Jiang X, et al. Tubular proteinuria is the dominant type of proteinuria in an elderly community population in China. Int Urol Nephrol. 2015;47:1541–1546.
  • De Carvalho JA, Piva SJ, Hausen BS, et al. Assessment of urinary γ-glutamyltransferase and alkaline phosphatase for diagnosis of diabetic nephropathy. Clin Chim Acta. 2011;412:1407–1411.