2,520
Views
9
CrossRef citations to date
0
Altmetric
Clinical Study

A nomogram based on serum cystatin C for predicting acute kidney injury in patients with traumatic brain injury

, , & ORCID Icon
Pages 206-215 | Received 02 Sep 2020, Accepted 26 Dec 2020, Published online: 21 Jan 2021

References

  • Dewan MC, Rattani A, Gupta S, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018;130(4):1080–1097.
  • Zygun DA, Kortbeek JB, Fick GH, et al. Non-neurologic organ dysfunction in severe traumatic brain injury. Crit Care Med. 2005;33(3):654–660.
  • Zygun D. Non-neurological organ dysfunction in neurocritical care: impact on outcome and etiological considerations. Curr Opin Crit Care. 2005;11(2):139–143.
  • Moore EM, Bellomo R, Nichol A, et al. The incidence of acute kidney injury in patients with traumatic brain injury. Renal Failure. 2010;32(9):1060–1065.
  • Li N, Zhao WG, Zhang WF. Acute kidney injury in patients with severe traumatic brain injury: implementation of the acute kidney injury network stage system. Neurocrit Care. 2011;14(3):377–381.
  • Skrifvars MB, Moore E, Martensson J, et al.; The EPO-TBI Investigators and the ANZICS Clinical Trials Group. Erythropoietin in traumatic brain injury associated acute kidney injury: A randomized controlled trial. Acta Anaesthesiol Scand. 2019;63(2):200–207.
  • Corral L, Javierre CF, Ventura JL, et al. Impact of non-neurological complications in severe traumatic brain injury outcome. Crit Care. 2012;16(2):R44.
  • Sadan O, Singbartl K, Kraft J, et al. Low-chloride- versus high-chloride-containing hypertonic solution for the treatment of subarachnoid hemorrhage-related complications: The ACETatE (A low ChloriE hyperTonic solution for brain Edema) randomized trial. J Intensive Care. 2020;8(1):32.
  • Büttner S, Stadler A, Mayer C, et al. Incidence, risk factors, and outcome of acute kidney injury in neurocritical care. J Intensive Care Med. 2020;35(4):338–346.
  • An S, Luo H, Wang J, et al. An acute kidney injury prediction nomogram based on neurosurgical intensive care unit profiles. Ann Transl Med. 2020;8(5):194–194.
  • Deng Y, Yuan J, Chi R, et al. The incidence, risk factors and outcomes of postoperative acute kidney injury in neurosurgical critically Ill patients. Sci Rep. 2017;7(1):4245.
  • Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis. 2002;40(2):221–226.
  • Odutayo A, Cherney D. Cystatin C and acute changes in glomerular filtration rate. Clin Nephrol. 2012;78(1):64–75.
  • Sjöström P, Tidman M, Jones I. The shorter T1/2 of cystatin C explains the earlier change of its serum level compared to serum creatinine. Clin Nephrol. 2004;62(3):241–242.
  • Nguyen MT, Devarajan P. Biomarkers for the early detection of acute kidney injury. Pediatr Nephrol. 2008;23(12):2151–2157.
  • Coll E, Botey A, Alvarez L, et al. Serum cystatin C as a new marker for noninvasive estimation of glomerular filtration rate and as a marker for early renal impairment. Am J Kidney Dis. 2000;36(1):29–34.
  • Nejat M, Pickering JW, Walker RJ, et al. Rapid detection of acute kidney injury by plasma cystatin C in the intensive care unit. Nephrol Dialysis Transplantation. 2010;25(10):3283–3289.
  • Swaminathan M, Phillips-Bute BG, Conlon PJ, et al. The association of lowest hematocrit during cardiopulmonary bypass with acute renal injury after coronary artery bypass surgery. Ann Thorac Surg. 2003;76(3):784–791.
  • Deng Y, Chi R, Chen S, et al. Evaluation of clinically available renal biomarkers in critically ill adults: a prospective multicenter observational study. Crit Care. 2017;21(1):46.
  • Rickli H, Benou K, Ammann P, et al. Time course of serial cystatin C levels in comparison with serum creatinine after application of radiocontrast media. Clin Nephrol. 2004;61(2):98–102.
  • Delanaye P, Lambermont B, Chapelle JP, et al. Plasmatic cystatin C for the estimation of glomerular filtration rate in intensive care units. Intensive Care Medicine. 2004;30(5):980–983.
  • El-Sadek AE, El-Gamasy MA, Behiry EG, et al. Plasma cystatin C versus renal resistive index as early predictors of acute kidney injury in critically ill neonates. J Pediatr Urol. 2020;16(2):206.e1–e201-206.e208.
  • Wang X, Lin X, Xie B, et al. Early serum cystatin C-enhanced risk prediction for acute kidney injury post cardiac surgery: a prospective, observational, cohort study. Biomarkers. 2020;25(1):20–26.
