2,242
Views
5
CrossRef citations to date
0
Altmetric
Clinical Study

Elevated circulating growth differentiation factor 15 is related to decreased heart rate variability in chronic kidney disease patients

, , , , , , & show all
Pages 340-346 | Received 06 Nov 2020, Accepted 18 Jan 2021, Published online: 10 Feb 2021

References

  • Holzmann M, Carlsson A, Hammar N, et al. Chronic kidney disease and 10-year risk of cardiovascular death. Eur J Prev Cardiolog. 2016;23(11):1187–1194.
  • Ac W, Ev N, Rl M, et al. Chronic Kidney Disease. Lancet. 2017;389(10075):1238–1252.
  • Bootcov MR, Bauskin AR, Valenzuela SM, et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc Natl Acad Sci USA. 1997;94(21):11514–11519.
  • Breit S, Tsai V, Brown D. Targeting obesity and cachexia: identification of the GFRAL receptor-MIC-1/GDF15 Pathway. Trends Mol Med. 2017;23(12):1065–1067.
  • Baek S, Eling T. Growth differentiation factor 15 (GDF15): a survival protein with therapeutic potential in metabolic diseases. Pharmacol Ther. 2019;198:46–58.
  • Tsai VWW, Husaini Y, Sainsbury A, et al. The MIC-1/GDF15-GFRAL pathway in energy homeostasis: implications for obesity, cachexia, and other associated diseases. Cell Metab. 2018;28(3):353–368.
  • Wang X, Baek SJ, Eling TE. The diverse roles of nonsteroidal anti-inflammatory drug activated gene (NAG-1/GDF15) in cancer. Biochem Pharmacol. 2013;85(5):597–606.
  • Yang L, Chang CC, Sun Z, et al. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat Med. 2017;23(10):1158–1166.
  • Emmerson PJ, Wang F, Du Y, et al. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat Med. 2017;23(10):1215–1219.
  • Wollert K, Kempf T, Wallentin L. Growth differentiation factor 15 as a biomarker in cardiovascular disease. Clin Chem. 2017;63(1):140–151.
  • Butany J, Feng T, Suri R, et al. Mitroflow pericardial bioprosthesis: structured failure at 4.5 years. Cardiovasc Pathol. 2012;21(6):506–510.
  • Levey A, de Jong P, Coresh J, et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011;80(1):17–28.
  • Lilu W, Wenjin L, Yantjng Y, et al. Increased circulating bioactive C-type natriuretic peptide is associated with reduced heart rate variability in patients with chronic kidney disease. BMC Nephrol. 2018;19(1):50.
  • Emmerson P, Duffin K, Chintharlapalli S, et al. GDF15 and growth control. Front Physiol. 2018;9:1712.
  • Adela R, Banerjee SK. GDF-15 as a target and biomarker for diabetes and cardiovascular diseases: a translational prospective. J Diabetes Res. 2015;2015:490842.
  • Preusch MR, Baeuerle M, Albrecht C, et al. GDF-15 protects from macrophage accumulation in a mousemodel of advanced atherosclerosis. Eur J Med Res. 2013;18:19.
  • Bermudez B, Lopez S, Pacheco YM, et al. Influence of postprandial triglyceride-rich lipoproteins on lipid-mediated gene expression in smooth muscle cells of the human coronary artery. Cardiovasc Res. 2008;79(2):294–303.
  • Nair V, Robinson-Cohen C, Smith MR, et al. Growth differentiation factor-15 and risk of CKD progression. J Am Soc Nephrol. 2017;28(7):2233–2240.
  • Bansal N, Zelnick L, Shlipak M, et al. Cardiac and stress biomarkers and chronic kidney disease progression: the CRIC study. Clin Chem. 2019;65(11):1448–1457.
  • Simonson MS, Tiktin M, Debanne SM, et al. The renal transcriptome of db/db mice identifies putative urinary biomarker proteins in patients with type 2 diabetes: a pilot study. Am J Physiol Renal Physiol. 2012;302(7):F820–829.
  • Duong Van Huyen JP, Cheval L, Bloch-Faure M, et al. GDF15 triggers homeostatic proliferation of acid-secreting collecting duct cells. J Am Soc Nephrol. 2008;19(10):1965–1974.
  • Connelly PW, Yan AT, Nash MM, et al. Growth differentiation factor 15 is decreased by kidney transplantation. Clin Biochem. 2019;73:57–61.
  • Andersson C, Enserro D, Sullivan L, et al. Relations of circulating GDF-15, soluble ST2, and troponin-I concentrations with vascular function in the community: the Framingham Heart Study. Atherosclerosis. 2016;248:245–251.
  • Huikuri H, Stein P. Heart rate variability in risk stratification of cardiac patients. Prog Cardiovasc Dis. 2013;56(2):153–159.
  • Yasuhiko K, Lin C, Eric W, et al. Heart rate variability and lifetime risk of cardiovascular disease: the atherosclerosis risk in communities study. Ann Epidemiol. 2017;27(10):619–625.e612.
  • Huang J-C, Kuo I-C, Tsai Y-C, et al. Heart rate variability predicts major adverse cardiovascular events and hospitalization in maintenance hemodialysis patients. Kidney Blood Pres Res. 2017;42(1):76–88.
  • de Oliveira CA, de Brito Junior HL, Bastos MG, et al. Depressed cardiac autonomic modulation in patients with chronic kidney disease. J Bras Nefrol. 2014;36(2):155–162.
  • Salman IM. Cardiovascular autonomic dysfunction in chronic kidney disease: a comprehensive review. Curr Hypertens Rep. 2015;17(8):59.
  • Tuegel C, Katz R, Alam M, et al. GDF-15, galectin 3, soluble ST2, and risk of mortality and cardiovascular events in CKD. Am J Kidney Dis. 2018;72(4):519–528.
  • Breit SN, Carrero JJ, Tsai VW, et al. Macrophage inhibitory cytokine-1 (MIC-1/GDF15) and mortality in end-stage renal disease. Nephrol Dial Transplant. 2012;27(1):70–75.
  • Kempf T, Zarbock A, Widera C, et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat Med. 2011;17(5):581–588.
  • Johnen H, Kuffner T, Brown DA, et al. Increased expression of the TGF-b superfamily cytokine MIC-1/GDF15 protects ApoE(–/–) mice from the development of atherosclerosis. Cardiovasc Pathol. 2012;21(6):499–505.
  • Wang X, Chrysovergis K, Kosak J, et al. hNAG-1 increases lifespan by regulating energy metabolism and insulin/IGF-1/mTOR signaling. Aging. 2014;6(8):690–704.