3,770
Views
23
CrossRef citations to date
0
Altmetric
Review Article

Large animal models for translational research in acute kidney injury

, , , &
Pages 1042-1058 | Received 12 Aug 2020, Accepted 23 Sep 2020, Published online: 12 Oct 2020

References

  • Stewart IJ, Sosnov JA, Howard JT, et al. Acute kidney injury in critically injured combat veterans: a retrospective cohort study. Am J Kidney Dis. 2016;68(4):564–570.
  • Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81(5):442–448.
  • Hsu CY, Hsu RK, Yang J, et al. Elevated BP after AKI. JASN. 2016;27(3):914–923.
  • Stewart IJ, Sosnov JA, Howard JT, et al. Retrospective analysis of long-term outcomes after combat injury: a hidden cost of war. Circulation. 2015;132(22):2126–2133.
  • Bansal N, Matheny ME, Greevy RA, et al. Acute kidney injury and risk of incident heart failure among US veterans. Am J Kidney Dis. 2018;71(2):236–245.
  • Go AS, Hsu CY, Yang J, et al. Acute kidney injury and risk of heart failure and atherosclerotic events. Clin J Am Soc Nephrol. 2018;13(6):833–841.
  • Lafrance JP, Miller DR. Acute kidney injury associates with increased long-term mortality. JASN. 2010;21(2):345–352.
  • Sawhney S, Marks A, Fluck N, et al. Intermediate and long-term outcomes of survivors of acute kidney injury episodes: a large population-based cohort study. Am J Kidney Dis. 2017;69(1):18–28.
  • Zarjou A, Sanders PW, Mehta RL, et al. Enabling innovative translational research in acute kidney injury. Clin Transl Sci. 2012;5(1):93–101.
  • Di Giorno C, Pinheiro HS, Heinke T, et al. Beneficial effect of N-acetyl-cysteine on renal injury triggered by ischemia and reperfusion. Transplant Proc. 2006;38(9):2774–2776.
  • Campos R, Shimizu MH, Volpini RA, et al. N-acetylcysteine prevents pulmonary edema and acute kidney injury in rats with sepsis submitted to mechanical ventilation. Am J Physiol Lung Cell Mol Physiol. 2012;302(7):L640–50.
  • Kim JH, Lee SS, Jung MH, et al. N-acetylcysteine attenuates glycerol-induced acute kidney injury by regulating MAPKs and Bcl-2 family proteins. Nephrol Dial Transplant. 2010;25(5):1435–1443.
  • Yenicerioglu Y, Yilmaz O, Sarioglu S, et al. Effects of N-acetylcysteine on radiocontrast nephropathy in rats. Scand J Urol Nephrol. 2006;40(1):63–69.
  • Amini M, Salarifar M, Amirbaigloo A, et al. N-acetylcysteine does not prevent contrast-induced nephropathy after cardiac catheterization in patients with diabetes mellitus and chronic kidney disease: a randomized clinical trial. Trials. 2009;10:45.
  • Badri S, Soltani R, Sayadi M, et al. Effect of N-acetylcysteine against vancomycin-induced nephrotoxicity: a randomized controlled clinical trial. Arch Iran Med. 2020;23(6):397–402.
  • Pereira JEG, El Dib R, Braz LG, et al. N-acetylcysteine use among patients undergoing cardiac surgery: a systematic review and meta-analysis of randomized trials. PLoS One. 2019;14(5):e0213862.
  • Adabag AS, Ishani A, Koneswaran S, et al. Utility of N-acetylcysteine to prevent acute kidney injury after cardiac surgery: a randomized controlled trial. Am Heart J. 2008;155(6):1143–1149.
  • Mei M, Zhao HW, Pan QG, Pu YM, et al. Efficacy of N-acetylcysteine in preventing acute kidney injury after cardiac surgery: a meta-analysis study. J Invest Surg. 2018;31(1):14–23.
  • Skrypnyk NI, Siskind LJ, Faubel S, et al. Bridging translation for acute kidney injury with better preclinical modeling of human disease. Am J Physiol Renal Physiol. 2016;310(10):F972–84.
  • de Caestecker M, Humphreys BD, Liu KD, et al.; ASN AKI Advisory Group. Bridging translation by improving preclinical study design in AKI. J Am Soc Nephrol. 2015;26(12):2905–2916.
  • Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004;172(5):2731–2738.
  • Meurens F, Summerfield A, Nauwynck H, et al. The pig: a model for human infectious diseases. Trends Microbiol. 2012;20(1):50–57.
  • Dawson HD, Smith AD, Chen C, et al. An in-depth comparison of the porcine, murine and human inflammasomes; lessons from the porcine genome and transcriptome. Vet Microbiol. 2017;202:2–15.
  • Smirnova I, Poltorak A, Chan EK, et al. Phylogenetic variation and polymorphism at the toll-like receptor 4 locus (TLR4). Genome Biol. 2000;1(1):RESEARCH002.
  • Barreiro LB, Marioni JC, Blekhman R, et al. Functional comparison of innate immune signaling pathways in primates. PLoS Genet. 2010;6(12):e1001249.
  • Star RA. Treatment of acute renal failure. Kidney Int. 1998;54(6):1817–1831.
  • Chopra TA, Brooks CH, Okusa MD. Acute kidney injury prevention. Contrib Nephrol. 2016;187:9–23.
  • Zuk A, Bonventre JV. Acute kidney injury. Annu Rev Med. 2016;67:293–307.
  • Burmeister DM, Gomez BI, Dubick MA. Molecular mechanisms of trauma-induced acute kidney injury: Inflammatory and metabolic insights from animal models. Biochim Biophys Acta Mol Basis Dis. 2017;1863(10 Pt B):2661–2671.
  • Yang Y, Song M, Liu Y, et al. Renoprotective approaches and strategies in acute kidney injury. Pharmacol Ther. 2016;163:58–73.