  • Krawczeski CD, Vandevoorde RG, Kathman T, et al. Serum cystatin C is an early predictive biomarker of acute kidney injury after pediatric cardiopulmonary bypass. CJASN. 2010;5(9):1552–1557.
  • Zappitelli M, Greenberg JH, Coca SG, et al.; Translational Research Investigating Biomarker Endpoints in Acute Kidney Injury (TRIBE-AKI) Consortium. Association of definition of acute kidney injury by cystatin C rise with biomarkers and clinical outcomes in children undergoing cardiac surgery. JAMA Pediatr. 2015;169(6):583–591.
  • Lim HB, Smith M. Systemic complications after head injury: a clinical review. Anaesthesia. 2007;62(5):474–482.
  • Dudoignon E, Moreno N, Deniau B, et al. Activation of the renin-angiotensin-aldosterone system is associated with Acute Kidney Injury in COVID-19. Anaesth Crit Care Pain Med. 2020;39(4):453–455.
  • Chen YT, Chan CK, Li WY, et al. Renin-angiotensin-aldosterone system inhibition decreased contrast-associated acute kidney injury in chronic kidney disease patients. J Formosan Med Assoc Taiwan yi Zhi. 2021;120(1):641–650.
  • Giannoudis PV, Harwood PJ, Loughenbury P, Van Griensven M, et al. Correlation between IL-6 levels and the systemic inflammatory response score: can an IL-6 cutoff predict a SIRS state? J Trauma. 2008;65(3):646–652.
  • Staubli SM, Schäfer J, Rosenthal R, et al. The role of CRP and Pentraxin 3 in the prediction of systemic inflammatory response syndrome and death in acute pancreatitis. Sci Rep. 2019;9(1):18340.
  • Zhang WR, Garg AX, Coca SG, TRIBE-AKI Consortium, et al. Plasma IL-6 and IL-10 concentrations predict AKI and long-term mortality in adults after cardiac surgery. J Am Soc Nephrol. 2015;26(12):3123–3132.
  • Maiwall R, Chandel SS, Wani Z, et al. SIRS at admission is a predictor of AKI development and mortality in hospitalized patients with severe alcoholic hepatitis. Dig Dis Sci. 2016;61(3):920–929.
  • Yang BH, He Q, Ding CY, et al. High-sensitivity C-reactive protein as a predictive factor of acute kidney injury following aneurysmal subarachnoid hemorrhage: a prospective observational study. Acta Neurochir (Wien). 2019;161(9):1783–1791.
  • Bouma HR, Ploeg RJ, Schuurs TA. Signal transduction pathways involved in brain death-induced renal injury. Am J Transplant. 2009;9(5):989–997.
  • Seo YS, Park SY, Kim MY, et al. Serum cystatin C level: An excellent predictor of mortality in patients with cirrhotic ascites. J Gastroenterol Hepatol. 2018;33(4):910–917.
  • Hendrickson CM, Kwong YD, Belzer AG, et al. Higher plasma cystatin C is associated with mortality after acute respiratory distress syndrome: findings from a Fluid and Catheter Treatment Trial (FACTT) substudy. Crit Care. 2020;24(1):416.
  • Bell M, Granath F, Mårtensson J, et al.; KING (Karolinska Intensive care Nephrology Group). Cystatin C is correlated with mortality in patients with and without acute kidney injury. Nephrol Dial Transplant. 2009;24(10):3096–3102.
  • Angeli F, Verdecchia P, Savonitto S, et al. Cystatin C and risk of mortality among patients undergoing percutaneous coronary intervention. EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the. Eur Soc Cardiol. 2015;11(8):757–764.
  • Shlipak MG, Katz R, Fried LF, et al. Cystatin-C and mortality in elderly persons with heart failure. J Am Coll Cardiol. 2005;45(2):268–271.
  • Volpon LC, Sugo EK, Carlotti AP. Diagnostic and prognostic value of serum cystatin C in critically ill children with acute kidney injury. Pediatric Crit Care Med. 2015;16(5):e125-131.
  • Luo J, Wang LP, Hu HF, et al. Cystatin C and cardiovascular or all-cause mortality risk in the general population: A meta-analysis. Clin Chim Acta Inter J Clin Chem. 2015;450:39–45.
  • Shi J, Zhang C, Cao Y, et al. Prognostic value of cystatin C in acute ischemic stroke patients with intravenous thrombolysis. CNR. 2019;16(4):301–309.
  • Zhang JB, Jü XH, Wang J, et al. Serum cystatin C and cerebral microbleeds in patients with acute cerebral stroke. J Clin Neurosci. 2014;21(2):268–273.
  • Zhu Z, Zhong C, Xu T, et al. Prognostic significance of serum cystatin C in acute ischemic stroke patients according to lipid component levels. Atherosclerosis. 2018;274:146–151.
  • Goksu E, Goksu E, Karsli B, et al. Cerebrospinal fluid cystatin C levels following treatment for aneurysmal subarachnoid hemorrhage. Turk Neurosurg. 2014;24(3):391–397.
