42,870
Views
12
CrossRef citations to date
0
Altmetric
State-of-the-Art Review

The furosemide stress test: current use and future potential

&
Pages 830-839 | Received 15 Jan 2020, Accepted 15 Mar 2021, Published online: 10 May 2021

References

  • Hobson CE, Yavas S, Segal MS, et al. Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery. Circulation. 2009;119(18):2444–2453.
  • Singbartl K, Kellum JA. AKI in the ICU: definition, epidemiology, risk stratification, and outcomes. Kidney Int. 2012;81(9):819–825.
  • Amdur RL, Chawla LS, Amodeo S, et al. Outcomes following diagnosis of acute renal failure in U.S. veterans: focus on acute tubular necrosis. Kidney Int. 2009;76(10):1089–1097.
  • McMahon BA, Koyner JL. Risk stratification for acute kidney injury: are biomarkers enough? Adv Chronic Kidney Dis. 2016;23(3):167–178.
  • Brater DC. Diuretic therapy. N Engl J Med. 1998;339(6):387–395.
  • Chawla LS, Davison DL, Brasha-Mitchell E, et al. Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Crit Care. 2013;17(5):R207.
  • Fuentes AV, Pineda MD, Venkata KCN. Comprehension of top 200 prescribed drugs in the US as a resource for pharmacy teaching, training and practice. Pharmacy (Basel, Switzerland). 2018;6:43.
  • Burg MB. Tubular chloride transport and the mode of action of some diuretics. Kidney Int. 1976;9(2):189–197.
  • Nielsen S, Maunsbach AB, Ecelbarger CA, et al. Ultrastructural localization of Na-K-2Cl cotransporter in thick ascending limb and macula densa of rat kidney. Am J Physiol. 1998;275(6):F885–893.
  • Wilcox CS, Mitch WE, Kelly RA, et al. Response of the kidney to furosemide. I. Effects of salt intake and renal compensation. J Lab Clin Med. 1983;102(3):450–458.
  • Vasko MR, Cartwright DB, Knochel JP, et al. Furosemide absorption altered in decompensated congestive heart failure. Ann Intern Med. 1985;102(3):314–318.
  • Shankar SS, Brater DC. Loop diuretics: from the Na-K-2Cl transporter to clinical use. Am J Physiol Renal Physiol. 2003;284(1):F11–F21.
  • Burckhardt G. Drug transport by Organic Anion Transporters (OATs). Pharmacol Ther. 2012;136(1):106–130.
  • Inoue M, Okajima K, Itoh K, et al. Mechanism of furosemide resistance in analbuminemic rats and hypoalbuminemic patients. Kidney Int. 1987;32(2):198–203.
  • Vallon V, Rieg T, Ahn SY, et al. Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. Am J Physiol Renal Physiol. 2008;294(4):F867–F873.
  • Wu W, Bush KT, Nigam SK. Key role for the organic anion transporters, OAT1 and OAT3, in the in vivo handling of uremic toxins and solutes. Sci Rep. 2017;7(1):4939.
  • Cemerikic D, Wilcox CS, Giebisch G. Intracellular potential and K + activity in rat kidney proximal tubular cells in acidosis and K + depletion. J Membr Biol. 1982;69(2):159–165.
  • Kim GH, Ecelbarger CA, Mitchell C, et al. Vasopressin increases Na-K-2Cl cotransporter expression in thick ascending limb of Henle’s loop. Am J Physiol. 1999;276(1):F96–F103.
  • Fernandez-Llama P, et al. Cyclooxygenase inhibitors increase Na-K-2Cl cotransporter abundance in thick ascending limb of Henle’s loop. Am J Physiol. 1999;277:F219–F226.
  • Huang CM, Atkinson AJ Jr, Levin M, et al. Pharmacokinetics of furosemide in advanced renal failure. Clin Pharmacol Ther. 1974;16(4):659–666.
  • Beermann B, Dalen E, Lindstrom B. Elimination of furosemide in healthy subjects and in those with renal failure. Clin Pharmacol Ther. 1977;22(1):70–78.
  • Van Wart SA, Shoaf SE, Mallikaarjun S, et al. Population-based meta-analysis of furosemide pharmacokinetics. Biopharm Drug Dispos. 2014;35(2):119–133.
  • Phakdeekitcharoen B, Boonyawat K. The added-up albumin enhances the diuretic effect of furosemide in patients with hypoalbuminemic chronic kidney disease: a randomized controlled study. BMC Nephrol. 2012;13(1):92.