  • Agarwal A, Dong Z, Harris R, et al.; Acute Dialysis Quality Initiative XIII Working Group. Cellular and molecular mechanisms of aKI. J Am Soc Nephrol. 2016;27(5):1288–1299.
  • Rosin DL, Okusa MD. Dangers within: DAMP responses to damage and cell death in kidney disease. J Am Soc Nephrol. 2011;22(3):416–425.
  • Ishimoto Y, Inagi R. Mitochondria: a therapeutic target in acute kidney injury. Nephrol Dial Transplant. 2016;31(7):1062–1069.
  • Li L, Okusa MD. Macrophages, dendritic cells, and kidney ischemia-reperfusion injury. Semin Nephrol. 2010;30(3):268–277.
  • Jang HR, Rabb H. Immune cells in experimental acute kidney injury. Nat Rev Nephrol. 2015;11(2):88–101.
  • Wohlfahrtova M, Tycova I, Honsova E, et al. Molecular patterns of subclinical and clinical rejection of kidney allograft: quantity matters. Kidney Blood Press Res. 2015;40(3):244–257.
  • Lever JM, Hull TD, Boddu R, et al. Resident macrophages reprogram toward a developmental state after acute kidney injury. JCI Insight. 2019;4(2):e125503.
  • Prasada R, Muktesh G, Samanta J, et al. Natural history and profile of selective cytokines in patients of acute pancreatitis with acute kidney injury. Cytokine. 2020;133:155177.
  • de Fontnouvelle CA, Greenberg JH, Thiessen-Philbrook HR, et al. Interleukin-8 and tumor necrosis factor predict acute kidney injury after pediatric cardiac surgery. Ann Thorac Surg. 2017;104(6):2072–2079.
  • Sirota JC, Walcher A, Faubel S, et al. Urine IL-18, NGAL, IL-8 and serum IL-8 are biomarkers of acute kidney injury following liver transplantation. BMC Nephrol. 2013;14:17.
  • Iwakura T, Zhao Z, Marschner JA, et al. Dipeptidyl peptidase-4 inhibitor teneligliptin accelerates recovery from cisplatin-induced acute kidney injury by attenuating inflammation and promoting tubular regeneration. Nephrol Dial Transplant. 2019;34(10):1669–1680.
  • Atri C, Guerfali FZ, Laouini D. Role of human macrophage polarization in inflammation during infectious diseases. IJMS. 2018;19(6):1801.
  • Huen SC, Cantley LG. Macrophages in renal injury and repair. Annu Rev Physiol. 2017;79:449–469.
  • Zschaler J, Schlorke D, Arnhold J. Differences in innate immune response between man and mouse. Crit Rev Immunol. 2014;34(5):433–454.
  • Roncal CA, Mu W, Croker B, et al. Effect of elevated serum uric acid on cisplatin-induced acute renal failure. Am J Physiol Renal Physiol. 2007;292(1):F116–22.
  • Ejaz AA, Dass B, Lingegowda V, et al. Effect of uric acid lowering therapy on the prevention of acute kidney injury in cardiovascular surgery. Int Urol Nephrol. 2013;45(2):449–458.
  • Ding C, Han F, Xiang H, et al. Probiotics ameliorate renal ischemia-reperfusion injury by modulating the phenotype of macrophages through the IL-10/GSK-3β/PTEN signaling pathway. Pflugers Arch. 2019;471(4):573–581.
  • Kim MG, Lim K, Lee YJ, et al. M2 macrophages predict worse long-term outcomes in human acute tubular necrosis. Sci Rep. 2020;10(1):2122.
  • Palmer MB, Vichot AA, Cantley LG, et al. Quantification and localization of M2 macrophages in human kidneys with acute tubular injury. Int J Nephrol Renovasc Dis. 2014;7:415–419.
  • Hu W, Lin J, Lian X, et al. M2a and M2b macrophages predominate in kidney tissues and M2 subpopulations were associated with the severity of disease of IgAN patients. Clin Immunol. 2019;205:8–15.
  • Costa JS, Alves R, Sousa V, et al. Fibrogenesis in kidney transplant: dysfunction progress biomarkers. Transplant Proc. 2017;49(4):787–791.
  • Li J, Liu CH, Xu DL, et al. Significance of CD163-positive macrophages in proliferative glomerulonephritis. Am J Med Sci. 2015;350(5):387–392.
  • Wang S, Zhang C, Li J, et al. Erythropoietin protects against rhabdomyolysis-induced acute kidney injury by modulating macrophage polarization. Cell Death Dis. 2017;8(4):e2725.
  • Russell PS, Hong J, Windsor JA, et al. Renal lymphatics: anatomy, physiology, and clinical implications. Front Physiol. 2019;10:251.
  • Pabst R. The pig as a model for immunology research. Cell Tissue Res. 2020;380(2):287–304.
  • Fairbairn L, Kapetanovic R, Sester DP, et al. The mononuclear phagocyte system of the pig as a model for understanding human innate immunity and disease. J Leukoc Biol. 2011;89(6):855–871.
  • Gómez BI, Harrington BK, Chao T, et al. Impact of oral resuscitation on circulating and splenic leukocytes after burns. Burns. 2020;46(3):567–578.
  • Reynolds PS, Fisher BJ, McCarter J, et al. Interventional vitamin C: a strategy for attenuation of coagulopathy and inflammation in a swine multiple injuries model. J Trauma Acute Care Surg. 2018;85(1S Suppl 2):S57–S67.
  • Castellano G, Melchiorre R, Loverre A, et al. Therapeutic targeting of classical and lectin pathways of complement protects from ischemia-reperfusion-induced renal damage. Am J Pathol. 2010;176(4):1648–1659.
  • Thomas AV, Broers AD, Vandegaart HF, et al. Genomic structure, promoter analysis and expression of the porcine (Sus scrofa) TLR4 gene. Mol Immunol. 2006;43(6):653–659.