  • Zeng Q, Lin K, Yao M, et al. Significant correlation between cystatin C, cerebral infarction, and potential biomarker for increased risk of stroke. CNR. 2015;12(1):40–46.
  • Hanrieder J, Wetterhall M, Enblad P, et al. Temporally resolved differential proteomic analysis of human ventricular CSF for monitoring traumatic brain injury biomarker candidates. J Neurosci Methods. 2009;177(2):469–478.
  • Zhang J, Ding R, Xian Q, et al. Serum cystatin C is increased in acute spinal cord injury: a multicentre retrospective study. Spinal Cord. 2020;58(3):341–347.
  • Liu Y, Li J, Wang Z, et al. Attenuation of early brain injury and learning deficits following experimental subarachnoid hemorrhage secondary to Cystatin C: possible involvement of the autophagy pathway. Mol Neurobiol. 2014;49(2):1043–1054.
  • Liu Y, Cai H, Wang Z, et al. Induction of autophagy by cystatin C: a potential mechanism for prevention of cerebral vasospasm after experimental subarachnoid hemorrhage. Eur J Med Res. 2013;18(1):21.
  • Yang B, Xu J, Chang L, et al. Cystatin C improves blood-brain barrier integrity after ischemic brain injury in mice. J Neurochem. 2020;153(3):413–425.
  • Lassnigg A, Schmidlin D, Mouhieddine M, et al. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol. 2004;15(6):1597–1605.
  • Herget-Rosenthal S, Marggraf G, Hüsing J, et al. Early detection of acute renal failure by serum cystatin C. Kidney Int. 2004;66(3):1115–1122.
  • Weller S, Varrier M, Ostermann M. Lymphocyte function in human acute kidney injury. Nephron. 2017;137(4):287–293.
  • Inaba A, Tuong ZK, Riding AM, et al. B lymphocyte-derived CCL7 augments neutrophil and monocyte recruitment, exacerbating acute kidney injury. J Immunol. 2020;205(5):1376–1384.
  • Zheng L, Gao W, Hu C, et al. Immune cells in ischemic acute kidney injury. Curr Protein Pept Sci. 2019;20(8):770–776.
  • Zheng CF, Liu WY, Zeng FF, et al. Prognostic value of platelet-to-lymphocyte ratios among critically ill patients with acute kidney injury. Crit Care. 2017;21(1):238.
  • Gameiro J, Lopes JA. Complete blood count in acute kidney injury prediction: a narrative review. Ann Intensive Care. 2019;9(1):87.
  • Bu X, Zhang L, Chen P, et al. Relation of neutrophil-to-lymphocyte ratio to acute kidney injury in patients with sepsis and septic shock: A retrospective study. Int Immunopharmacol. 2019;70:372–377.
  • Bi JB, Zhang J, Ren YF, et al. Neutrophil-to-lymphocyte ratio predicts acute kidney injury occurrence after gastrointestinal and hepatobiliary surgery. World J Gastrointest Surg. 2020;12(7):326–335.
  • Karkouti K, Grocott HP, Hall R, et al. Interrelationship of preoperative anemia, intraoperative anemia, and red blood cell transfusion as potentially modifiable risk factors for acute kidney injury in cardiac surgery: a historical multicentre cohort study. Can J Anesth. 2015;62(4):377–384.
  • Karkouti K, Wijeysundera DN, Yau TM, et al. Influence of erythrocyte transfusion on the risk of acute kidney injury after cardiac surgery differs in anemic and nonanemic patients. Anesthesiology. 2011;115(3):523–530.
  • Maaranen P, Husso A, Tauriainen T, et al. Blood transfusion and outcome after transfemoral transcatheter aortic valve replacement. J Cardiothoracic Vasc Anesthesia. 2019;33(11):2949–2959.
  • Nilsson CU, Bentzer P, Andersson LE, et al. Mortality and morbidity of low-grade red blood cell transfusions in septic patients: a propensity score-matched observational study of a liberal transfusion strategy. Ann Intensive Care. 2020;10(1):111.
  • Chowdhury AH, Cox EF, Francis ST, et al. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-Lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg. 2012;256(1):18–24.
  • Kumar AB, Shi Y, Shotwell MS, et al. Hypernatremia is a significant risk factor for acute kidney injury after subarachnoid hemorrhage: a retrospective analysis. Neurocrit Care. 2015;22(2):184–191.
  • Sigmon J, May CC, Bryant A, et al. Assessment of acute kidney injury in neurologically injured patients receiving hypertonic sodium chloride: does chloride load matter? Ann Pharmacother. 2020;54(6):541–546.
  • Jiang S, Shen Y, Zhao X. Hyperchloremia is associated with acute kidney injury in patients with aneurysmal subarachnoid hemorrhage: not sure. Crit Care Med. 2017;45(10):e1099.
  • Yamane DP, Maghami S, Graham A, et al. Association of hyperchloremia and acute kidney injury in patients with traumatic brain injury. J Intens Care Med. 2020:885066620978735.