  • Joannidis M, Klein SJ, Ostermann M. 10 myths about frusemide. Intensive Care Med. 2019;45(4):545–548.
  • Schmidt C, Hocherl K, Schweda F, et al. Regulation of renal sodium transporters during severe inflammation. J Am Soc Nephrol. 2007;18(4):1072–1083.
  • Mariano F, Leporati M, Carignano P, et al. Urine volume as a predicting factor for furosemide clearance during continuous infusion in AKI septic shock patients on hemodiafiltration. J Nephrol. 2018;31(6):889–897.
  • Rose HJ, O’Malley K, Pruitt AW. Depression of renal clearance of furosemide in man by azotemia. Clin Pharmacol Ther. 1977;21(2):141–146.
  • Hasannejad H, Takeda M, Taki K, et al. Interactions of human organic anion transporters with diuretics. J Pharmacol Exp Ther. 2004;308(3):1021–1029.
  • Kunin M, Holtzman EJ, Melnikov S, et al. Urinary organic anion transporter protein profiles in AKI. Nephrol Dial Transplant. 2012;27(4):1387–1395.
  • Ecelbarger CA, Yu S, Lee AJ, et al. Decreased renal Na-K-2Cl cotransporter abundance in mice with heterozygous disruption of the G(s)alpha gene. Am J Physiol. 1999;277(2):F235–244.
  • Rewa OG, Bagshaw SM, Wang X, et al. The furosemide stress test for prediction of worsening acute kidney injury in critically ill patients: a multicenter, prospective, observational study. J Crit Care. 2019;52:109–114.
  • Baek SM, Brown RS, Shoemaker WC. Early prediction of acute renal failure and recovery. II. Renal function response to furosemide. Ann Surg. 1973;178(5):605–608.
  • Kakajiwala A, Kim JY, Hughes JZ, et al. Lack of furosemide responsiveness predicts acute kidney injury in infants after cardiac surgery. Ann Thorac Surg. 2017;104(4):1388–1394.
  • Penk J, Gist KM, Wald EL, et al. Furosemide response predicts acute kidney injury in children after cardiac surgery. J Thorac Cardiovasc Surg. 2019;157(6):2444–2451.
  • Borasino S, Wall KM, Crawford JH, et al. Furosemide response predicts acute kidney injury after cardiac surgery in infants and neonates. Pediatr Crit Care Med. 2018;19:310–317.
  • Matsuura R, Komaru Y, Miyamoto Y. Response to different furosemide doses predicts AKI progression in ICU patients with elevated plasma NGAL levels. Ann Intensive Care. 2018;8:8.
  • Lumlertgul N, Peerapornratana S, Trakarnvanich T, for the FST Study Group, et al. Early versus standard initiation of renal replacement therapy in furosemide stress test non-responsive acute kidney injury patients (the FST trial). Crit Care. 2018;22(1):101.
  • van der Voort PHJ, Boerma EC, Koopmans M, et al. Furosemide does not improve renal recovery after hemofiltration for acute renal failure in critically ill patients: a double blind randomized controlled trial. Crit Care Med. 2009;37(2):533–538.
  • McMahon BA, Koyner JL, Novick T, et al. The prognostic value of the furosemide stress test in predicting delayed graft function following deceased donor kidney transplantation. Biomarkers. 2018;23(1):61–69.
  • Udomkarnjananun S, Townamchai N, Iampenkhae K, et al. Furosemide stress test as a predicting biomarker for delayed graft function in kidney transplantation. Nephron. 2019;141(4):236–248.
  • Koyner JL, Davison DL, Brasha-Mitchell E, et al. Furosemide stress test and biomarkers for the prediction of AKI severity. JASN. 2015;26(8):2023–2031.
  • Hodson DZ, Griffin M, Mahoney D, et al. Natriuretic response is highly variable and associated with 6-month survival: insights from the ROSE-AHF trial. JACC Heart Fail. 2019;7(5):383–391.
  • Mullens W, Damman k. Response to letters on “The use of diuretics in heart failure with congestion - a position statement from the Heart Failure Association of the European Society of Cardiology”. Eur J Heart Fail. 2019;21(7):949–950.
  • Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7(12):684–696.
  • Hirsch JS, Ng JH, Ross DW, et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020;98(1):P209–P218.