  • Vaure C, Liu Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol. 2014;5:316.
  • Tohno M, Shimazu T, Aso H, et al. Molecular cloning and functional characterization of porcine MyD88 essential for TLR signaling. Cell Mol Immunol. 2007;4(5):369–376.
  • CSaA C. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature. 2005;437(7055):69–87.
  • Gharaie Fathabad S, Kurzhagen JT, Sadasivam M, et al. T lymphocytes in acute kidney injury and repair. Semin Nephrol. 2020;40(2):114–125.
  • Delpech PO, Thuillier R, SaintYves T, et al. Inhibition of complement improves graft outcome in a pig model of kidney autotransplantation. J Transl Med. 2016;14(1):277.
  • Faure JP, Petit I, Zhang K, et al. Protective roles of polyethylene glycol and trimetazidine against cold ischemia and reperfusion injuries of pig kidney graft. Am J Transplant. 2004;4(4):495–504.
  • Faure JP, Baumert H, Han Z, et al. Evidence for a protective role of trimetazidine during cold ischemia: targeting inflammation and nephron mass. Biochem Pharmacol. 2003;66(11):2241–2250.
  • Hauet T, Goujon JM, Baumert H, et al. Polyethylene glycol reduces the inflammatory injury due to cold ischemia/reperfusion in autotransplanted pig kidneys. Kidney Int. 2002;62(2):654–667.
  • Kinsey GR, Huang L, Vergis AL, et al. Regulatory T cells contribute to the protective effect of ischemic preconditioning in the kidney. Kidney Int. 2010;77(9):771–780.
  • Lai LW, Yong KC, Lien YH. Pharmacologic recruitment of regulatory T cells as a therapy for ischemic acute kidney injury. Kidney Int. 2012;81(10):983–992.
  • De Greef KE, Ysebaert DK, Dauwe S, et al. Anti-B7-1 blocks mononuclear cell adherence in vasa recta after ischemia. Kidney Int. 2001;60(4):1415–1427.
  • Ysebaert DK, De Greef KE, De Beuf A, et al. T cells as mediators in renal ischemia/reperfusion injury. Kidney Int. 2004;66(2):491–496.
  • Sayegh MH, Akalin E, Hancock WW, et al. CD28-B7 blockade after alloantigenic challenge in vivo inhibits Th1 cytokines but spares Th2. J Exp Med. 1995;181(5):1869–1874.
  • Dekel B, Böcher WO, Marcus H, et al. Acute cellular rejection of human renal tissue by adoptive transfer of allogeneic human peripheral blood mononuclear cells into chimeric rats: sequential gene expression of cytokines, chemokines and cytolytic effector molecules, and their regulation by CTLA-4-Ig. Int Immunol. 1999;11(10):1673–1683.
  • Magee DE, Hird AE, Klaassen Z, et al. Adverse event profile for immunotherapy agents compared with chemotherapy in solid organ tumors: a systematic review and meta-analysis of randomized clinical trials. Ann Oncol. 2020;31(1):50–60.
  • Meraz-Muñoz A, Amir E, Ng P, et al. Acute kidney injury associated with immune checkpoint inhibitor therapy: incidence, risk factors and outcomes. J Immunother Cancer. 2020;8(1):e000467.
  • Dellepiane S, Leventhal JS, Cravedi P. T cells and acute kidney injury: a two-way relationship. Front Immunol. 2020;11:1546.
  • Paulissen SM, van Hamburg JP, Dankers W, et al. The role and modulation of CCR6+ Th17 cell populations in rheumatoid arthritis. Cytokine. 2015;74(1):43–53.
  • Maeda S, Osaga S, Maeda T, et al. Circulating Th17.1 cells as candidate for the prediction of therapeutic response to abatacept in patients with rheumatoid arthritis: an exploratory research. PLoS One. 2019;14(11):e0215192.
  • Sachs DH. Tolerance: of mice and men. J Clin Invest. 2003;111(12):1819–1821.
  • Haanstra KG, van der Maas MJ, T Hart BA, et al. Characterization of naturally occurring CD4 + CD25+ regulatory T cells in rhesus monkeys. Transplantation. 2008;85(8):1185–1192.
  • Burr AHP, Bhattacharjee A, Hand TW. Nutritional modulation of the microbiome and immune response. J Immunol. 2020;205(6):1479–1487.
  • Yang Q, Wang Y, Jia A, et al. The crosstalk between gut bacteria and host immunity in intestinal inflammation. J Cell Physiol. 2020. doi:https://doi.org/10.1002/jcp.30024
  • Knauf F, Brewer JR, Flavell RA. Immunity, microbiota and kidney disease. Nat Rev Nephrol. 2019;15(5):263–274.
  • Gharaie S, Noel S, Rabb H. Gut microbiome and AKI: roles of the immune system and short-chain fatty acids. Nephron. 2020:1–3. doi:https://doi.org/10.1159/000508984
  • Gong J, Noel S, Pluznick JL, et al. Gut microbiota-kidney cross-talk in acute kidney injury. Semin Nephrol. 2019;39(1):107–116.
  • Zhang J, Ankawi G, Sun J, et al. Gut-kidney crosstalk in septic acute kidney injury. Crit Care. 2018;22(1):117.
  • Andrianova NV, Popkov VA, Klimenko NS, et al. Microbiome-metabolome signature of acute kidney injury. Metabolites. 2020;10(4):142.
  • Emal D, Rampanelli E, Stroo I, et al. Depletion of gut microbiota protects against renal ischemia-reperfusion injury. J Am Soc Nephrol. 2017;28(5):1450–1461.
  • Nakade Y, Iwata Y, Furuichi K, et al. Gut microbiota-derived D-serine protects against acute kidney injury. JCI Insight. 2018;3(20):e97957.
