8,763
Views
5
CrossRef citations to date
0
Altmetric
Clinical Study

Development and internal validation of machine learning algorithms for end-stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease

, ORCID Icon, , , , , , , , , , , , , , & ORCID Icon show all
Pages 562-570 | Received 19 Aug 2021, Accepted 16 Mar 2022, Published online: 04 Apr 2022

References

  • Reutens AT. Epidemiology of diabetic kidney disease. Med Clin North Am. 2013; 97(1):1–18.
  • Wan EYF, Fong DYT, Fung CSC, et al. Prediction of new onset of end stage renal disease in chinese patients with type 2 diabetes mellitus – a population-based retrospective cohort study. BMC Nephrol. 2017; 18(1): 257.
  • Wysham CH, Gauthier-Loiselle M, Bailey RA, et al. Development of risk models for major adverse chronic renal outcomes among patients with type 2 diabetes mellitus using insurance claims: a retrospective observational study. Curr Med Res Opin. 2020;36(2):219–227.
  • Yang L, Chu TK, Lian J, et al. Individualised risk prediction model for new-onset, progression and regression of chronic kidney disease in a retrospective cohort of patients with type 2 diabetes under primary care in Hong Kong. BMJ Open. 2020;10(7):e035308.
  • Zhang J, Zhang R, Wang Y, et al. The level of serum albumin is associated with renal prognosis in patients with diabetic nephropathy. J Diabetes Res. 2019;2019:1–9.
  • Zheng L, Chen X, Luo T, et al. Early-onset type 2 diabetes as a risk factor for end-stage renal disease in patients with diabetic kidney disease. Prev Chronic Dis. 2020;17:E50.
  • Hsing S-C, Lee C-C, Lin C, et al. The severity of diabetic retinopathy is an independent factor for the progression of diabetic nephropathy. J Clin Med. 2020;10(1):3.
  • Radcliffe NJ, Seah J-M, Clarke M, et al. Clinical predictive factors in diabetic kidney disease progression. J Diabetes Investig. 2017;8(1):6–18.
  • Sun L, Shang J, Xiao J, et al. Development and validation of a predictive model for end-stage renal disease risk in patients with diabetic nephropathy confirmed by renal biopsy. PeerJ. 2020;8:e8499.
  • Ravizza S, Huschto T, Adamov A, et al. Predicting the early risk of chronic kidney disease in patients with diabetes using real-world data. Nat Med. 2019;25(1):57–59.
  • Pinsker JE, Shank T, Dassau E, et al. Comment on American Diabetes Association. Approaches to glycemic treatment. Sec. 7. In standards of medical care in diabetes-2015. Diabetes Care. 2015;38(suppl 1):S41–S48.
  • Tervaert TWC, Mooyaart AL, Amann K, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21(4):556–563.
  • Enders CK. Multiple imputation as a flexible tool for missing data handling in clinical research. Behav Res Ther. 2017;98:4–18.
  • Wang Y, Zhang J, Teng G, et al. Comparison of performance of equations for estimated glomerular filtration rate in Chinese patients with biopsy-proven diabetic nephropathy. Dis Markers. 2019;2019:1–8.
  • Palmer BF. Proteinuria as a therapeutic target in patients with chronic kidney disease. Am J Nephrol. 2007;27(3):287–293.
  • Belur Nagaraj S, Pena MJ, Ju W, et al. Machine-learning-based early prediction of end-stage renal disease in patients with diabetic kidney disease using clinical trials data. Diabetes Obes Metab. 2020;22(12):2479–2486.
  • Michelis R, Kristal B, Zeitun T, et al. Albumin oxidation leads to neutrophil activation in vitro and inaccurate measurement of serum albumin in patients with diabetic nephropathy. Free Radic Biol Med. 2013;60:49–55.
  • Michelis R, Kristal B, Snitkovsky T, et al. Oxidative modifications impair albumin quantification. Biochem Biophys Res Commun. 2010;401(1):137–142.
  • Magzal F, Sela S, Szuchman-Sapir A, et al. In-vivo oxidized albumin - a pro-inflammatory agent in hypoalbuminemia. PLoS One. 2017;12(5):e0177799.
  • Leehey DJ, Kramer HJ, Daoud TM, et al. Progression of kidney disease in type 2 diabetes – beyond blood pressure control: an observational study. BMC Nephrol. 2005;6(1):8.
  • Thomas MC. Anemia in diabetes: marker or mediator of microvascular disease? Nat Clin Pract Nephrol. 2007;3(1):20–30.
  • Mohanram A, Zhang Z, Shahinfar S, et al. Anemia and end-stage renal disease in patients with type 2 diabetes and nephropathy. Kidney Int. 2004;66(3):1131–1138.
  • Babazono T, Hanai K, Suzuki K, et al. Lower haemoglobin level and subsequent decline in kidney function in type 2 diabetic adults without clinical albuminuria. Diabetologia. 2006;49(6):1387–1393.
  • Eckardt K-U, Bernhardt WW, Weidemann A, et al. Role of hypoxia in the pathogenesis of renal disease. Kidney Int Suppl. 2005;68(99):S46–S51.
  • Tsai SF, Tarng DC. Anemia in patients of diabetic kidney disease. J Chin Med Assoc. 2019;82(10):752–755.
  • He BB, et al. Relationship between anemia and chronic complications in Chinese patients with type 2 diabetes mellitus. Arch Iran Med. 2015;18(5):277–283.
  • Li Z-C, Cai Y-Z, Tang Z-G, et al. Lipo-prostaglandin E1 improves renal hypoxia evaluated by BOLD-MRI in patients with diabetic kidney disease. Clin Imaging. 2018;50:239–242.
  • Persson P, Palm F. Hypoxia-inducible factor activation in diabetic kidney disease. Curr Opin Nephrol Hypertens. 2017;26(5):345–350.
  • Packer M. Mechanisms leading to differential hypoxia-inducible factor signaling in the diabetic kidney: modulation by SGLT2 inhibitors and hypoxia mimetics. Am J Kidney Dis. 2021;77(2):280–286.
  • Yamanouchi M, Hoshino J, Ubara Y, et al. Value of adding the renal pathological score to the kidney failure risk equation in advanced diabetic nephropathy. PLoS One. 2018;13(1):e0190930.
  • Wang J, Zhao L, Zhang J, et al. Clinicopathologic features and prognosis of type 2 diabetes mellitus and diabetic nephropathy in different age groups: more attention to younger patients. Endocr Pract. 2020;26(1):51–57.
  • Yu SM-W, Bonventre JV. Acute kidney injury and progression of diabetic kidney disease. Adv Chronic Kidney Dis. 2018;25(2):166–180.