  • Yang J, Kim CJ, Go YS, et al. Intestinal microbiota control acute kidney injury severity by immune modulation. Kidney Int. 2020;S0085–2538(20)30553–30556.
  • Nagpal R, Wang S, Solberg Woods LC, et al. Comparative microbiome signatures and short-chain fatty acids in mouse, rat, non-human primate, and human feces. Front Microbiol. 2018;9:2897.
  • Hugenholtz F, de Vos WM. Mouse models for human intestinal microbiota research: a critical evaluation. Cell Mol Life Sci. 2018;75(1):149–160.
  • Li X, Liang S, Xia Z, et al. Establishment of a Macaca fascicularis gut microbiome gene catalog and comparison with the human, pig, and mouse gut microbiomes. Gigascience. 2018;7(9):giy100.
  • Heinritz SN, Mosenthin R, Weiss E. Use of pigs as a potential model for research into dietary modulation of the human gut microbiota. Nutr Res Rev. 2013;26(2):191–209.
  • Wang M, Donovan SM. Human microbiota-associated swine: current progress and future opportunities. Ilar J. 2015;56(1):63–73.
  • Labossiere JR, Pelletier J-S, Thiesen A, et al. Doxycycline attenuates renal injury in a swine model of neonatal hypoxia-reoxygenation. Shock. 2015;43(1):99–105.
  • Goebel U, Siepe M, Schwer CI, et al. Inhaled carbon monoxide prevents acute kidney injury in pigs after cardiopulmonary bypass by inducing a heat shock response. Anesth Analgesia. 2010;111(1):29–37.
  • Patel NN, Toth T, Jones C, et al. Prevention of post-cardiopulmonary bypass acute kidney injury by endothelin A receptor blockade. Critic Care Med. 2011;39(4):793–802.
  • Patel NN, Lin H, Toth T, et al. Phosphodiesterase-5 inhibition prevents postcardiopulmonary bypass acute kidney injury in swine. Ann Thoracic Surg. 2011;92(6):2168–2176.
  • Wang X, Xue Q, Yan F, et al. Ulinastatin protects against acute kidney injury in infant piglets model undergoing surgery on hypothermic low-flow cardiopulmonary bypass. PloS One. 2015;10(12):e0144516.
  • Liu S, Xu J, Gao Y, et al. Multi-organ protection of ulinastatin in traumatic cardiac arrest model. World J Emerg Surg. 2018;13:51.
  • Davidson JA, Khailova L, Treece A, et al. Alkaline phosphatase treatment of acute kidney injury in an infant piglet model of cardiopulmonary bypass with deep hypothermic circulatory arrest. Sci Rep. 2019;9(1):1–14.
  • Barrera-Chimal J, André-Grégoire G, Nguyen Dinh Cat A, et al. Benefit of mineralocorticoid receptor antagonism in AKI: role of vascular smooth muscle Rac1. J Am Soc Nephrol. 2017;28(4):1216–1226.
  • Jayle C, Milinkevitch S, Favreau F, et al. Protective role of selectin ligand inhibition in a large animal model of kidney ischemia-reperfusion injury. Kidney Int. 2006;69(10):1749–1755.
  • Sølling C, Christensen AT, Krag S, et al. Erythropoietin administration is associated with short-term improvement in glomerular filtration rate after ischemia-reperfusion injury. Acta Anaesthesiol Scand. 2011;55(2):185–195.
  • Simon F, Scheuerle A, Calzia E, et al. Erythropoietin during porcine aortic balloon occlusion-induced ischemia/reperfusion injury. Crit Care Med. 2008;36(7):2143–2150.
  • Matějková Š, Scheuerle A, Wagner F, et al. Carbamylated erythropoietin-FC fusion protein and recombinant human erythropoietin during porcine kidney ischemia/reperfusion injury. Intens Care Med. 2013;39(3):497–510.
  • van Rijt WG, Nieuwenhuijs-Moeke GJ, van Goor H, et al. ARA290, a non-erythropoietic EPO derivative, attenuates renal ischemia/reperfusion injury. J Transl Med. 2013;11(1):9.
  • Yang C, Hosgood SA, Meeta P, et al. Cyclic helix B peptide in preservation solution and autologous blood perfusate ameliorates ischemia-reperfusion injury in isolated porcine kidneys. Transplant Direct. 2015;1(2):e6.
  • Simmons MN, Subramanian V, Crouzet S, et al. Alpha-melanocyte stimulating hormone analogue AP214 protects against ischemia induced acute kidney injury in a porcine surgical model . J Urol. 2010;183(4):1625–1629.
  • Cau J, Favreau F, Zhang K, et al. FR167653 improves renal recovery and decreases inflammation and fibrosis after renal ischemia reperfusion injury. J Vasc Surg. 2009;49(3):728–740.
  • Jayle C, Faure JP, Thuillier R, et al. Influence of nephron mass and a phosphorylated 38 mitogen-activated protein kinase inhibitor on the development of early and long-term injury after renal warm ischaemia. Br J Surg. 2009;96(7):799–808.
  • Doucet C, Milin S, Favreau F, et al. A p38 mitogen-activated protein kinase inhibitor protects against renal damage in a non-heart-beating donor model. Am J Physiol Renal Physiol. 2008;295(1):F179–91.
  • Miura K, Sahara H, Sekijima M, et al. Protective effect of neutralization of the extracellular high-mobility group box 1 on renal ischemia-reperfusion injury in miniature swine. Transplantation. 2014;98(9):937–943.
  • Yang C, Zhao T, Zhao Z, et al. Serum-stabilized naked caspase-3 siRNA protects autotransplant kidneys in a porcine model. Mol Ther. 2014;22(10):1817–1828.
  • Yang B, Hosgood SA, Harper SJ, et al. Leucocyte depletion improves renal function in porcine kidney hemoreperfusion through reduction of myeloperoxidase + cells, caspase-3, IL-1β, and tubular apoptosis. J Surg Res. 2010;164(2):e315–e324.
  • Simon F, Scheuerle A, Gröger M, et al. Effects of intravenous sulfide during porcine aortic occlusion-induced kidney ischemia/reperfusion injury. Shock. 2011;35(2):156–163.
  • Satterly SA, Salgar S, Hoffer Z, et al. Hydrogen sulfide improves resuscitation via non-hibernatory mechanisms in a porcine shock model. J Surg Res. 2015;199(1):197–210.
  • Hosgood SA, Moore T, Qurashi M, et al. Hydrogen gas does not ameliorate renal ischemia reperfusion injury in a preclinical model. Artif Organs. 2018;42(7):723–727.
  • Xu M, Wang X, Banan B, et al. Anti-CD47 monoclonal antibody therapy reduces ischemia-reperfusion injury of renal allografts in a porcine model of donation after cardiac death. Am J Transplant. 2018;18(4):855–867.
  • Kolsrud O, Damén T, Nygren A, et al. Effects of atrial natriuretic peptide on renal function during cardiopulmonary bypass: a randomized pig model. Eur J Cardiothorac Surg. 2020;57(4):652–659.
  • Miller Q, Peyton BD, Cohn EJ, et al. The effects of intraoperative fenoldopam on renal blood flow and tubular function following suprarenal aortic cross-clamping. Ann Vasc Surg. 2003;17(6):656–662.
  • Gozdzik W, Zielinski S, Zielinska M, et al. Beneficial effects of inhaled nitric oxide with intravenous steroid in an ischemia-reperfusion model involving aortic clamping. Int J Immunopathol Pharmacol. 2018;32:394632017751486.
  • Cau J, Favreau F, Tillement JP, et al. Trimetazidine reduces early and long-term effects of experimental renal warm ischemia: a dose effect study. J Vasc Surg. 2008;47(4):852–860.
  • Kim M-J, Lee S-J, Park C-S, et al. Attenuation of renal ischemia-reperfusion injury by antioxidant vitamins in pigs. J Vet Clin. 2007;24(2):94–98.
  • Eirin A, Zhu XY, Krier JD, et al. Adipose tissue-derived mesenchymal stem cells improve revascularization outcomes to restore renal function in swine atherosclerotic renal artery stenosis. Stem Cells. 2012;30(5):1030–1041.
  • Aghajani Nargesi A, Lerman LO, Eirin A. Mesenchymal stem cell-derived extracellular vesicles for kidney repair: current status and looming challenges. Stem Cell Res Ther. 2017;8(1):273.
  • Eirin A, Zhu XY, Puranik AS, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation. Kidney Int. 2017;92(1):114–124.
  • Zhao Y, Zhu X, Zhang L, et al. Mesenchymal stem/stromal cells and their extracellular vesicle progeny decrease injury in post-stenotic swine kidney through different mechanisms. Stem Cells Dev. 2020;29(18):1190–1200.
  • Doulamis IP, Guariento A, Duignan T, et al. Mitochondrial transplantation by intra-arterial injection for acute kidney injury. Am J Physiol Renal Physiol. 2020;319(3):F403–F413.
  • Kishi S, Campanholle G, Gohil VM, et al. Meclizine preconditioning protects the kidney against ischemia-reperfusion injury. EBioMedicine. 2015;2(9):1090–1101.
  • Johnson ST, Bigam DL, Emara M, et al. N-acetylcysteine improves the hemodynamics and oxidative stress in hypoxic newborn pigs reoxygenated with 100% oxygen. Shock. 2007;28(4):484–490.
  • Lee TF, Liu JQ, Li YQ, et al. Improved renal recovery with postresuscitation N-acetylcysteine treatment in asphyxiated newborn pigs. Shock. 2011;35(4):428–433.
  • Kuntscher V, Treska V, Racek J, et al. Does the administration of antioxidants as scavengers of reactive oxygen species in kidney transplantation really have sense? Bratisl Lek Listy. 2007;108(9):385–387.
  • Soussi D, Danion J, Baulier E, et al. Vectisol formulation enhances solubility of resveratrol and brings its benefits to kidney transplantation in a preclinical porcine model. IJMS. 2019;20(9):2268.
  • Kim SR, Erin A, Zhang X, et al. Mitochondrial protection partly mitigates kidney cellular senescence in swine atherosclerotic renal artery stenosis. Cell Physiol Biochem. 2019;52(3):617.
  • Amdisen C, Keller AK, Hansen RS, et al. Testing danegaptide effects on kidney function after ischemia/reperfusion injury in a new porcine two week model. PLoS One. 2016;11(10):e0164109.
  • Soni H, Peixoto-Neves D, Olushoga MA, et al. Pharmacological inhibition of TRPV4 channels protects against ischemia-reperfusion-induced renal insufficiency in neonatal pigs. Clin Sci (Lond). 2019;133(9):CS20180815.
  • Cui J, Bai X-Y, Sun X, et al. Rapamycin protects against gentamicin-induced acute kidney injury via autophagy in mini-pig models. Sci Rep. 2015;5:11256.
  • Kumar G, Solanki MH, Xue X, et al. Magnesium improves cisplatin-mediated tumor killing while protecting against cisplatin-induced nephrotoxicity. Am J Physiol Renal Physiol. 2017;313(2):F339–f350.
  • Wu J, Wan X, Zhang H, et al. Retinoic acid attenuates contrast-induced acute kidney injury in a miniature pig model. Biochem Biophys Res Commun. 2019;512(2):163–169.
  • Xu J, Ma L, Fu P. MicroRNA-30c attenuates contrast-induced acute kidney injury by suppressing NLRP3 inflammasome. Int Immunopharmacol. 2020;87:106457.
  • Cui J, Tang L, Hong Q, et al. N-acetylcysteine ameliorates gentamicin-induced nephrotoxicity by enhancing autophagy and reducing oxidative damage in miniature pigs. Shock. 2019;52(6):622–630.
  • Junot S, Keroak S, Del Castillo JR, et al. Inhaled nitric oxide prevents NSAID-induced renal impairment in pseudo-normovolaemic piglets. PloS One. 2017;12(6):e0179475.
  • Wagner KE, Martinez JM, Vath SD, et al. Early immunoneutralization of calcitonin precursors attenuates the adverse physiologic response to sepsis in pigs. Crit Care Med. 2002;30(10):2313–2321.
  • Sølling C, Christensen AT, Nygaard U, et al. Erythropoietin does not attenuate renal dysfunction or inflammation in a porcine model of endotoxemia. Acta Anaesthesiol Scand. 2011;55(4):411–421.
  • Yeh YC, Yu LC, Wu CY, et al.; NTUH Center of Microcirculation Medical Research (NCMMR). Effects of endotoxin absorber hemoperfusion on microcirculation in septic pigs. J Surg Res. 2017;211:242–250.
  • Kubiak BD, Albert SP, Gatto LA, et al. Peritoneal negative pressure therapy prevents multiple organ injury in a chronic porcine sepsis and ischemia/reperfusion model. Shock. 2010;34(5):525–534.
  • Gomez BI, McIntyre MK, Gurney JM, et al. Enteral resuscitation with oral rehydration solution to reduce acute kidney injury in burn victims: evidence from a porcine model. PLoS One. 2018;13(5):e0195615.
  • Smith S, Behrens B, McCully B, et al. Aggressive treatment of acute kidney injury and hyperkalemia improves survival in a combat relevant trauma model in swine. Am J Surg. 2020;219(5):860–864.
  • de Castro LUC, Ida KK, Otsuki DA, et al. Vasopressin analog terlipressin attenuates kidney injury in hemorrhagic shock. Trauma Surg Acute Care Open. 2016;1(1):e000039.
  • van Griensven M, Ricklin D, Denk S, et al. Protective effects of the complement inhibitor compstatin CP40 in hemorrhagic shock. Shock. 2019;51(1):78–87.
  • Halbgebauer R, Karasu E, Braun CK, et al. Thirty-eight-negative kinase 1 is a mediator of acute kidney injury in experimental and clinical traumatic hemorrhagic shock. Front Immunol. 2020;11:2081.
  • Feng L, He G, Cai L, et al. Artificial liver and renal support system for cynomolgus monkeys with surgery-induced acute renal failure: a preclinical study. Biomed Res Int. 2018;2018:7456898.
  • Ishii Y, Sawada T, Murakami T, et al. Renoprotective effect of erythropoietin against ischaemia-reperfusion injury in a non-human primate model. Nephrol Dial Transplant. 2011;26(4):1157–1162.
  • Qi S, Xu D, Ma A, et al. Effect of a novel inducible nitric oxide synthase inhibitor, FR260330, in prevention of renal ischemia/reperfusion injury in vervet monkeys. Transplantation. 2006;81(4):627–631.
  • Dehnadi A, Benedict Cosimi A, Neal Smith R, et al. Prophylactic orthosteric inhibition of leukocyte integrin CD11b/CD18 prevents long-term fibrotic kidney failure in cynomolgus monkeys. Nat Commun. 2017;8:13899.
  • Lee KW, Kim TM, Kim KS, et al. Renal ischemia-reperfusion injury in a diabetic monkey model and therapeutic testing of human bone marrow-derived mesenchymal stem cells. J Diabetes Res. 2018;2018:5182606.
  • Moghadasali R, Azarnia M, Hajinasrollah M, et al. Intra-renal arterial injection of autologous bone marrow mesenchymal stromal cells ameliorates cisplatin-induced acute kidney injury in a rhesus Macaque mulatta monkey model. Cytotherapy. 2014;16(6):734–749.
  • Gautier J-C, Zhou X, Yang Y, et al. Evaluation of novel biomarkers of nephrotoxicity in Cynomolgus monkeys treated with gentamicin. Toxicol Appl Pharmacol. 2016;303:1–10.
  • Chen Y, Thurman JD, Kinter LB, et al. Perspectives on using a multiplex human kidney safety biomarker panel to detect cisplatin-induced tubular toxicity in male and female Cynomolgus monkeys. Toxicol Appl Pharmacol. 2017;336:66–74.
  • Welty-Wolf KE, Carraway MS, Ortel TL, et al. Blockade of tissue factor-factor X binding attenuates sepsis-induced respiratory and renal failure. Am J Physiol Lung Cell Mol Physiol. 2006;290(1):L21–31.
  • Stearns-Kurosawa DJ, Collins V, Freeman S, et al. Rescue from lethal Shiga toxin 2-induced renal failure with a cell-permeable peptide. Pediatr Nephrol. 2011;26(11):2031–2039.
  • Fiedler VB, Loof I, Sander E, et al. Monoclonal antibody to tumor necrosis factor–alpha prevents lethal endotoxin sepsis in adult rhesus monkeys. J Lab Clin Med. 1992;120(4):574–588.
  • Keshari RS, Silasi R, Popescu NI, et al. Fondaparinux pentasaccharide reduces sepsis coagulopathy and promotes survival in the baboon model of Escherichia coli sepsis. J Thromb Haemost. 2020;18(1):180–190.
  • Molina L, Studenberg S, Wolberg G, et al. Efficacy of treatment with the iron (III) complex of diethylenetriamine pentaacetic acid in mice and primates inoculated with live lethal dose 100 Escherichia coli. J Clin Invest. 1996;98(1):192–198.
  • Fenhammar J, Rundgren M, Forestier J, et al. Toll-like receptor 4 inhibitor TAK-242 attenuates acute kidney injury in endotoxemic sheep. Anesthesiol J Am Soc Anesthesiol. 2011;114(5):1130–1137.
  • Lankadeva YR, Ma S, Iguchi N, et al. Dexmedetomidine reduces norepinephrine requirements and preserves renal oxygenation and function in ovine septic acute kidney injury. Kidney Int. 2019;96(5):1150–1161.
  • Iguchi N, Lankadeva YR, Mori TA, et al. Furosemide reverses medullary tissue hypoxia in ovine septic acute kidney injury. Am J Physiol Regul Integr Compar Physiol. 2019;317(2):R232–r239.
  • Post EH, Su F, Righy Shinotsuka C, et al. Renal autoregulation in experimental septic shock and its response to vasopressin and norepinephrine administration. J Appl Physiol (1985). 2018;125:1661–1669.
  • Okazaki N, Iguchi N, Evans RG, et al. Beneficial effects of vasopressin compared with norepinephrine on renal perfusion, oxygenation, and function in experimental septic acute kidney injury. Crit Care Med. 2020;48(10):e951–e958.
  • Lankadeva YR, Kosaka J, Evans RG, et al. Urinary oxygenation as a surrogate measure of medullary oxygenation during angiotensin II therapy in septic acute kidney injury. Crit Care Med. 2018;46(1):e41–e48.
  • Lankadeva YR, Kosaka J, Iguchi N, et al. Effects of fluid bolus therapy on renal perfusion, oxygenation, and function in early experimental septic kidney injury. Critical Care Medicine. 2019;47(1):e36–e43.
  • Orbegozo D, Su F, Santacruz C, et al. Effects of different crystalloid solutions on hemodynamics, peripheral perfusion, and the microcirculation in experimental abdominal sepsis. Anesthesiology. 2016;125(4):744–754.
  • Chang EI, Zárate MA, Rabaglino MB, et al. Ketamine suppresses hypoxia-induced inflammatory responses in the late-gestation ovine fetal kidney cortex. J Physiol (Lond). 2016;594(5):1295–1310.
  • Nilsson KF, Sandin J, Gustafsson LE, et al. The novel nitric oxide donor PDNO attenuates ovine ischemia-reperfusion induced renal failure. Intens Care Med Exp. 2017;5(1):29.
  • O'Kane D, Gibson L, May CN, et al. Zinc preconditioning protects against renal ischaemia reperfusion injury in a preclinical sheep large animal model. Biometals. 2018;31(5):821–834.
  • Behr L, Hekmati M, Lucchini A, et al. Evaluation of the effect of autologous mesenchymal stem cell injection in a large-animal model of bilateral kidney ischaemia reperfusion injury. Cell Prolif. 2009;42(3):284–297.
  • Lankadeva YR, Cochrane AD, Marino B, et al. Strategies that improve renal medullary oxygenation during experimental cardiopulmonary bypass may mitigate postoperative acute kidney injury. Kidney Int. 2019;95(6):1338–1346.
  • Kampmeier T, Arnemann P, Hessler M, et al. Effects of resuscitation with human albumin 5%, hydroxyethyl starch 130/0.4 6%, or crystalloid on kidney damage in an ovine model of septic shock. Br J Anaesth. 2018;121(3):581–587.
  • Li N, Jin H-X, Song Z, et al. Protective effect of recombinant human brain natriuretic peptide on acute renal injury induced by endotoxin in canines. Cell Biochem Biophys. 2014;70(2):1317–1324.
  • Rosselli DD, Mumaw JL, Dickerson V, et al. Efficacy of allogeneic mesenchymal stem cell administration in a model of acute ischemic kidney injury in cats. Res Vet Sci. 2016;108:18–24.
  • Chen Y, Harty GJ, Zheng Y, et al. CRRL269: a novel particulate guanylyl cyclase A receptor peptide activator for acute kidney injury. Circ Res. 2019;124(10):1462–1472.
  • Lee J-i, Kim M-j, Park C-s, et al. Influence of ascorbic acid on BUN, creatinine, resistive index in canine renal ischemia-reperfusion injury. J Vet Sci. 2006;7(1):79–81.
  • Zahran MH, Barakat N, Khater S, et al. Renoprotective effect of local sildenafil administration in renal ischaemia–reperfusion injury: a randomised controlled canine study. Arab J Urol. 2019;17(2):150–159.
  • Lee SJ, Ryu MO, Seo MS, et al. Mesenchymal stem cells contribute to improvement of renal function in a canine kidney injury model. In Vivo. 2017;31(6):1115–1124.
  • Sekhon CS, Sekhon BK, Singh I, et al. Attenuation of renal ischemia/reperfusion injury by a triple drug combination therapy. J Nephrol. 2003;16(1):63–74.
  • Grekas D, Kalekou H, Tourkantonis A. Effect of prostaglandin E2 (PGE2) in the prevention of acute renal failure in anesthetized dogs. In situ renal preservation. Ren Fail. 1989;11(1):27–31.
  • Hirasawa H, Odaka M, Soeda K, et al. Experimental and clinical study on ATP-MgCl2 administration for postischemic acute renal failure. Clin Exp Dial Apheresis. 1983;7(1-2):37–47.
  • Hardie EM, Page RL, Hoopes PJ. ATP-MgCl2 increases cisplatin toxicity in the dog and rat. J Appl Toxicol. 1992;12(5):369–375.
  • Margulies KB, McKinley LJ, Cavero PG, Burnett JC. Induction and prevention of radiocontrast-induced nephropathy in dogs with heart failure. Kidney Int. 1990;38(6):1101–1108.
  • Halpenny M, Markos F, Snow HM, et al. Effects of prophylactic fenoldopam infusion on renal blood flow and renal tubular function during acute hypovolemia in anesthetized dogs. Critic Care Med. 2001;29(4):855–860.
  • Tuma M, Canestrini S, Alwahab Z, et al. Trauma and endothelial glycocalyx: the microcirculation helmet? Shock. 2016;46(4):352–357.
  • Chignalia AZ, Yetimakman F, Christiaans SC, et al. The glycocalyx and trauma: a review. Shock. 2016;45(4):338–348.
  • Qureshi SH, Patel NN, Murphy GJ. Vascular endothelial cell changes in postcardiac surgery acute kidney injury. Am J Physiol Renal Physiol. 2018;314(5):F726–f735.
  • Gómez BI, Dubick MA, Schmidt EP, et al. Plasma and urinary glycosaminoglycans as evidence for endotheliopathy in a Swine burn model. J Surg Res. 2020;248:28–37.
  • Vigiola Cruz M, Carney BC, Luker JN, et al. Plasma ameliorates endothelial dysfunction in burn injury. J Surg Res. 2019;233:459–466.
  • Birk AV, Liu S, Soong Y, et al. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J Am Soc Nephrol. 2013;24(8):1250–1261.
  • Landoni G, Biondi-Zoccai GG, Tumlin JA, et al. Beneficial impact of fenoldopam in critically ill patients with or at risk for acute renal failure: a meta-analysis of randomized clinical trials. Am J Kidney Dis. 2007;49(1):56–68.
  • Sun H, Xie Q, Peng Z. Does fenoldopam protect kidney in cardiac surgery? A systemic review and meta-analysis with trial sequential analysis. Shock. 2019;52(3):326–333.
  • Yamada H, Doi K, Tsukamoto T, et al. Low-dose atrial natriuretic peptide for prevention or treatment of acute kidney injury: a systematic review and meta-analysis. Crit Care. 2019;23(1):41.
  • Tögel FE, Westenfelder C. Mesenchymal stem cells: a new therapeutic tool for AKI. Nat Rev Nephrol. 2010;6(3):179–183.
  • Chung BH. Use of mesenchymal stem cells for chronic kidney disease. Kidney Res Clin Pract. 2019;38(2):131–134.
  • Nutton V. Portraits of science. Logic, learning, and experimental medicine. Science. 2002;295(5556):800–801.
  • Giraud S, Favreau F, Chatauret N, et al. Contribution of large pig for renal ischemia-reperfusion and transplantation studies: the preclinical model. J Biomed Biotechnol. 2011;2011:532127.
  • Swindle MM, Makin A, Herron AJ, Clubb FJ, Jr, et al. Swine as models in biomedical research and toxicology testing. Vet Pathol. 2012;49(2):344–356.
  • Maurya H, Kumar T, Kumar S. Anatomical and physiological similarities of kidney in different experimental animals used for basic studies. J Clin Exp Nephrol. 2018;3:9.
  • Fabian Alejandro G, Luis Ernesto B, Hernando Yesid E. Morphological characterization of the renal arteries in the pig. Comparative analysis with the human. Int J Morphol. 2017;35(1):319–324.
  • Aleksiewicz R, Lutnicki K, Bojarski M, et al. Haemodynamics imaging of swine segmental kidney artery using duplex doppler technique. J Vet Res. 2019;63(2):259–265.
  • Kazzaz D, Shanklin WM. Comparative anatomy of the superficial vessels of the mammalian kidney demonstrated by plastic (vinyl acetate) injections and corrosion. J Anat. 1951;85(2):163–165.
  • Dhondt L, Croubels S, De Paepe P, et al. Conventional pig as animal model for human renal drug excretion processes: unravelling the porcine renal function by use of a cocktail of exogenous markers. Front Pharmacol. 2020;11:883.
  • Ekser B, Rigotti P, Gridelli B, et al. Xenotransplantation of solid organs in the pig-to-primate model. Transpl Immunol. 2009;21(2):87–92.
  • Inowa T, Hishikawa K, Takeuchi T, et al. Isolation and potential existence of side population cells in adult human kidney. Int J Urol. 2008;15(3):272–274.
  • Burmeister DM, McIntyre MK, Montgomery RK, et al. Isolation and characterization of multipotent CD24+ cells from the renal papilla of swine. Front Med (Lausanne). 2018;5:250.
  • Dekel B, Burakova T, Arditti FD, et al. Human and porcine early kidney precursors as a new source for transplantation. Nat Med. 2003;9(1):53–60.
  • Sleeman P, Patel NN, Lin H, et al. High fat feeding promotes obesity and renal inflammation and protects against post cardiopulmonary bypass acute kidney injury in swine. Crit Care. 2013;17(5):R262.
  • Danziger J, Chen K, Lee J, et al. Obesity, acute kidney injury, and mortality in critical illness. Critic Care Med. 2016;44(2):328.
  • Alidori S, Akhavein N, Thorek DLJ, et al. Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury. Sci Transl Med. 2016;8(331):331ra39.
  • Yang C, Li L, Xue Y, et al. Innate immunity activation involved in unprotected porcine auto-transplant kidneys preserved by naked caspase-3 siRNA. J Transl Med. 2013;11(1):210.
  • Yang C, Yang B. siRNA-induced RNAi therapy in acute kidney injury. RNA Interf. 2016;223.
  • Thompson JD, Kornbrust DJ, Foy JW, et al. Toxicological and pharmacokinetic properties of chemically modified siRNAs targeting p53 RNA following intravenous administration. Nucleic Acid Ther. 2012;22(4):255–264.
  • Fan P-C, Chen C-C, Chen Y-C, et al. MicroRNAs in acute kidney injury. Hum Genomics. 2016;10(1):29.
  • Han SJ, Williams RM, D’Agati V, et al. Selective nanoparticle-mediated targeting of renal tubular Toll-like receptor 9 attenuates ischemic acute kidney injury. Kidney Int. 2020;98(1):76–87.
  • Haas M, Kluppel ACA, Wartna ES, et al. Drug-targeting to the kidney: renal delivery and degradation of a naproxen-lysozyme conjugate in vivo. Kidney Int. 1997;52(6):1693–1699.
  • Liu KD, Humphreys BD, Endre ZH. The ten barriers for translation of animal data on AKI to the clinical setting. Intensive Care Med. 2017;43(6):898–900.